
Platform Engineering for APIs:
Using GraphQL to Drive
Developer Efficiency

Table of contents

Introduction

Focus on API Developer Experience

Platform Engineering for API Management

Federated GraphQL: Crucial Layer of the Modern API Platforms

Apollo GraphOS For Automating GraphQL API Management

Safe and Rapid Graph Evolution

Transforming Developer Experience: GraphQL Success Stories

Conclusion

Reference List

01

02

04

05

08

10

18

21

22

01GraphQL Success Stories • Introduction

Introduction

Platform engineering is emerging as a key force enabling organizations to

deliver software faster and more reliably. A core focus of platform

engineering is improving developer experience by creating an integrated

internal developer platform that provides self-service, automation,

standardization, centralized security, and composability capabilities. This

paper explores how platform engineering teams at Netflix, Adobe, and

others use GraphQL and Apollo Federation to standardize, automate, and

scale API delivery.

You will learn how�

� A federated architecture unlocks GraphQL’s benefits at scale for your

organization.�

� Apollo GraphOS improves developer experience by automating

GraphQL API management.�

� Leading organizations like Netflix, Booking.com and RetailMeNot are

harnessing the power of GraphQL federation and Apollo GraphOS to

boost developer productivity, improve reliability, and drive innovation.

02Platform Engineering for APIs • Focus on API Developer Experience

Chapter 1

Focus on API Developer
Experience

Today, Application programming interfaces (APIs) are the backbone of

modern businesses with 83% of internet traffic consisting of API calls1.

APIs go beyond simply connecting data and applications; they

empower businesses to curate personalized customer experiences,

foster collaboration with external partners, and operate as robust

engines for monetization2.

Developers play a critical role at the center of the API economy.

Developers are both the producers and consumers of APIs,

responsible for managing the entire API lifecycle including design,

build, test, integration, and API maintenance.

03Platform Engineering for APIs • Focus on API Developer Experience

APIs dominate the developer workload. In fact, a recent Postman

survey3 indicated that

“49% of respondents said most of their
organization's development effort was
spent working with APIs.”
Enabling faster and self-service access to these APIs isn’t just

helpful to developers – it contributes significant business value for

an organization. McKinsey's recent research4 unveils a compelling

correlation:

companies prioritizing developer
velocity outperform their market
counterparts by a staggering four  
to five times.

To win in this developer-centric world, platform engineering5

plays a crucial role in enhancing developer experience and

reducing friction to release.

04Platform Engineering for APIs • Platform Engineering for API Management

Chapter 2

Platform Engineering for  
API Management

Platform engineering has emerged as a pivotal force in reshaping how

organizations approach software development and delivery. Gartner

predicts5 that by 2026,

approximately 80% of software  
engineering organizations will establish
platform teams as internal providers of
reusable services, components, and tools  
for application delivery.

A key aspect of platform engineering is a focus on the developer

experience. This involves creating an integrated internal developer

platform (IDP) that provides self-service, automation, standardization,

centralized security, and composability.

While this practice isn’t API-specific, it can contribute to our

understanding of an effective approach to API lifecycle management.

Platform engineering teams at leading organizations like Netflix6 and

Adobe7 are turning to GraphQL8 and Apollo Federation9 for effective API

management. These organizations are reaping substantial benefits by

leveraging GraphQL as a composable abstraction layer atop their existing

APIs, paving the way for accelerated application delivery and increased

developer efficiency.

05Platform Engineering for APIs • Federated GraphQL: Crucial Layer of the Modern API Platforms

Chapter 3

Federated GraphQL:  
Crucial Layer of the  
Modern API Platforms

When evaluating API architectures, GraphQL is commonly positioned as an

alternative to REST. However, organizations are not replacing REST2 or

even SOAP in many cases. GraphQL is flexible enough to serve different

purposes. With new GraphQL architectures like Apollo Federation, GraphQL

can be leveraged as a complementary platform that sits on top of existing

REST services, helping magnify an organization’s API investments.

REST

gRPC

gRPC

REST

REST

query

query

query

query

query

REST

REST

Clients API

Gateway

ServicesApollo

Router

GraphQL

Figure: Federated GraphQL layer

06Platform Engineering for APIs • Federated GraphQL: Crucial Layer of the Modern API Platforms

When GraphQL is federated, it expands its capabilities beyond just a simple API in a stack.

Neftlix6 highlights that a federated GraphQL platform

“solves many of the consistency and development velocity
challenges with minimal tradeoffs on dimensions like
scalability and operability.”

In a federated GraphQL architecture, any number of teams can contribute a GraphQL service to a

unified graph. The graph is available to client teams via a single endpoint. This architecture provides

the simplicity of a GraphQL monolith for client teams but the modularity of a more decoupled

approach for service teams. The federated graph also handles API orchestration, ensuring the

platform remains performant at all times. Teams can maintain individual GraphQL APIs, or subgraphs,

that are accessed through a single router endpoint by clients. A composition process takes all

subgraph schemas and intelligently combines them into a single schema, ensuring a consistent and

performant runtime.

This supergraph architecture — a graph of graphs — enables service teams to support more clients

with greater consistency and less redundant work. The federated approach helps strike a balance

between decentralized ownership and integrated delivery, enabling organizations to scale GraphQL

adoption in a governance-friendly manner.

The GraphQL Advantage

While GraphQL is often associated with frontend development due to its client-centric approach, its

true value extends far beyond the frontend. GraphQL serves as a powerful composition layer within an

API platform, providing several benefits that align with the principles of cloud-native architecture10. Its

ability to enable flexible architecture, seamless developer experience, cost optimization, improved

performance, along with a thriving open-source community, makes GraphQL a crucial layer of the

API platform. In the following table, we will examine these GraphQL benefits, exploring how they

contribute to the agility, scalability, and adaptability crucial for modern cloud-native API ecosystems.

07Platform Engineering for APIs • Federated GraphQL: Crucial Layer of the Modern API Platforms

Dimension

Architecture

Developer

Experience

Decoupling: GraphQL ensures a clear contract between the frontend and the backend teams by
defining a schema that outlines all available data types, their relationships, and the supported queries
and mutations. This helps to decouple frontend and backend development. Frontend teams can work
independently, designing queries that suit their UI requirements without direct dependencies on backend
changes.

Declarative and Hierarchical: GraphQL data is inherently declarative, enabling frontend teams to specify
precisely the data they require. GraphQL facilitates complex data retrieval across multiple data sources in
a single request, eliminating the need to stitch together multiple responses as often required in RESTful
architectures.

Strongly typed and introspection: GraphQL has strongly typed schema and introspection capabilities
that enable early error detection via validation and improve developer productivity through auto-
completion, API exploration, and documentation. This results in more stable APIs with fewer bugs in
development.

Versioning: GraphQL has backward compatibility with a built-in version control using the schema. This
allows seamless incremental addition of new types to the schema without breaking changes to existing
clients.

Performance

Cost

Ecosystem

Prevents over-fetching and under-fetching: GraphQL empowers API clients to request precisely the
data they need significantly reducing over-fetching and under-fetching issues commonly encountered in
traditional RESTful APIs.

Caching: GraphQL query responses can be cached granularly using directives11 and cache-control
headers, that optimizes resource usage by reducing server requests, enhancing performance, and
delivering tailored, efficient data retrieval for varying client needs.

Efficient data transfer: GraphQL can aid in cost optimization by curbing unnecessary data transfer
through its fine-grained data-fetching capabilities. It minimizes complexity and reduces network
bandwidth consumption.

Nested queries: GraphQL's ability to combine multiple requests into a single query can reduce server
load, leading to more efficient resource utilization and potentially lower infrastructure costs.

Community support & adoption: GraphQL benefits immensely from its vibrant open-source community.
With over 62,000 GitHub stars and usage by major enterprises like GitHub, Netflix, PayPal, Expedia,
Shopify, Twitter and others, GraphQL has seen rapid adoption. Companies like Apollo play a key role,
actively building and contributing to the GraphQL ecosystem.

Key Features of GraphQL

08Platform Engineering for APIs • Apollo GraphOS For Automating GraphQL API Management

Chapter 04

Apollo GraphOS For
Automating GraphQL  
API Management

As organizations discover the benefits of adopting a federated graph and

its use spreads across different teams, the need for a scalable and

evolvable graph solution becomes apparent. Developers want to tap into

the power of graphs to build great products, without the burden of

managing complex infrastructure themselves. They need a supergraph

operating system that can scale globally to meet growing business needs,

while letting them deploy rapid changes without breaking production.

09Platform Engineering for APIs • Apollo GraphOS For Automating GraphQL API Management

The solution is Apollo GraphOS12, the platform for building, managing, and scaling a supergraph.

Apollo GraphOS provides a centralized registry and standardized workflows so that any team can

contribute to the graph. It also provides centralized data plane to extend Apollo Router13, enabling

organizations to accommodate their API security, scalability, and extensibility needs.

Commit Code/Schemas to Version Control

Schema proposals and linting

subgraph

supergraph

GraphQL Schema

Publish Schema/Run Checks

Source Control - CI/CD

C
om

p
os

ed
 S

ch
em

a

Q
uery usag

e rep
orting

Q
ue

ri
es

/M
ut

at
io

ns
Q

ue
ri

es
/M

ut
at

io
ns

GraphOS Studio (Cloud)

Client Apps

GraphOS Router

(Self-hosted/Cloud)

Subgraph A

Subgraph B

Subgraph C

Subgraph A

Backend Team

Subgraph B

Backend Team

Subgraph C

Backend Team

Figure: Supergraph Developer Tooling and CI/CD Pipelines

10Platform Engineering for APIs • Safe and Rapid Graph Evolution

Chapter 05

Safe and Rapid Graph
Evolution

Apollo GraphOS provides everything you need to build an API platform for

the modern stack. It empowers teams to adopt a DevOps approach for

deploying and managing GraphQL schemas and APIs through a series of

robust features. Apollo GraphOS gives development teams the tools to

develop schemas collaboratively with a single source of truth, deliver

changes safely with graph CI/CD, and improve performance with field and

operation-level observability.

This section outlines best practices for leveraging Apollo GraphOS at each

DevOps stage to continuously deliver value on graphs with speed and

safety, ultimately boosting the developer experience.

11Platform Engineering for APIs • Safe and Rapid Graph Evolution

Design

The first phase in GraphQL API lifecycle is the creation and structuring of GraphQL schemas. These

schemas dictate how clients interact and retrieve data from the GraphQL API. The schema's power

lies in its flexibility: it shouldn't be rigidly tied to specific service implementations or clients. Embracing

demand-oriented schema14 design, especially with specifications like Apollo Federation, ensures

schemas evolve flexibly to support diverse client requirements while avoiding overemphasis on any

single client's needs.

As organizations expand and innovate, their GraphQL schemas undergo continuous growth and

evolution. The addition of new products and features leads to the introduction of new schema types

and fields. Implementing any such updates to a subgraph's schema requires clear cross-team

communication to comprehensively understand, verify, and track changes, mitigating the risk of any

breaking changes that might disrupt existing functionalities.

� Schema proposal�

� Apollo GraphOS Studio Explorer�

� Apollo Sandbox

� Rover CLI �

� Graph Composition�

� Apollo Uplink�

� Launches

� Apollo-hosted router�

� Apollo self-hosted router

� Apollo GraphOS Insights�

� Integration with existing observability tools�

� Apollo Router metrics�

� Daily reports �

� Schema change and build status notifications

� Operation check�

� Linter checks�

� Contract checks

� Rover CLI�

� Composition checks

B
uild

Test

Deploy

O
p

erate

Design

M

onitor

Dev Ops

Figure: Applying DevOps phases to GraphQL API management

12Platform Engineering for APIs • Safe and Rapid Graph Evolution

Apollo GraphOS’s schema proposals15 offer a solution by providing a centralized process for

for proposing, validating, and implementing schema changes, ensuring efficient and collaborative

development cycles with governance controls.

Figure: Schema proposals in GraphOS Studio

Figure: The GraphOS Studio Explorer

Additionally, Apollo offers various tools designed to expedite API development. Apollo GraphOS Studio

Explorer16, a powerful web IDE, enables developers to seamlessly create, run, and manage GraphQL

operations: Query, Mutation, and Subscription. While developers are making local changes to an

individual subgraph, they can use the rover dev command to start a local router instance and get a

local Apollo Studio Explorer instance.

13Platform Engineering for APIs • Safe and Rapid Graph Evolution

In the build phase of the GraphQL API lifecycle, the focus lies on ensuring the successful composition

and integration of the subgraph schema.

Once the subgraph schema changes are approved, composition checks17 are triggered locally to verify

whether the proposed schema changes will successfully compose with other subgraph schemas. A

composition check verifies that changes to a subgraph schema are valid GraphQL definitions and are

compatible with the other subgraph schemas, enabling them to compose into a supergraph schema

for the router. Composition checks can be run within existing CI/CD tools using Apollo’s Rover CLI18 to

create a seamless integration with existing software delivery pipelines.

If composition succeeds, a series of other schema checks are triggered for further validation. If

composition fails, validation ends and results are returned to the developer.

Build

Figure: Composition checks

Subgraph
schema

A

Subgraph
schema

B

Composition

(Composition succeeds)

Supergraph schema

(A + B + C + routing machinery)

Subgraph
schema

C

14Platform Engineering for APIs • Safe and Rapid Graph Evolution

Test

During the test phase, Apollo GraphOS ensures proposed schema changes follow best practices to

ensure the robustness and reliability of the GraphQL infrastructure. It provides crucial schema

checks19, a schema governance tool, to prevent breaking changes before implementation. Just like

composition checks, schema checks can be run locally within existing CI/CD tools using the Rover CLI

creating a seamless integration with existing software delivery pipelines.

Apollo GraphOS can perform the following types of schema checks:�

� Operation checks - If a composition check succeeds, Apollo GraphOS then validates schema

changes with operation checks. It compares the proposed schema changes against historical

operations to verify whether the changes will break any of the graph's active clients�

� Linter checks - Apollo GraphOS provides schema linting that help analyze proposed schema

changes for violations of formatting rules and other GraphQL best practices�

� Contract checks - Apollo GraphOS contracts enable developers to deliver different subsets of

their supergraph to different consumers. Contract checks help validate that proposed schema

changes won’t break any downstream contract variants.

If any of these checks fail, developers will see the errors in the GitHub PR, which will also link to

GraphOS Studio for more details. Developers will need to investigate the error, fix it in their local

environment and follow the validation process again from the start. If all the checks pass, the schema

changes are ready to be composed into the supergraph schema so that they are available to the API

clients.

15Platform Engineering for APIs • Safe and Rapid Graph Evolution

Deploy

Once the proposed schema changes pass all the schema checks, they can be deployed in the Apollo

GraphOS platform using the Rover CLI or GraphOS Platform API20. The platform stores the updated

schema(s) in its schema registry. At its core, the schema registry is a version control system for the

schema. It stores schema's change history, tracking the types and fields that were added, modified,

and removed. When the schema registry gets a new or updated version of a subgraph schema, it

validates21 and composes22 it into a supergraph schema.

The schema registry automatically sends the supergraph schema to an internal service within Apollo

GraphOS called Apollo Uplink23. Uplink is a server that stores the latest supergraph schema for each

graph. The router fetches the latest schema from Uplink and uses this new schema to respond to

client requests.

Figure: Schema publishing process

Products

subgraph

Polls for config changes

GraphOS

Apollo Schema

Registry Updates config

Apollo

Uplink

Your infrastructure

Publishes schema

Publishes schema
Reviews

subgraph

Router

16Platform Engineering for APIs • Safe and Rapid Graph Evolution

Operate

Once the federated graph is deployed, it must be managed on an ongoing basis. The Apollo Router,

integrated within the Apollo GraphOS platform, plays a pivotal role in facilitating the ongoing

management of a deployed GraphQL API. Users have the flexibility to operate Apollo Router

seamlessly either in Apollo-hosted25 or self-hosted26 environments.

The router acts as the entry point to the subgraphs, providing a unified interface for clients. It

intelligently executes each client operation across the appropriate subgraphs and merges the

responses into a single result for the client. The router offers comprehensive observability, allowing

organizations to track usage down to individual fields and operations.

The Launches24 page in GraphOS Studio enables developers to observe and monitor the schema

delivery process for both in-progress and past launches. It’s a dashboard that summarizes how

launches over time have evolved the supergraph, helping developers track when new changes are

reflected in production and debug when something goes wrong.

Figure: Launches page in GraphOS Studio

17Platform Engineering for APIs • Safe and Rapid Graph Evolution

Monitor

The final phase of the DevOps cycle is to monitor the environment by collecting data and providing

analytics on the graph's behavior, performance, errors and more.

Apollo GraphOS Studio27 offers a performant and intuitive user interface to help monitor and

understand supergraph's usage and performance. Users can seamlessly integrate with their existing

tools like Datadog to monitor their graph's performance.

As discussed earlier, the router is the single entry point to the subgraphs, all client requests pass

through the router's request lifecycle. Therefore, the router's observability is critical for maintaining a

healthy, performant supergraph and minimizing its mean time to repair (MTTR). The Apollo Router

provides the necessary telemetry, logging and tracing data to monitor its health and troubleshoot

issues. Users can also configure Apollo Router to export router and graph traces and metrics to their

choice of observability tools using OpenTelemetry. Additionally, customizing instrumentation and

events can be done simply by configuring the Apollo Router.

In addition to the observability around graph performance, Apollo GraphOS Studio also provides daily

reports of graphs' activity, schema change and build status notifications to empower teams with real-

time insights, enabling them to maintain, optimize, and innovate their graph infrastructure effectively.

Figure: GraphOS Insights

18Platform Engineering for APIs • Transforming Developer Experience: GraphQL Success Stories

Chapter 06

Transforming Developer
Experience: GraphQL
Success Stories

19Platform Engineering for APIs • Transforming Developer Experience: GraphQL Success Stories

Netflix6, renowned for its microservice architecture, faced challenges with its UI developers managing

hundreds of microservices and backend developers grappling with complexity and resilience issues.

They introduced a unified API aggregation layer to address this, but as their business and developer

count grew, this layer became increasingly challenging to maintain. Netflix adopted GraphQL

federation, leveraging Apollo Federation Specification, to resolve this. A federated GraphQL platform

solved many of the consistency and development velocity challenges while maintaining scalability and

operability. This approach promised benefits of a unified API schema for consumers while also giving

backend developers flexibility and service isolation they required.

Booking.com, a global leader in travel accommodations, faced challenges stemming from an aging

monolithic architecture that led to inconsistent experiences across clients and increased maintenance

costs. The Booking.com team turned to Apollo GraphOS platform28 to decouple frontend and backend

development and gain comprehensive visibility into API consumption. With Apollo’s platform, they

swiftly transitioned to a modern, distributed architecture, empowering teams with enhanced

autonomy and streamlining feature deployment. The implementation of schema checks fortified

resilience and reliability, allowing developers to innovate without the fear of breaking systems.

Booking.com achieved a remarkable 40% acceleration in shipping speed by adopting federated

approach, complemented by seamless automation and integrated CI/CD processes.

“We are already seeing benefits of our supergraph preventing
mistakes when people push a bad schema. It’s stopping silly
mistakes before they happen, giving developers confidence.
It’s really started helping the developers move, and they’re
much happier with the experience since they can build
without breaking things.”

- Matt Sexton, Solutions Architect, Booking.com

20Platform Engineering for APIs • Transforming Developer Experience: GraphQL Success Stories

RetailMeNot, a leading savings destination that brings shoppers incredible offers, revolutionized its

technology stack in 2019 to scale and enhance user experiences29. Starting with REST APIs, they

shifted to a monolithic GraphQL API, but growing contributions turned into a bottleneck. Recognizing

the need for scalability, they turned to Apollo Federation, empowering discrete subgraph teams to

maintain portions of a unified supergraph schema, curbing inconsistencies and streamlining data

models. Incrementally migrating from the monolith, they optimized their schema and traffic routing,

witnessing an immediate shift post-Apollo Federation adoption. Automation through Apollo Studio

reduced code review time by over 65%, enabling teams to innovate, educate on GraphQL best

practices, and fortify their supergraph. This transformation eliminated all breaking changes, bolstered

reliability, and boosted feature delivery by 40%, marking a confident shift from monolithic constraints

to agile subgraph architecture.

After adopting managed federation and schema checks,  
we went from three engineers spending 75% of their time
reviewing code to less than 10%.”

- Hannah Shin, Senior Software Engineer, RetailMeNot

Conclusion

GraphQL and Apollo GraphOS provide a strategic pathway

to build a resilient, developer-friendly API platform. By

implementing GraphQL in platform engineering efforts,

organizations can modernize their APIs and provide

delightful user experiences. The Apollo GraphOS platform

further extends GraphQL's capabilities by automating

federated schema management, integrating CI/CD

workflows, and providing robust observability.

By adopting GraphQL and Apollo GraphOS, platform

engineering teams can deliver the self-service, automation,

standardization, and centralized governance needed for

delivering stellar developer experiences. Leading

companies like Netflix, Booking.com, and RetailMeNot have

used these technologies to boost developer velocity,

reliability, and business agility.

Ready to embark on this journey? Learn how your

organization can modernize your API platform with

GraphQL by consulting the experts at Apollo.

21

https://www.apollographql.com/contact-sales?referrer=nav-contact-sales

1 “Akamai State of the Internet Security Report.”, 26 February
2019, https://www.akamai.com/newsroom/press-release/state-
of-the-internet-security-retail-attacks-and-api-traffic.

2 Gilling, Derric. “Turning APIs Into Revenue Centers By
Monetizing Usage.”, 13 October, 2023, https://www.forbes.com/
sites/forbestechcouncil/2023/10/13/turning-apis-into-revenue-
centers-by-monetizing-usage/?sh=1947482460c9.

3 “2023 State of the API Report.”, 2023, https://
www.postman.com/state-of-api/a-day-week-or-year-in-the-
life/#api-development-effort

4 Srivastava et al., “Developer Velocity: How software
excellence fuels business performance”, 20 April, 2020, https://
www.mckinsey.com/industries/technology-media-and-
telecommunications/our-insights/developer-velocity-how-
software-excellence-fuels-business-performance

5 Perri, Lori. “What Is Platform Engineering?”, October 26, 2023,
https://www.gartner.com/en/articles/what-is-platform-
engineering

6 Netflix Technology Blog. “How Netflix Scales its API with
GraphQL Federation (Part 1)”, 9 November, 2020, https://
netflixtechblog.com/how-netflix-scales-its-api-with-graphql-
federation-part-1-ae3557c187e2

7 Anderson & Ross. “GraphQL: Making Sense of Enterprise
Microservices for the UI”, 4, March, 2021, https://
blog.developer.adobe.com/graphql-making-sense-of-
enterprise-microservices-for-the-ui-46fc8f5a5301

8 “Why GraphQL”, https://www.apollographql.com/why-graphql

9 “Introduction to Apollo Federation”, https://
www.apollographql.com/docs/federation/

10 Grey, Tom. “5 principles for cloud-native architecture—what it
is and how to master it.”,19 June, 2019, https://
cloud.google.com/blog/products/application-development/5-
principles-for-cloud-native-architecture-what-it-is-and-how-
to-master-it

11 GraphQL.org, https://graphql.org/learn/queries/#directives

12 Apollo GraphQL docs, “The Apollo GraphOS platform.”,
https://www.apollographql.com/docs/intro/platform

13 Apollo GraphQL docs, “The Apollo Router.”, https://
www.apollographql.com/docs/router/

14 Apollo GraphQL docs, “Demand oriented schema design”,
https://www.apollographql.com/docs/technotes/TN0027-
demand-oriented-schema-design/

15 Apollo GraphQL docs, “Schema proposals”, https://
www.apollographql.com/docs/graphos/delivery/schema-
proposals

16 Apollo GraphQL docs, “The GraphOS Studio Explorer”, https://
www.apollographql.com/docs/graphos/explorer/

17 Apollo GraphQL docs, “Composition checks”, https://
www.apollographql.com/docs/graphos/delivery/schema-
checks/#composition-checks

18 Apollo GraphQL docs, “The Rover CLI”, https://
www.apollographql.com/docs/rover/

19 Apollo GraphQL docs, “Schema checks.” https://
www.apollographql.com/docs/graphos/delivery/schema-
checks/

20 Apollo GraphQL docs, “The GraphOS Platform API.” https://
www.apollographql.com/docs/graphos/platform-api/

21 Apollo GraphQL docs, “Federated schema checks.” https://
www.apollographql.com/docs/federation/managed-federation/
federated-schema-checks/

22 Apollo GraphQL docs, “Schema checks.”, https://
www.apollographql.com/docs/federation/federated-types/
composition/

23 Apollo GraphQL docs, “Apollo Uplink.”, https://
www.apollographql.com/docs/federation/managed-federation/
uplink/

24 Apollo GraphQL docs, “Launches.” https://
www.apollographql.com/docs/graphos/delivery/launches/

25 Apollo GraphQL docs, “Cloud routing for
supergraphs.”, https://www.apollographql.com/docs/graphos/
routing/cloud/

26 Apollo GraphQL docs, “Set up a self-hosted supergraph.”,
https://www.apollographql.com/docs/graphos/quickstart/self-
hosted/

27 Apollo GraphQL docs, “Metrics and insights in GraphOS.”,
https://www.apollographql.com/docs/graphos/metrics/

28 “The supergraph helps Booking.com boost developer
productivity and ship 40% faster.”, https://
www.apollographql.com/customers/booking

29 “RetailMeNot Ships 40% Faster and Eliminates Downtime with
their Supergraph.”, https://www.apollographql.com/customers/
retailmenot

Further Reading

22

https://www.akamai.com/newsroom/press-release/state-of-the-internet-security-retail-attacks-and-api-traffic
https://www.akamai.com/newsroom/press-release/state-of-the-internet-security-retail-attacks-and-api-traffic
https://www.forbes.com/sites/forbestechcouncil/2023/10/13/turning-apis-into-revenue-centers-by-monetizing-usage/?sh=1947482460c9
https://www.forbes.com/sites/forbestechcouncil/2023/10/13/turning-apis-into-revenue-centers-by-monetizing-usage/?sh=1947482460c9
https://www.forbes.com/sites/forbestechcouncil/2023/10/13/turning-apis-into-revenue-centers-by-monetizing-usage/?sh=1947482460c9
https://www.postman.com/state-of-api/a-day-week-or-year-in-the-life/#api-development-effort
https://www.postman.com/state-of-api/a-day-week-or-year-in-the-life/#api-development-effort
https://www.postman.com/state-of-api/a-day-week-or-year-in-the-life/#api-development-effort
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/developer-velocity-how-software-excellence-fuels-business-performance
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/developer-velocity-how-software-excellence-fuels-business-performance
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/developer-velocity-how-software-excellence-fuels-business-performance
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/developer-velocity-how-software-excellence-fuels-business-performance
https://www.gartner.com/en/articles/what-is-platform-engineering
https://www.gartner.com/en/articles/what-is-platform-engineering
https://netflixtechblog.com/how-netflix-scales-its-api-with-graphql-federation-part-1-ae3557c187e2
https://netflixtechblog.com/how-netflix-scales-its-api-with-graphql-federation-part-1-ae3557c187e2
https://netflixtechblog.com/how-netflix-scales-its-api-with-graphql-federation-part-1-ae3557c187e2
https://blog.developer.adobe.com/graphql-making-sense-of-enterprise-microservices-for-the-ui-46fc8f5a5301
https://blog.developer.adobe.com/graphql-making-sense-of-enterprise-microservices-for-the-ui-46fc8f5a5301
https://blog.developer.adobe.com/graphql-making-sense-of-enterprise-microservices-for-the-ui-46fc8f5a5301
https://www.apollographql.com/why-graphql
https://www.apollographql.com/docs/federation/
https://www.apollographql.com/docs/federation/
https://cloud.google.com/blog/products/application-development/5-principles-for-cloud-native-architecture-what-it-is-and-how-to-master-it
https://cloud.google.com/blog/products/application-development/5-principles-for-cloud-native-architecture-what-it-is-and-how-to-master-it
https://cloud.google.com/blog/products/application-development/5-principles-for-cloud-native-architecture-what-it-is-and-how-to-master-it
https://cloud.google.com/blog/products/application-development/5-principles-for-cloud-native-architecture-what-it-is-and-how-to-master-it
https://graphql.org/learn/queries/#directives
https://www.apollographql.com/docs/intro/platform
https://www.apollographql.com/docs/router/
https://www.apollographql.com/docs/router/
https://www.apollographql.com/docs/technotes/TN0027-demand-oriented-schema-design/
https://www.apollographql.com/docs/technotes/TN0027-demand-oriented-schema-design/
https://www.apollographql.com/docs/graphos/delivery/schema-proposals
https://www.apollographql.com/docs/graphos/delivery/schema-proposals
https://www.apollographql.com/docs/graphos/delivery/schema-proposals
https://www.apollographql.com/docs/graphos/explorer/
https://www.apollographql.com/docs/graphos/explorer/
https://www.apollographql.com/docs/graphos/delivery/schema-checks/#composition-checks
https://www.apollographql.com/docs/graphos/delivery/schema-checks/#composition-checks
https://www.apollographql.com/docs/graphos/delivery/schema-checks/#composition-checks
https://www.apollographql.com/docs/rover/
https://www.apollographql.com/docs/rover/
https://www.apollographql.com/docs/graphos/delivery/schema-checks/
https://www.apollographql.com/docs/graphos/delivery/schema-checks/
https://www.apollographql.com/docs/graphos/delivery/schema-checks/
https://www.apollographql.com/docs/graphos/platform-api/
https://www.apollographql.com/docs/graphos/platform-api/
https://www.apollographql.com/docs/federation/managed-federation/federated-schema-checks/
https://www.apollographql.com/docs/federation/managed-federation/federated-schema-checks/
https://www.apollographql.com/docs/federation/managed-federation/federated-schema-checks/
https://www.apollographql.com/docs/federation/federated-types/composition/
https://www.apollographql.com/docs/federation/federated-types/composition/
https://www.apollographql.com/docs/federation/federated-types/composition/
https://www.apollographql.com/docs/federation/managed-federation/uplink/
https://www.apollographql.com/docs/federation/managed-federation/uplink/
https://www.apollographql.com/docs/federation/managed-federation/uplink/
https://www.apollographql.com/docs/graphos/delivery/launches/
https://www.apollographql.com/docs/graphos/delivery/launches/
https://www.apollographql.com/docs/graphos/routing/cloud/
https://www.apollographql.com/docs/graphos/routing/cloud/
https://www.apollographql.com/docs/graphos/quickstart/self-hosted/
https://www.apollographql.com/docs/graphos/quickstart/self-hosted/
https://www.apollographql.com/docs/graphos/metrics/
https://www.apollographql.com/customers/booking
https://www.apollographql.com/customers/booking
https://www.apollographql.com/customers/retailmenot
https://www.apollographql.com/customers/retailmenot

