

APPLICATION PENETRATION

TESTING REPORT

Cyber Test

For:

AppSec Labs

Performed by:

AppSec Labs

2024-10-22

© All Rights Reserved to AppSec Labs

No part of this document or any of its contents may be reproduced, copied, modified or adapted, without the prior written consent of the

author, unless otherwise indicated for stand-alone materials.

Page 2 of 25

TABLE OF CONTENTS:

TABLE OF CONTENTS: ... 2

CHAPTER A - INTRODUCTION TO APPSEC LABS .. 3

CHAPTER B – EXECUTIVE SUMMARY ... 4

GENERAL DETAILS 4
TEST SCOPE AND DETAILS 4
LIMITATIONS AND DISCLAIMERS 4
CONCLUSIONS 5
GRAPHS OF FINDINGS 6

CHAPTER C – TESTING METHODOLOGY ... 7

RECOMMENDED STEPS 8
CAUTIONARY NOTE 8
THREAT LEVEL OF THE VULNERABILITIES 9

CHAPTER D – SUMMARY OF VULNERABILITIES .. 10

SUMMARY OF FINDINGS 10

CHAPTER E – SECURITY VULNERABILITIES EXPOSED DURING THE PT 11

1. SQL INJECTION 12
2. STORAGE OF SENSITIVE LOGIN CREDENTIALS 16
3. DEPRECATED HTTP SECURITY HEADERS 19

APPENDIX A - LIST OF ATTACKS AND TESTS ... 22

© All Rights Reserved to AppSec Labs

No part of this document or any of its contents may be reproduced, copied, modified or adapted, without the prior written consent of the

author, unless otherwise indicated for stand-alone materials.

Page 3 of 25

CHAPTER A - INTRODUCTION TO APPSEC LABS

AppSec Labs is an expert application security company, whose mission is a proactive attitude towards

application security.

AppSec Labs services are led by Erez Metula MSC, a world-renowned application security expert

lecturing regularly at major international security conferences and the author of the book Managed

Code Rootkits.

Our experience has been gathered over many years of servicing hundreds of clients of all sizes around

the globe.

AppSec Labs’ main resource is its high level of expertise in identifying security vulnerabilities,

implementing secure development practices in complex applications, and the in-depth knowledge

needed for integrating security at the code level.

Our Services:

• Application Security Testing– application penetration testing for web, desktop, cloud, mobile

and IoT applications

• Training – the AppSec Labs Academy offers hands-on courses in application hacking and

secure coding

• SDLC Consulting – secure development lifecycle implementation

• R&D – security consulting throughout the R&D and design stages

https://appsec-labs.com/

© All Rights Reserved to AppSec Labs

No part of this document or any of its contents may be reproduced, copied, modified or adapted, without the prior written consent of the

author, unless otherwise indicated for stand-alone materials.

Page 4 of 25

CHAPTER B – EXECUTIVE SUMMARY

General details

AppSec Labs was requested by AppSec Labs to perform an application security test for the Cyber Test

system/service. AppSec Labs hereby confirms that the tests have been completed and the results were

delivered to AppSec Labs.

The following document summarizes the results of this test.

Test scope and details

The following components were covered and included in the testing scope:

• www.testappseclabs.test/home (Example)

• www.testappseclabs.test/dashboard (Example)

• Environment tested: QA

• Application Version Number: 1.0.1

Users:

• user1

• user2

• admin

Additional Scope info:

None.

Limitations and Disclaimers

The following aspects were out of scope:

No specific components were out of scope.

System stability level:

The system was stable for testing.

Infrastructure testing:

Infrastructure was in scope for the current test.

© All Rights Reserved to AppSec Labs

No part of this document or any of its contents may be reproduced, copied, modified or adapted, without the prior written consent of the

author, unless otherwise indicated for stand-alone materials.

Page 5 of 25

The goal of the penetration test is to provide a list of issues that jeopardize the security of the

system. The report does not necessarily cover all instances of each vulnerability and therefore the

suggested mitigations should be implemented throughout the entire application, and not only for

the provided examples.

In addition, during a retest, the scope is limited to findings that were detected in the previous full

round of tests and have been reported to be fixed since then by the client. The test scenarios only

include exploitation of the attack scenarios as described in the original testing cycle, and in some

cases basic attempts to bypass the fix. In addition, the test verified that the fix did not encounter

any new security issues. However, the retest does not include any efforts to find new security

findings.

Conclusions

Based on the results of testing and verification process, and in accordance with the testing scope,

details and limitations as stated in this document, AppSec Labs confirms that the system maximum

risk of the findings in this report is: Critical

© All Rights Reserved to AppSec Labs

No part of this document or any of its contents may be reproduced, copied, modified or adapted, without the prior written consent of the

author, unless otherwise indicated for stand-alone materials.

Page 6 of 25

Graphs of findings

The following graphs illustrate the current security state of the application:

© All Rights Reserved to AppSec Labs

No part of this document or any of its contents may be reproduced, copied, modified or adapted, without the prior written consent of the

author, unless otherwise indicated for stand-alone materials.

Page 7 of 25

CHAPTER C – TESTING METHODOLOGY

The test was performed using a combination of automated and manual tools, in order to cover a wide

range of applicative vulnerabilities as recommended by the OWASP and WASC methodologies.

A white box approach was used during the tests. This tests a system with full knowledge and access to

system resources, including meetings and interviews with system architects and access to the source

code and file system.

The test included access to the following resources:

• User credentials

• Admin access

• Interviews with developers

© All Rights Reserved to AppSec Labs

No part of this document or any of its contents may be reproduced, copied, modified or adapted, without the prior written consent of the

author, unless otherwise indicated for stand-alone materials.

Page 8 of 25

Recommended steps

In order to improve the overall security state of the product it is recommended to take the following

actions:

1. Fix vulnerabilities according to mitigation recommendations.

2. Patch management: install new patches and keep the system updated with latest releases

(servers, databases, external libraries, etc.)

3. Penetration test retest – perform another cycle of testing to check whether the fixes were

applied properly and with no security-related side effects.

4. Code review – a full analysis of the code to detect security vulnerabilities

5. Training (secure coding for QA/architects/developers, security awareness)

Cautionary note

The penetration testing that AppSec Labs performed was based on past experiences, currently available

information, and known threats as of the date of testing. Given the constantly evolving nature of

information security threats and vulnerabilities, there can be no assurance that any assessment will

identify all possible vulnerabilities, or provide exhaustive and operationally viable recommendations to

mitigate those exposures.

The statements relevant to the security of the system in this report reflect the conditions found at the

completion of testing. In accepting our report, the recipient has acknowledged the validity of the above

cautionary statement.

© All Rights Reserved to AppSec Labs

No part of this document or any of its contents may be reproduced, copied, modified or adapted, without the prior written consent of the

author, unless otherwise indicated for stand-alone materials.

Page 9 of 25

Threat level of the vulnerabilities

The severity of the vulnerabilities detected during the test was determined using OWASP and WASC

methodologies. The following describes the impact of each threat level:

Critical
 A security vulnerability that poses a major security risk with a direct exploit (not requiring

user involvement). If exploited, the security threat might cause major damage to the

application and/or have major impact on the company. The likelihood of such an attack

occurring is high, considering the architecture/business-logic/complexity of the exploit.

High
 The weakness identified has the potential to directly compromise the confidentiality, integrity

and/or availability of the system or data, but the likelihood of its occurrence is not high,

considering the architecture/business-logic/complexity of the exploit. The possible damage to

the application or the company is high, but not a total disaster.

 In applications involving sensitive data, the risk might be considered high if the weakness by

itself is against common regulations (e.g. PCI).

Medium
 A medium security issue that imposes some affect/damage to the application. Often it cannot

be used directly but can assist an attacker to launch further attacks.

Low
 No direct threat exists. It is a risk, rather than a threat and does not cause damage by itself. The

vulnerability may be leveraged together with other vulnerabilities in order to launch further

attacks.

 The risk reveals technical information which might assist an attacker in launching or more

accurately targeting future attacks.

Informational
 This is a vulnerability which is either not currently exploitable or it currently has no actual

impact.

 For example, the vulnerability cannot be exploited because of some other unrelated element or

design feature of application that, if it was changed, would suddenly make the vulnerability

exploitable.

 Alternatively, this element of the application may not currently be considered to be security

sensitive but this may change in the near future.

 As such, this finding is being included to raise awareness of this possibility. The finding

description should include the relevant circumstances.

© All Rights Reserved to AppSec Labs

No part of this document or any of its contents may be reproduced, copied, modified or adapted, without the prior written consent of the

author, unless otherwise indicated for stand-alone materials.

Page 10 of 25

CHAPTER D – SUMMARY OF VULNERABILITIES

Summary of findings

The system has been found to be vulnerable to the attacks detailed below, as at the date of the test and

taking into account the test conditions and environment.

Threat

level
Finding description Status

1 Critical SQL Injection Not Fixed

2 Medium Storage of Sensitive Login Credentials
Waiting for

Retest

3 Low Deprecated HTTP Security Headers Open Finding

© All Rights Reserved to AppSec Labs

No part of this document or any of its contents may be reproduced, copied, modified or adapted, without the prior written consent of the

author, unless otherwise indicated for stand-alone materials.

Page 11 of 25

CHAPTER E – SECURITY VULNERABILITIES EXPOSED DURING THE PT

In the upcoming section of this report, we delve into the pivotal findings gathered during the

penetration testing process. Each identified vulnerability will be thoroughly documented,

encompassing its severity level, potential repercussions on the organization, and any associated data.

Additionally, corroborating evidence of each vulnerability, such as screen captures, logs, or exploit

code, will be provided to substantiate the associated risks. Where relevant, the methods employed for

exploiting and the root causes of each vulnerability will also be detailed. This exhaustive analysis is

aimed at delivering an overview of the system existing security stance, pinpointing areas necessitating

urgent intervention, and proposing suitable remediation strategies.

Moreover, each finding will also include a risk assessment, evaluating the potential business and

operational impacts if the vulnerability were to be exploited. This includes potential financial losses,

damage to the organization’s reputation, legal implications, and effects on business continuity. Also,

we will categorize each vulnerability to provide a standardized assessment of its severity. Following

the detailed presentation of each finding, we will offer strategic recommendations tailored to mitigate

the identified risks and improve the target’s defense mechanisms. Our ultimate objective is to equip

the relevant team members with the necessary insights and tools to fortify its security posture,

safeguarding its critical assets from potential cyber threats.

© All Rights Reserved to AppSec Labs

No part of this document or any of its contents may be reproduced, copied, modified or adapted, without the prior written consent of the

author, unless otherwise indicated for stand-alone materials.

Page 12 of 25

1. SQL Injection

Threat level

Critical

Business Impact

An attacker can manipulate the database, for example: extract sensitive information from the

database, bypass authentication, and more.

Description

SQL injection (SQLi) is a web security vulnerability that allows an attacker to interfere with the

queries that an application makes to its database. It generally allows an attacker to view data that they

are not normally able to retrieve. This might include data belonging to other users, or any other data

that the application itself is able to access. In many cases, an attacker can modify or delete this data,

causing persistent changes to the application's content or behavior.In some situations, an attacker can

escalate an SQL injection attack to compromise the underlying server or other back-end

infrastructure, or perform a denial-of-service attack.

A successful SQL injection attack can result in unauthorized access to sensitive data, such as

passwords, credit card details, or personal user information. Many high-profile data breaches in

recent years have been the result of SQL injection attacks, leading to reputational damage and

regulatory fines.

© All Rights Reserved to AppSec Labs

No part of this document or any of its contents may be reproduced, copied, modified or adapted, without the prior written consent of the

author, unless otherwise indicated for stand-alone materials.

Page 13 of 25

Proof of concept - SQL Injection

During the test, it was noted that the application is vulnerable to SQL injection.

The following screenshots provide details regarding the SQL injection vulnerability that was found in

the system:

An attacker sends the following request with SQL injection payload:

By utilizing the specific parameter vulnerable to SQL injection, the attacker can use automatic tools

and steal the entire database.

© All Rights Reserved to AppSec Labs

No part of this document or any of its contents may be reproduced, copied, modified or adapted, without the prior written consent of the

author, unless otherwise indicated for stand-alone materials.

Page 14 of 25

The following image shows the impact of the SQL injection on the application:

The above image shows that the attacker can leverage the sql injection vulnerability.

Recommended mitigation

There may be other locations and parameters that are vulnerable to SQL Injection. As such, the

mitigation should be implemented throughout the entire application and not only for the given

examples.

• Use a parameterized query: using a parameterized query will assist the programmer in

determining an SQL query and then pass the parameters of this query in runtime. This method

allows the database engine to decide which part is the query and which parts are the

parameters sent by the client:

String query = "SELECT * FROM users WHERE email = ?";

OleDbCommand cmd = new OleDbCommand(query, connection);

cmd.Parameters.Add("@email_address", SqlDbType.VarChar, 25);

cmd.Parameters["@email_address"].Value = Email.Text; OleDbDataReader reader =

command.ExecuteReader();

© All Rights Reserved to AppSec Labs

No part of this document or any of its contents may be reproduced, copied, modified or adapted, without the prior written consent of the

author, unless otherwise indicated for stand-alone materials.

Page 15 of 25

• In addition, it is also recommended to use stored procedures to store the SQL queries as

procedures in the database. The SQL code for a stored procedure is defined and stored in the

database itself and then called from the application.

Status

Not Fixed

During the retest, it was found that the same finding exists in the system.

© All Rights Reserved to AppSec Labs

No part of this document or any of its contents may be reproduced, copied, modified or adapted, without the prior written consent of the

author, unless otherwise indicated for stand-alone materials.

Page 16 of 25

2. Storage of Sensitive Login Credentials

Threat level

Medium

Business Impact

An attacker might gain access to the client authentication credentials.

Description

The application stores the client’s login credentials. These credentials might get extracted easily from

the device by an attacker. Compromising login credentials can endanger the account security since the

attacker using the login credentials can impersonate a victim’s identity and perform actions on his

behalf without the victim knowing.

© All Rights Reserved to AppSec Labs

No part of this document or any of its contents may be reproduced, copied, modified or adapted, without the prior written consent of the

author, unless otherwise indicated for stand-alone materials.

Page 17 of 25

Proof of concept - Stored Encrypted Credentials

The following image shows the stored encrypted login credentials:

The following image shows the decrypted login credentials:

As can be seen above, encrypted login credentials are stored on the client-side and can be decrypted.

© All Rights Reserved to AppSec Labs

No part of this document or any of its contents may be reproduced, copied, modified or adapted, without the prior written consent of the

author, unless otherwise indicated for stand-alone materials.

Page 18 of 25

Recommended mitigation

• It is recommended to avoid storing user credentials. Login credentials should be used once to

retrieve an access token. Upon receiving the access token, the credentials must be removed

from the memory.

• It is recommended to set up PIN/Biometric access control for Keychain/Keystore stored

credentials will limit the attack and lower the overall finding’s severity. As such, for each

application access to the secure item, The user will be prompted to authenticate (PIN or

biometrics). After successful authentication, the key will be accessible to the application.

• A Refresh API should be used to keep the session alive if necessary.

Status

Waiting for Retest

Customer fixed the finding and demand for retest.

© All Rights Reserved to AppSec Labs

No part of this document or any of its contents may be reproduced, copied, modified or adapted, without the prior written consent of the

author, unless otherwise indicated for stand-alone materials.

Page 19 of 25

3. Deprecated HTTP Security Headers

Threat level

Low

Business Impact

Usage of deprecated X-XSS-Protection header reduces protection against cross-site scripting (XSS)

attacks, potentially exposing the web application to increased risks of malicious code injection.

Description

Deprecated HTTP security headers are directives that were once used to improve a website's or web

application's security, but have since been replaced by more effective or efficient alternatives.These

headers may still be in use on some websites, but they are no longer considered best practices and

should be updated to more current security measures.To maintain robust security, it is crucial for

developers and website administrators to replace the deprecated X-XSS-Protection header with more

modern and effective security measures. This includes employing strict input validation, output

encoding, and utilizing "Content Security Policy" (CSP) to mitigate the risks associated with XSS

attacks and ensure the overall integrity of their web applications.Leaving deprecated security headers

in place can create vulnerabilities in a website or web application, as they may not provide the same

level of protection as more current measures.It is important to regularly review and update security

headers to ensure that a website or web application is protected against potential threats.

© All Rights Reserved to AppSec Labs

No part of this document or any of its contents may be reproduced, copied, modified or adapted, without the prior written consent of the

author, unless otherwise indicated for stand-alone materials.

Page 20 of 25

Proof of concept - X-XSS-Protection

Modern browsers no longer use XSS filtering, and usage of the deprecated header can introduce

additional security issues on the client-side.

As can be seen from this image below, the X-XSS-Protection security header is set and returned from

the server:

© All Rights Reserved to AppSec Labs

No part of this document or any of its contents may be reproduced, copied, modified or adapted, without the prior written consent of the

author, unless otherwise indicated for stand-alone materials.

Page 21 of 25

Recommended mitigation

Note: The mitigation should be implemented throughout the entire application and not only for the

given examples.

• It is recommended to configure the following security header: X-XSS-Protection: 0

• For better protection against XSS (Cross-Site Scripting) it's recommended to implement the

following header: Content-Security-Policy

• For more information in regards to the Content-Security-Policy header and proper

configuration: https://owasp.org/www-project-secure-headers/#content-security-policy

• For more information in regards to implementing security headers: https://owasp.org/www-

project-secure-headers/

https://owasp.org/www-project-secure-headers/#content-security-policy
https://owasp.org/www-project-secure-headers/
https://owasp.org/www-project-secure-headers/

© All Rights Reserved to AppSec Labs

No part of this document or any of its contents may be reproduced, copied, modified or adapted, without the prior written consent of the

author, unless otherwise indicated for stand-alone materials.

Page 22 of 25

APPENDIX A - LIST OF ATTACKS AND TESTS

The following table is a generic list of tests performed by AppSec Labs during the security test (and

NOT a list of vulnerabilities detected in the system). The list includes known attacks valid at the time

of the production of this report .

In addition to this list, personalized testing is performed on the system, to check the application’s

business logic and to counter new attacks according to the most recent research carried out internally

by AppSec Labs as well as those published by other, well known security companies.

The system is vulnerable to the findings that were described in the report. Subject to the nature of the

test (methodology, scope, limitations, etc.), other vulnerabilities may exist but were not discovered

under these conditions .

Category Test Name

Information Gathering Search engine discovery / reconnaissance

Web application fingerprint

Review Webpage Comments and Metadata for Information

Leakage

Application entry points Identification

Execution paths mapping

Web application framework fingerprinting

Web application fingerprinting

Application architecture mapping

Information Disclosure by error codes

SSL Weakness - SSL/TLS Testing (SSL Version, Algorithms, Key

length, Digital Cert. Validity)

Configuration and Deploy Management

Testing

Application Configuration management weakness

File extensions handling - sensitive information

Old, Backup and Unreferenced Files - Sensitive Information

Unauthorized Admin Interfaces access

HTTP Methods enabled, XST permitted, HTTP Verb

Http strict transport security

RIA cross domain policy

Role definitions enumeration

Vulnerable user registration process

© All Rights Reserved to AppSec Labs

No part of this document or any of its contents may be reproduced, copied, modified or adapted, without the prior written consent of the

author, unless otherwise indicated for stand-alone materials.

Page 23 of 25

Vulnerable account provisioning process

Permissions of Guest/Low Permission Accounts

Account suspension/resumption process

Authentication Testing Credentials Transported over Unencrypted Channel

User enumeration

Account lockout

Authentication bypass

"Remember password" functionality

Browser caching

Weak password policy

Weak password security mechanisms

Weak password change or reset flow

Race conditions

Weak multiple factors authentication

Weak CAPTCHA implementation

Weaker authentication in alternative channel

Authorization Testing Directory traversal/file inclusion

Authorization schema bypass

Privilege escalation

Insecure direct object references

Session Management Testing Session management bypass

Cookies are set without ‘HTTP Only’, ‘Secure’, and no time

validity

Session fixation

Exposed session variables

Cross site request forgery (CSRF)

Logout management

Session timeout

Session puzzling

Data Validation Testing Reflected cross site scripting

Stored cross site scripting

HTTP verb tampering

© All Rights Reserved to AppSec Labs

No part of this document or any of its contents may be reproduced, copied, modified or adapted, without the prior written consent of the

author, unless otherwise indicated for stand-alone materials.

Page 24 of 25

HTTP Parameter pollution / manipulation

SQL injection

LDAP injection

ORM injection

XML injection

SSI injection

Xpath Injection

IMAP/SMTP injection

Code injection

Local/remote file inclusion

Command injection

Buffer overflow

Heap overflow

Stack overflow

Format string manipulation

Incubated vulnerabilities

HTTP splitting/smuggling

Error Handling Analysis of Error Codes

Analysis of Stack Traces

Cryptography Weak SSL/TLS ciphers, insufficient transport layer protection

Padding oracle

Sensitive information sent via unencrypted channels

Business Logic Testing

Business logic data validation

Ability to Forge Requests

Integrity checks

Process timing

Replay attack

Circumvention of Work Flows

Abuse of Functionality

File upload vulnerabilities

Client Side Testing DOM based Cross Site Scripting

Javascript Execution

© All Rights Reserved to AppSec Labs

No part of this document or any of its contents may be reproduced, copied, modified or adapted, without the prior written consent of the

author, unless otherwise indicated for stand-alone materials.

Page 25 of 25

Html/css injection

Client side url redirect

Client side resource manipulation

Cross origin resource sharing

Cross site flashing

Clickjacking / UI rendering

Web sockets

Web messaging

Local storage / session storage sensitive information

AJAX Testing AJAX weakness

Denial of Service Testing SQL Wildcard vulnerability

Locking customer accounts

Buffer overflows

User specified object allocation

User Input as a Loop Counter

Writing User Provided Data to Disk

Failure to Release Resources

Storing too Much Data in Session

Web Services Testing WS information gathering

WSDL weakness

Weak xml structure

XML content-level

WS HTTP GET parameters/REST

WS Naughty SOAP attachments

WS replay testing

