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preface
We’ve both been fortunate to be data engineers in interesting and challenging times.
For better or worse, many companies and organizations are realizing that data plays a
key role in managing and improving their operations. Recent developments in
machine learning and AI have opened a slew of new opportunities to capitalize on.
However, adopting data-centric processes is often difficult, as it generally requires
coordinating jobs across many different heterogeneous systems and tying everything
together in a nice, timely fashion for the next analysis or product deployment. 

 In 2014, engineers at Airbnb recognized the challenges of managing complex data
workflows within the company. To address those challenges, they started developing
Airflow: an open source solution that allowed them to write and schedule workflows
and monitor workflow runs using the built-in web interface. 

 The success of the Airflow project quickly led to its adoption under the Apache
Software Foundation, first as an incubator project in 2016 and later as a top-level proj-
ect in 2019. As a result, many large companies now rely on Airflow for orchestrating
numerous critical data processes.

 Working as consultants at GoDataDriven, we’ve helped various clients adopt Air-
flow as a key component in projects involving the building of data lakes/platforms,
machine learning models, and so on. In doing so, we realized that handing over these
solutions can be challenging, as complex tools like Airflow can be difficult to learn
overnight. For this reason, we also developed an Airflow training program at GoData-
Driven, and have frequently organized and participated in meetings to share our
knowledge, views, and even some open source packages. Combined, these efforts have
xv



PREFACExvi
helped us explore the intricacies of working with Airflow, which were not always easy
to understand using the documentation available to us.

 In this book, we aim to provide a comprehensive introduction to Airflow that cov-
ers everything from building simple workflows to developing custom components and
designing/managing Airflow deployments. We intend to complement many of the
excellent blogs and other online documentation by bringing several topics together in
one place, using a concise and easy-to-follow format. In doing so, we hope to kickstart
your adventures with Airflow by building on top of the experience we’ve gained
through diverse challenges over the past years.    
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about this book
Data Pipelines with Apache Airflow was written to help you implement data-oriented work-
flows (or pipelines) using Airflow. The book begins with the concepts and mechanics
involved in programmatically building workflows for Apache Airflow using the Python
programming language. Then the book switches to more in-depth topics such as
extending Airflow by building your own custom components and comprehensively
testing your workflows. The final part of the book focuses on designing and managing
Airflow deployments, touching on topics such as security and designing architectures
for several cloud platforms.

Who should read this book
Data Pipelines with Apache Airflow is written both for scientists and engineers who are
looking to develop basic workflows in Airflow, as well as engineers interested in more
advanced topics such as building custom components for Airflow or managing Air-
flow deployments. As Airflow workflows and components are built in Python, we do
expect readers to have intermediate experience with programming in Python (i.e.,
have a good working knowledge of building Python functions and classes, understand-
ing concepts such as *args and **kwargs, etc.). Some experience with Docker is also
beneficial, as most of our code examples are run using Docker (though they can also
be run locally if you wish).

 

xix



ABOUT THIS BOOKxx
How this book is organized: A road map
The book consists of four sections that cover a total of 18 chapters.

 Part 1 focuses on the basics of Airflow, explaining what Airflow is and outlining its
basic concepts.

■ Chapter 1 discusses the concept of data workflows/pipelines and how these can
be built using Apache Airflow. It also discusses the advantages and disadvantages
of Airflow compared to other solutions, including in which situations you might
not want to use Apache Airflow. 

■ Chapter 2 goes into the basic structure of pipelines in Apache Airflow (also
known as DAGs), explaining the different components involved and how these
fit together.

■ Chapter 3 shows how you can use Airflow to schedule your pipelines to run at
recurring time intervals so that you can (for example) build pipelines that
incrementally load new data over time. The chapter also dives into some intrica-
cies in Airflow’s scheduling mechanism, which is often a source of confusion.

■ Chapter 4 demonstrates how you can use templating mechanisms in Airflow to
dynamically include variables in your pipeline definitions. This allows you to
reference things such as schedule execution dates within your pipelines.

■ Chapter 5 demonstrates different approaches for defining relationships between
tasks in your pipelines, allowing you to build more complex pipeline structures
with branches, conditional tasks, and shared variables.

Part 2 dives deeper into using more complex Airflow topics, including interfacing
with external systems, building your own custom components, and designing tests for
your pipelines.

■ Chapter 6 shows how you can trigger workflows in other ways that don’t involve
fixed schedules, such as files being loaded or via an HTTP call.

■ Chapter 7 demonstrates workflows using operators that orchestrate various
tasks outside Airflow, allowing you to develop a flow of events through systems
that are not connected.

■ Chapter 8 explains how you can build custom components for Airflow that
allow you to reuse functionality across pipelines or integrate with systems that
are not supported by Airflow’s built-in functionality.

■ Chapter 9 discusses various options for testing Airflow workflows, touching on
several properties of operators and how to approach these during testing.

■ Chapter 10 demonstrates how you can use container-based workflows to run
pipeline tasks within Docker or Kubernetes and discusses the advantages and
disadvantages of these container-based approaches. 
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Part 3 focuses on applying Airflow in practice and touches on subjects such as best
practices, running/securing Airflow, and a final demonstrative use case.

■ Chapter 11 highlights several best practices to use when building pipelines, which
will help you to design and implement efficient and maintainable solutions.

■ Chapter 12 details several topics to account for when running Airflow in a pro-
duction setting, such as architectures for scaling out, monitoring, logging, and
alerting.

■ Chapter 13 discusses how to secure your Airflow installation to avoid unwanted
access and to minimize the impact in the case a breach occurs.

■ Chapter 14 demonstrates an example Airflow project in which we periodically
process rides from New York City’s Yellow Cab and Citi Bikes to determine the
fastest means of transportation between neighborhoods.

Part 4 explores how to run Airflow in several cloud platforms and includes topics such
as designing Airflow deployments for the different clouds and how to use built-in
operators to interface with different cloud services.

■ Chapter 15 provides a general introduction by outlining which Airflow compo-
nents are involved in (cloud) deployments, introducing the idea behind cloud-
specific components built into Airflow, and weighing the options of rolling out
your own cloud deployment versus using a managed solution.

■ Chapter 16 focuses on Amazon’s AWS cloud platform, expanding on the previ-
ous chapter by designing deployment solutions for Airflow on AWS and demon-
strating how specific components can be used to leverage AWS services. 

■ Chapter 17 designs deployments and demonstrates cloud-specific components
for Microsoft’s Azure platform.

■ Chapter 18 addresses deployments and cloud-specific components for Google’s
GCP platform. 

People new to Airflow should read chapters 1 and 2 to get a good idea of what Airflow
is and what it can do. Chapters 3–5 provide important information about Airflow’s key
functionality. The rest of the book discusses topics such as building custom compo-
nents, testing, best practices, and deployments and can be read out of order, based on
the reader’s particular needs.

About the code
All source code in listings or text is in a fixed-width font like this to separate it
from ordinary text. Sometimes code is also in bold to highlight code that has changed
from previous steps in the chapter, such as when a new feature adds to an existing line
of code.

 In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even this was not enough, and listings include line-continuation



ABOUT THIS BOOKxxii
markers (➥). Additionally, comments in the source code have often been removed
from the listings when the code is described in the text. Code annotations accompany
many of the listings, highlighting important concepts. 

 References to elements in the code, scripts, or specific Airflow classes/variables/
values are often in italics to help distinguish them from the surrounding text. 

 Source code for all examples and instructions to run them using Docker and
Docker Compose are available in our GitHub repository (https://github.com/BasPH/
data-pipelines-with-apache-airflow) and can be downloaded via the book’s website
(www.manning.com/books/data-pipelines-with-apache-airflow).

NOTE Appendix A provides more detailed instructions on running the code
examples.

All code samples have been tested with Airflow 2.0. Most examples should also run on
older versions of Airflow (1.10), with small modifications. Where possible, we have
included inline pointers on how to do so. To help you account for differences in
import paths between Airflow 2.0 and 1.10, appendix B provides an overview of
changed import paths between the two versions. 

LiveBook discussion forum
Purchase of Data Pipelines with Apache Airflow includes free access to a private web
forum run by Manning Publications where you can make comments about the book,
ask technical questions, and receive help from the author and other users. To access
the forum and subscribe to it, go to https://livebook.manning.com/#!/book/data-
pipelines-with-apache-airflow/discussion. This page provides information on how to
get on the forum once you’re registered, what kind of help is available, and its rules of
conduct.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the authors can take
place. It is not a commitment to any specific amount of participation on the part of
the authors, whose contribution to the forum remains voluntary (and unpaid). We
suggest you try asking the authors some challenging questions lest their interest stray!
The forum and the archives of previous discussions will be accessible from the pub-
lisher’s website as long as the book is in print.

https://github.com/BasPH/data-pipelines-with-apache-airflow
https://github.com/BasPH/data-pipelines-with-apache-airflow
https://livebook.manning.com/#!/book/data-pipelines-with-apache-airflow/discussion
https://livebook.manning.com/#!/book/data-pipelines-with-apache-airflow/discussion
http://www.manning.com/books/data-pipelines-with-apache-airflow
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Part 1

Getting started

This part of the book will set the stage for your journey into building pipe-
lines for all kinds of wonderful data processes using Apache Airflow. The first
two chapters are aimed at giving you an overview of what Airflow is and what it
can do for you. 

 First, in chapter 1, we’ll explore the concepts of data pipelines and sketch the
role Apache Airflow plays in helping you implement these pipelines. To set
expectations, we’ll also compare Airflow to several other technologies, and dis-
cuss when it might or might not be a good fit for your specific use case. Next,
chapter 2 will teach you how to implement your first pipeline in Airflow. After
building the pipeline, we’ll also examine how to run this pipeline and monitor
its progress using Airflow’s web interface.

 Chapters 3–5 dive deeper into key concepts of Airflow to give you a solid
understanding of Airflow’s underpinnings. 

 Chapter 3 focuses on scheduling semantics, which allow you to configure Air-
flow to run your pipelines at regular intervals. This lets you (for example) write
pipelines that load and process data efficiently on a daily, weekly, or monthly
basis. Next, in chapter 4, we’ll discuss templating mechanisms in Airflow, which
allow you to dynamically reference variables such as execution dates in your
pipelines. Finally, in chapter 5, we’ll dive into different approaches for defining
task dependencies in your pipelines, which allow you to define complex task
hierarchies, including conditional tasks, branches, and so on.

 If you’re new to Airflow, we recommend making sure you understand the
main concepts described in chapters 3–5, as these are key to using it effectively.



2 PART 1 Getting started
Airflow’s scheduling semantics (described in chapter 3) can be especially confusing
for new users, as they can be somewhat counterintuitive when first encountered.

 After finishing part 1, you should be well-equipped to write your own basic pipe-
lines in Apache Airflow and be ready to dive into some more advanced topics in
parts 2–4.



Meet Apache Airflow
People and companies are continuously becoming more data-driven and are devel-
oping data pipelines as part of their daily business. Data volumes involved in these
business processes have increased substantially over the years, from megabytes per
day to gigabytes per minute. Though handling this data deluge may seem like a
considerable challenge, these increasing data volumes can be managed with the
appropriate tooling.

 This book focuses on Apache Airflow, a batch-oriented framework for building
data pipelines. Airflow’s key feature is that it enables you to easily build scheduled
data pipelines using a flexible Python framework, while also providing many building
blocks that allow you to stitch together the many different technologies encountered
in modern technological landscapes. 

This chapter covers
 Showing how data pipelines can be represented 

in workflows as graphs of tasks

 Understanding how Airflow fits into the 
ecosystem of workflow managers

 Determining if Airflow is a good fit for you
3



4 CHAPTER 1 Meet Apache Airflow
 Airflow is best thought of as a spider in a web: it sits in the middle of your data pro-
cesses and coordinates work happening across the different (distributed) systems. As
such, Airflow is not a data processing tool in itself but orchestrates the different com-
ponents responsible for processing your data in data pipelines.

 In this chapter, we’ll first give you a short introduction to data pipelines in Apache
Airflow. Afterward, we’ll discuss several considerations to keep in mind when evaluat-
ing whether Airflow is right for you and demonstrate how to make your first steps with
Airflow. 

1.1 Introducing data pipelines
Data pipelines generally consist of several tasks or actions that need to be executed to
achieve the desired result. For example, say we want to build a small weather dash-
board that tells us what the weather will be like in the coming week (figure 1.1). To
implement this live weather dashboard, we need to perform something like the fol-
lowing steps:

1 Fetch weather forecast data from a weather API.
2 Clean or otherwise transform the fetched data (e.g., converting temperatures

from Fahrenheit to Celsius or vice versa), so that the data suits our purpose.
3 Push the transformed data to the weather dashboard.

As you can see, this relatively simple pipeline already consists of three different tasks
that each perform part of the work. Moreover, these tasks need to be executed in a
specific order, as it (for example) doesn’t make sense to try transforming the data
before fetching it. Similarly, we can’t push any new data to the dashboard until it has
undergone the required transformations. As such, we need to make sure that this
implicit task order is also enforced when running this data process.

1.1.1 Data pipelines as graphs

One way to make dependencies between tasks more explicit is to draw the data pipe-
line as a graph. In this graph-based representation, tasks are represented as nodes in
the graph, while dependencies between tasks are represented by directed edges
between the task nodes. The direction of the edge indicates the direction of the
dependency, with an edge pointing from task A to task B, indicating that task A needs
to be completed before task B can start. Note that this type of graph is generally called
a directed graph, due to the directions in the graph edges.

 Applying this graph representation to our weather dashboard pipeline, we can see
that the graph provides a relatively intuitive representation of the overall pipeline

DashboardWeather API

Fetch and

clean data Figure 1.1 Overview of the weather dashboard 
use case, in which weather data is fetched from 
an external API and fed into a dynamic dashboard
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(figure 1.2). By just quickly glancing at the graph, we can see that our pipeline con-
sists of three different tasks, each corresponding to one of the tasks outlined. Other
than this, the direction of the edges clearly indicates the order in which the tasks need
to be executed: we can simply follow the arrows to trace the execution.

This type of graph is typically called a directed acyclic graph (DAG), as the graph con-
tains directed edges and does not contain any loops or cycles (acyclic). This acyclic prop-
erty is extremely important, as it prevents us from running into circular dependencies
(figure 1.3) between tasks (where task A depends on task B and vice versa). These cir-
cular dependencies become problematic when trying to execute the graph, as we run
into a situation where task 2 can only execute once task 3 has been completed, while
task 3 can only execute once task 2 has been completed. This logical inconsistency
leads to a deadlock type of situation, in which neither task 2 nor 3 can run, preventing
us from executing the graph.

Note that this representation is different from cyclic graph representations, which can
contain cycles to illustrate iterative parts of algorithms (for example), as are common

Fetch weather for Push data to dashboarecast Clean forecast data d

Task dependencyTask node

Legend

Figure 1.2 Graph representation of the data pipeline for the weather dashboard. 
Nodes represent tasks and directed edges represent dependencies between tasks 
(with an edge pointing from task A to task B, indicating that task A needs to be run 
before task B).

Task 3

Task 3

Task 2

Task 2

A dir graph (DAG) of tasksected acyclic

A dir graph of tasksected cyclic

Task 2 will never be able to execute,
due to its dependency on task 3,
which in turn depends on task 2.

Task 1

Task 1 Figure 1.3 Cycles in graphs prevent 
task execution due to circular 
dependencies. In acyclic graphs (top), 
there is a clear path to execute the 
three different tasks. However, in 
cyclic graphs (bottom), there is no 
longer a clear execution path due 
to the interdependency between 
tasks 2 and 3.
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in many machine learning applications. However, the acyclic property of DAGs is used
by Airflow (and many other workflow managers) to efficiently resolve and execute these
graphs of tasks.

1.1.2 Executing a pipeline graph

A nice property of this DAG representation is that it provides a relatively straightfor-
ward algorithm that we can use for running the pipeline. Conceptually, this algorithm
consists of the following steps:

1 For each open (= uncompleted) task in the graph, do the following:
– For each edge pointing toward the task, check if the “upstream” task on the

other end of the edge has been completed.
– If all upstream tasks have been completed, add the task under consideration

to a queue of tasks to be executed.
2 Execute the tasks in the execution queue, marking them completed once they

finish performing their work.
3 Jump back to step 1 and repeat until all tasks in the graph have been completed. 

To see how this works, let’s trace through a small execution of our dashboard pipeline
(figure 1.4). On our first loop through the steps of our algorithm, we see that the clean
and push tasks still depend on upstream tasks that have not yet been completed. As
such, the dependencies of these tasks have not been satisfied, so at this point they can’t
be added to the execution queue. However, the fetch task does not have any incoming
edges, meaning that it does not have any unsatisfied upstream dependencies and can
therefore be added to the execution queue.

 After completing the fetch task, we can start the second loop by examining the
dependencies of the clean and push tasks. Now we see that the clean task can be exe-
cuted as its upstream dependency (the fetch task) has been completed. As such, we can
add the task to the execution queue. The push task can’t be added to the queue, as it
depends on the clean task, which we haven’t run yet. 

 In the third loop, after completing the clean task, the push task is finally ready for
execution as its upstream dependency on the clean task has now been satisfied. As a
result, we can add the task to the execution queue. After the push task has finished
executing, we have no more tasks left to execute, thus finishing the execution of the
overall pipeline.

1.1.3 Pipeline graphs vs. sequential scripts

Although the graph representation of a pipeline provides an intuitive overview of the
tasks in the pipeline and their dependencies, you may find yourself wondering why we
wouldn’t just use a simple script to run this linear chain of three steps. To illustrate
some advantages of the graph-based approach, let’s jump to a slightly bigger example.
In this new use case, we’ve been approached by the owner of an umbrella company,
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who was inspired by our weather dashboard and would like to try to use machine
learning (ML) to increase the efficiency of their operation. To do so, the company
owner would like us to implement a data pipeline that creates an ML model correlat-
ing umbrella sales with weather patterns. This model can then be used to predict how
much demand there will be for the company’s umbrellas in the coming weeks, depend-
ing on the weather forecasts for those weeks (figure 1.5).

 To build a pipeline for training the ML model, we need to implement something
like the following steps:

1 Prepare the sales data by doing the following:
– Fetching the sales data from the source system
– Cleaning/transforming the sales data to fit requirements

Fetch weather forecast Clean forecast data dPush data to dashboar

Legend

Unsatisfied dependencyOpen task

Completed task enSatisfied depend cy

Fetch weather forecast Clean forecast data Push data to dashboard

Loop 1

Loop 2

Fetch weather forecast Push data to dashboard

Loop 3

End state

Fetch weather forecast

Task ready for execution;
no unsatisfied dependencies

Task has finished
execution

Task now ready for execution,
as its upstream dependency
is satisfied

Not ready for execution
yet; still has unsatisfied
dependencies

Task has finished
execution

Task now ready
for execution

Clean forecast data

Push data to dashboardClean forecast data

Figure 1.4 Using the DAG structure to execute tasks in the data pipeline in the correct order: 
depicts each task’s state during each of the loops through the algorithm, demonstrating how this 
leads to the completed execution of the pipeline (end state)
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2 Prepare the weather data by doing the following:
– Fetching the weather forecast data from an API
– Cleaning/transforming the weather data to fit requirements

3 Combine the sales and weather data sets to create the combined data set that
can be used as input for creating a predictive ML model.

4 Train the ML model using the combined data set.
5 Deploy the ML model so that it can be used by the business.

This pipeline can be represented using the same graph-based representation that we
used before, by drawing tasks as nodes and data dependencies between tasks as edges. 

 One important difference from our previous example is that the first steps of this
pipeline (fetching and clearing the weather/sales data) are in fact independent of
each other, as they involve two separate data sets. This is clearly illustrated by the two
separate branches in the graph representation of the pipeline (figure 1.6), which can
be executed in parallel if we apply our graph execution algorithm, making better use
of available resources and potentially decreasing the running time of a pipeline com-
pared to executing the tasks sequentially.

Weather API

Sales data

Combine

data sets

Train

model

Predict

umbrella salesFetch and

clean data

Fetch and

clean data

Figure 1.5 Overview of the umbrella demand use case, in which historical weather and sales 
data are used to train a model that predicts future sales demands depending on weather 
forecasts

Fetch weather
forecast

Clean
forecast data

Join data sets

Fetch sales
data

Clean sales
data

Train ML
model

Deploy ML
model

Figure 1.6 Independence between sales and weather tasks in the graph representation of 
the data pipeline for the umbrella demand forecast model. The two sets of fetch/cleaning tasks 
are independent as they involve two different data sets (the weather and sales data sets). 
This independence is indicated by the lack of edges between the two sets of tasks.
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Another useful property of the graph-based representation is that it clearly separates
pipelines into small incremental tasks rather than having one monolithic script or
process that does all the work. Although having a single monolithic script may not ini-
tially seem like that much of a problem, it can introduce some inefficiencies when
tasks in the pipeline fail, as we would have to rerun the entire script. In contrast, in the
graph representation, we need only to rerun any failing tasks (and any downstream
dependencies). 

1.1.4 Running pipeline using workflow managers

Of course, the challenge of running graphs of dependent tasks is hardly a new prob-
lem in computing. Over the years, many so-called “workflow management” solutions
have been developed to tackle this problem, which generally allow you to define and
execute graphs of tasks as workflows or pipelines. 

 Some well-known workflow managers you may have heard of include those listed
in table 1.1.

Although each of these workflow managers has its own strengths and weaknesses, they
all provide similar core functionality that allows you to define and run pipelines con-
taining multiple tasks with dependencies. 

 One of the key differences between these tools is how they define their workflows.
For example, tools such as Oozie use static (XML) files to define workflows, which
provides legible workflows but limited flexibility. Other solutions such as Luigi and

Table 1.1 Overview of several well-known workflow managers and their key characteristics. 

Name
Originated 

ata

a. Some tools were originally created by (ex-)employees of a company; however, all tools are open sourced and not represented by one 
single company.

Workflows 
defined in

Written in Scheduling Backfilling
User 

interfaceb

b. The quality and features of user interfaces vary widely.

Installation 
platform

Horizontally 
scalable

Airflow Airbnb Python Python Yes Yes Yes Anywhere Yes

Argo Applatix YAML Go Third partyc

c. https://github.com/bitphy/argo-cron.

Yes Kubernetes Yes

Azkaban LinkedIn YAML Java Yes No Yes Anywhere

Conductor Netflix JSON Java No Yes Anywhere Yes

Luigi Spotify Python Python No Yes Yes Anywhere Yes

Make Custom 
DSL

C No No No Anywhere No

Metaflow Netflix Python Python No No Anywhere Yes

Nifi NSA UI Java Yes No Yes Anywhere Yes

Oozie XML Java Yes Yes Yes Hadoop Yes

https://github.com/bitphy/argo-cron
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Airflow allow you to define workflows as code, which provides greater flexibility but
can be more challenging to read and test (depending on the coding skills of the per-
son implementing the workflow).

 Other key differences lie in the extent of features provided by the workflow man-
ager. For example, tools such as Make and Luigi do not provide built-in support for
scheduling workflows, meaning that you’ll need an extra tool like Cron if you want to
run your workflow on a recurring schedule. Other tools may provide extra functional-
ity such as scheduling, monitoring, user-friendly web interfaces, and so on built into
the platform, meaning that you don’t have to stitch together multiple tools yourself
to get these features. 

 All in all, picking the right workflow management solution for your needs will
require some careful consideration of the key features of the different solutions and
how they fit your requirements. In the next section, we’ll dive into Airflow—the focus
of this book—and explore several key features that make it particularly suited for
handling data-oriented workflows or pipelines. 

1.2 Introducing Airflow
In this book, we focus on Airflow, an open source solution for developing and moni-
toring workflows. In this section, we’ll provide a helicopter view of what Airflow does,
after which we’ll jump into a more detailed examination of whether it is a good fit for
your use case.

1.2.1 Defining pipelines flexibly in (Python) code

Similar to other workflow managers, Airflow allows you to define pipelines or work-
flows as DAGs of tasks. These graphs are very similar to the examples sketched in the
previous section, with tasks being defined as nodes in the graph and dependencies as
directed edges between the tasks. 

 In Airflow, you define your DAGs using Python code in DAG files, which are essen-
tially Python scripts that describe the structure of the corresponding DAG. As such,
each DAG file typically describes the set of tasks for a given DAG and the dependen-
cies between the tasks, which are then parsed by Airflow to identify the DAG structure
(figure 1.7). Other than this, DAG files typically contain some additional metadata
about the DAG telling Airflow how and when it should be executed, and so on. We’ll
dive into this scheduling more in the next section.

 One advantage of defining Airflow DAGs in Python code is that this programmatic
approach provides you with a lot of flexibility for building DAGs. For example, as we
will see later in this book, you can use Python code to dynamically generate optional
tasks depending on certain conditions or even generate entire DAGs based on exter-
nal metadata or configuration files. This flexibility gives a great deal of customization
in how you build your pipelines, allowing you to fit Airflow to your needs for building
arbitrarily complex pipelines.
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In addition to this flexibility, another advantage of Airflow’s Python foundation is that
tasks can execute any operation that you can implement in Python. Over time, this has
led to the development of many Airflow extensions that enable you to execute tasks
across a wide variety of systems, including external databases, big data technologies,
and various cloud services, allowing you to build complex data pipelines bringing
together data processes across many different systems.

1.2.2 Scheduling and executing pipelines

Once you’ve defined the structure of your pipeline(s) as DAG(s), Airflow allows you
to define a schedule interval for each DAG, which determines exactly when your pipe-
line is run by Airflow. This way, you can tell Airflow to execute your DAG every hour,
every day, every week, and so on, or even use more complicated schedule intervals
based on Cron-like expressions.

 To see how Airflow executes your DAGs, let’s briefly look at the overall process
involved in developing and running Airflow DAGs. At a high level, Airflow is orga-
nized into three main components (figure 1.8): 

 The Airflow scheduler—Parses DAGs, checks their schedule interval, and (if the
DAGs’ schedule has passed) starts scheduling the DAGs’ tasks for execution by
passing them to the Airflow workers.

 The Airflow workers—Pick up tasks that are scheduled for execution and execute
them. As such, the workers are responsible for actually “doing the work.”

 The Airflow webserver—Visualizes the DAGs parsed by the scheduler and provides
the main interface for users to monitor DAG runs and their results.

Pipeline as DAG

Task 1

Task 2

Task 3

Task 4

Schedule interval = @daily

DAG file

(Python)

Dependency between tasks,
indicating task 3 must run
before task 4

Which schedule to use
for running the DAG

Represents a
task/operation
we want to run

Figure 1.7 Airflow pipelines are defined as DAGs using Python code in DAG files. Each 
DAG file typically defines one DAG, which describes the different tasks and their 
dependencies. Besides this, the DAG also defines a schedule interval that determines 
when the DAG is executed by Airflow.
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The heart of Airflow is arguably the scheduler, as this is where most of the magic hap-
pens that determines when and how your pipelines are executed. At a high level, the
scheduler runs through the following steps (figure 1.9):

1 Once users have written their workflows as DAGs, the files containing these
DAGs are read by the scheduler to extract the corresponding tasks, dependen-
cies, and schedule interval of each DAG.

2 For each DAG, the scheduler then checks whether the schedule interval for the
DAG has passed since the last time it was read. If so, the tasks in the DAG are
scheduled for execution.

3 For each scheduled task, the scheduler then checks whether the dependencies
(= upstream tasks) of the task have been completed. If so, the task is added to
the execution queue. 

4 The scheduler waits for several moments before starting a new loop by jumping
back to step 1.

The astute reader might have noticed that the steps followed by the scheduler are, in
fact, very similar to the algorithm introduced in section 1.1. This is not by accident, as

DAG files describing

pipelines (in Python)

DAG folder

Airflow

scheduler

Airflow

webserver Airflow

workers

Queue

Users

Monitor DAG

runs + results

Visualize DAGs

+ task results

Store task

results

Airflow metastore

(database)

Read

DAGs

Execute

tasks

Store

serialized

DAGs

Write data workflows

in Python as Airflow DAGs

Schedule

tasks

Figure 1.8 Overview of the main components involved in Airflow (e.g., the Airflow webserver, 
scheduler, and workers)
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Airflow is essentially following the same steps, adding some extra logic on top to handle
its scheduling logic. 

 Once tasks have been queued for execution, they are picked up by a pool of Air-
flow workers that execute tasks in parallel and track their results. These results are
communicated to Airflow’s metastore so that users can track the progress of tasks and
view their logs using the Airflow web interface (provided by the Airflow webserver). 

1.2.3 Monitoring and handling failures

In addition to scheduling and executing DAGs, Airflow also provides an extensive web
interface that can be used for viewing DAGs and monitoring the results of DAG runs.
After you log in (figure 1.10), the main page provides an extensive overview of the dif-
ferent DAGs with summary views of their recent results (figure 1.11). 

 For example, the graph view of an individual DAG provides a clear overview of the
DAG’s tasks and dependencies (figure 1.12), similar to the schematic overviews we’ve
been drawing in this chapter. This view is particularly useful for viewing the structure
of a DAG (providing detailed insight into dependencies between tasks), and for view-
ing the results of individual DAG runs.

Airflow worker

Execute task

Retrieve
task results

Execution
queue

Airflow metastore
(database)

1. User writes
workflow
as DAG.

DAG file
(Python)

3. Airflow workers
execute scheduled
tasks.

Airflow
webserver

2. Airflow scheduler parses DAG and schedules
tasks according to DAG schedule, accounting
for dependencies between tasks.

Airflow scheduler

Read DAGs from files
(tasks, dependencies +

schedule interval)

If DAG schedule
has passed,

schedule DAG tasks

Check task
dependencies

Wait X seconds

Add task to
execution queue

For each
scheduled task

If dependencies of
task are satisfied

User

Store

task results

Retrieve DAGs

+ task results

Store
serialized

DAGs

4. User monitors
execution + task
results using web
interface.

Figure 1.9 Schematic overview of the process involved in developing and executing pipelines as DAGs using 
Airflow
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Your username +
password

Figure 1.10 The login page for the Airflow web interface. In the code examples accompanying this 
book, a default user “admin” is provided with the password “admin.”

Names of
registered
workflows

State of workflow tasks
from recent runs

Workflow
schedules

Figure 1.11 The main page of Airflow’s web interface, showing an overview of the available DAGs 
and their recent results
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Besides this graph view, Airflow also provides a detailed tree view that shows all run-
ning and historical runs for the corresponding DAG (figure 1.13). This is arguably the
most powerful view provided by the web interface, as it gives you a quick overview of
how a DAG has performed over time and allows you to dig into failing tasks to see
what went wrong. 

 By default, Airflow can handle failures in tasks by retrying them a couple of times
(optionally with some wait time in between), which can help tasks recover from any
intermittent failures. If retries don’t help, Airflow will record the task as being failed,
optionally notifying you about the failure if configured to do so. Debugging task fail-
ures is pretty straightforward, as the tree view allows you to see which tasks failed and
dig into their logs. The same view also enables you to clear the results of individual
tasks to rerun them (together with any tasks that depend on that task), allowing you to
easily rerun any tasks after you make changes to their code. 

1.2.4 Incremental loading and backfilling

One powerful feature of Airflow’s scheduling semantics is that the schedule intervals
not only trigger DAGs at specific time points (similar to, for example, Cron), but also
provide details about the last and (expected) next schedule intervals. This essentially

Figure 1.12 The graph view in Airflow’s web interface, showing an overview of the tasks in an individual DAG 
and the dependencies between these tasks
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allows you to divide time into discrete intervals (e.g., every day, week, etc.), and run
your DAG for each of these intervals.1

 This property of Airflow’s schedule intervals is invaluable for implementing effi-
cient data pipelines, as it allows you to build incremental data pipelines. In these
incremental pipelines, each DAG run processes only data for the corresponding time
slot (the data’s delta) instead of having to reprocess the entire data set every time.
Especially for larger data sets, this can provide significant time and cost benefits by
avoiding expensive recomputation of existing results.

 Schedule intervals become even more powerful when combined with the concept
of backfilling, which allows you to execute a new DAG for historical schedule intervals
that occurred in the past. This feature allows you to easily create (or backfill) new data
sets with historical data simply by running your DAG for these past schedule intervals.
Moreover, by clearing the results of past runs, you can also use this Airflow feature to
easily rerun any historical tasks if you make changes to your task code, allowing you
to easily reprocess an entire data set when needed.

1 If this sounds a bit abstract to you now, don’t worry, as we provide more detail on these concepts later in the
book.

State of a
single task

All runs of
one task

One run of
a workflow

Figure 1.13 Airflow’s tree view, showing the results of multiple runs of the umbrella sales model DAG 
(most recent + historical runs). The columns show the status of one execution of the DAG and the rows 
show the status of all executions of a single task. Colors (which you can see in the e-book version) 
indicate the result of the corresponding task. Users can also click on the task “squares” for more 
details about a given task instance, or to reset the state of a task so that it can be rerun by Airflow, 
if desired.
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1.3 When to use Airflow
After this brief introduction to Airflow, we hope you’re sufficiently enthusiastic about
getting to know Airflow and learning more about its key features. However, before
going any further, we’ll first explore several reasons you might want to choose to work
with Airflow (as well as several reasons you might not), to ensure that Airflow is
indeed the best fit for you.

1.3.1 Reasons to choose Airflow

In the past sections, we’ve already described several key features that make Airflow
ideal for implementing batch-oriented data pipelines. In summary, these include the
following:

 The ability to implement pipelines using Python code allows you to create arbi-
trarily complex pipelines using anything you can dream up in Python. 

 The Python foundation of Airflow makes it easy to extend and add integrations
with many different systems. In fact, the Airflow community has already devel-
oped a rich collection of extensions that allow Airflow to integrate with many
different types of databases, cloud services, and so on.

 Rich scheduling semantics allow you to run your pipelines at regular intervals
and build efficient pipelines that use incremental processing to avoid expensive
recomputation of existing results. 

 Features such as backfilling enable you to easily (re)process historical data,
allowing you to recompute any derived data sets after making changes to your
code.

 Airflow’s rich web interface provides an easy view for monitoring the results of
your pipeline runs and debugging any failures that may have occurred.

An additional advantage of Airflow is that it is open source, which guarantees that you
can build your work on Airflow without getting stuck with any vendor lock-in. Man-
aged Airflow solutions are also available from several companies (should you desire
some technical support), giving you a lot of flexibility in how you run and manage
your Airflow installation. 

1.3.2 Reasons not to choose Airflow

Although Airflow has many rich features, several of Airflow’s design choices may make
it less suitable for certain cases. For example, some use cases that are not a good fit for
Airflow include the following: 

 Handling streaming pipelines, as Airflow is primarily designed to run recurring
or batch-oriented tasks, rather than streaming workloads. 

 Implementing highly dynamic pipelines, in which tasks are added/removed
between every pipeline run. Although Airflow can implement this kind of
dynamic behavior, the web interface will only show tasks that are still defined in
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the most recent version of the DAG. As such, Airflow favors pipelines that do
not change in structure every time they run.

 Teams with little or no (Python) programming experience, as implementing
DAGs in Python can be daunting with little Python experience. In such teams,
using a workflow manager with a graphical interface (such as Azure Data Fac-
tory) or a static workflow definition may make more sense.

 Similarly, Python code in DAGs can quickly become complex for larger use
cases. As such, implementing and maintaining Airflow DAGs require proper
engineering rigor to keep things maintainable in the long run.

Also, Airflow is primarily a workflow/pipeline management platform and does not
(currently) include more extensive features such as maintaining data lineages, data
versioning, and so on. Should you require these features, you’ll probably need to look
at combining Airflow with other specialized tools that provide those capabilities.

1.4 The rest of this book
By now you should (hopefully) have a good idea of what Airflow is and how its fea-
tures can help you implement and run data pipelines. In the remainder of this book,
we’ll begin by introducing the basic components of Airflow that you need to be famil-
iar with to start building your own data pipelines. These first few chapters should be
broadly applicable and appeal to a wide audience. For these chapters, we expect you
to have intermediate experience with programming in Python (~one year of experi-
ence), meaning that you should be familiar with basic concepts such as string format-
ting, comprehensions, args/kwargs, and so on. You should also be familiar with the
basics of the Linux terminal and have a basic working knowledge of databases (includ-
ing SQL) and different data formats.

 After this introduction, we’ll dive deeper into more advanced features of Airflow
such as generating dynamic DAGs, implementing your own operators, running con-
tainerized tasks, and so on. These chapters will require some more understanding of
the involved technologies, including writing your own Python classes, basic Docker
concepts, file formats, and data partitioning. We expect this second part to be of spe-
cial interest to the data engineers in the audience.

 Finally, several chapters toward the end of the book focus on topics surrounding
the deployment of Airflow, including deployment patterns, monitoring, security, and
cloud architectures. We expect these chapters to be of special interest for people
interested in rolling out and managing Airflow deployments, such as system adminis-
trators and DevOps engineers.

Summary
 Data pipelines can be represented as DAGs, which clearly define tasks and their

dependencies. These graphs can be executed efficiently, taking advantage of
any parallelism inherent in the dependency structure. 
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 Although many workflow managers have been developed over the years for exe-
cuting graphs of tasks, Airflow has several key features that makes it uniquely
suited for implementing efficient, batch-oriented data pipelines.

 Airflow consists of three core components: the webserver, the scheduler, and
the worker processes, which work together to schedule tasks from your data
pipelines and help you monitor their results.



Anatomy of
an Airflow DAG
In the previous chapter, we learned why working with data and the many tools in the
data landscape is not easy. In this chapter, we get started with Airflow and check out
an example workflow that uses basic building blocks found in many workflows.

 It helps to have some Python experience when starting with Airflow since work-
flows are defined in Python code. The gap in learning the basics of Airflow is not
that big. Generally, getting the basic structure of an Airflow workflow up and run-
ning is easy. Let’s dig into a use case of a rocket enthusiast to see how Airflow might
help him.

2.1 Collecting data from numerous sources
Rockets are one of humanity’s engineering marvels, and every rocket launch
attracts attention all around the world. In this chapter, we cover the life of a rocket
enthusiast named John who tracks and follows every single rocket launch. The news

This chapter covers
 Running Airflow on your own machine

 Writing and running your first workflow

 Examining the first view at the Airflow interface

 Handling failed tasks in Airflow
20
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about rocket launches is found in many news sources that John keeps track of, and,
ideally, John would like to have all his rocket news aggregated in a single location.
John recently picked up programming and would like to have some sort of automated
way to collect information of all rocket launches and eventually some sort of personal
insight into the latest rocket news. To start small, John decided to first collect images
of rockets.

2.1.1 Exploring the data

For the data, we make use of the Launch Library 2 (https://thespacedevs.com/llapi),
an online repository of data about both historical and future rocket launches from
various sources. It is a free and open API for anybody on the planet (subject to rate
limits).

 John is currently only interested in upcoming rocket launches. Luckily, the Launch
Library provides exactly the data he is looking for (https://ll.thespacedevs.com/2.0.0/
launch/upcoming). It provides data about upcoming rocket launches, together with
URLs of where to find images of the respective rockets. Here’s a snippet of the data
this URL returns.

$ curl -L "https://ll.thespacedevs.com/2.0.0/launch/upcoming"              B

{                                                                          c
 ...
 "results": [                                                              d
   {                                                                       e
     "id": "528b72ff-e47e-46a3-b7ad-23b2ffcec2f2",
     "url": "https://.../528b72ff-e47e-46a3-b7ad-23b2ffcec2f2/",
     "launch_library_id": 2103,                                            f
     "name": "Falcon 9 Block 5 | NROL-108",                                f
     "net": "2020-12-19T14:00:00Z",                                        f
     "window_end": "2020-12-19T17:00:00Z",                                 f
     "window_start": "2020-12-19T14:00:00Z",                               f
     ➥ "image": "https://spacelaunchnow-prod-

east.nyc3.digitaloceanspaces.com/media/launch_images/falcon2520925_image
_20201217060406.jpeg",                                                g

     "infographic": ".../falcon2520925_infographic_20201217162942.png",
     ...
   },
   {
     "id": "57c418cc-97ae-4d8e-b806-bb0e0345217f",
     "url": "https://.../57c418cc-97ae-4d8e-b806-bb0e0345217f/",
     "launch_library_id": null,
     "name": "Long March 8  | XJY-7 & others",
     "net": "2020-12-22T04:29:00Z",
     "window_end": "2020-12-22T05:03:00Z",
     "window_start": "2020-12-22T04:29:00Z",
     "image": "https://.../long2520march_image_20201216110501.jpeg",
     "infographic": null,
     ...

Listing 2.1 Example curl request and response to the Launch Library API

https://thespacedevs.com/llapi
https://ll.thespacedevs.com/2.0.0/launch/upcoming
https://ll.thespacedevs.com/2.0.0/launch/upcoming
https://ll.thespacedevs.com/2.0.0/launch/upcoming
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   },
   ...
 ]
}

B Inspect the URL response with curl from the command line.

c The response is a JSON document, as you can see by the structure.

d The square brackets indicate a list.

e All values within these curly braces refer to one single rocket launch.

f Here we see information such as rocket ID and start and end time of the rocket launch window.

g A URL to an image of the launching rocket

As you can see, the data is in JSON format and provides rocket launch information,
and for every launch, there’s information about the specific rocket, such as ID, name,
and the image URL. This is exactly what John needs, and he initially draws the plan in
figure 2.1 to collect the images of upcoming rocket launches (e.g., to point his screen-
saver to the directory holding these images):

Based on the example in figure 2.1, we can see that, at the end of the day, John’s goal
is to have a directory filled with rocket images, such as the image in figure 2.2 of the
Ariane 5 ECA rocket.

2.2 Writing your first Airflow DAG
John’s use case is nicely scoped, so let’s check out how to program his plan. It’s only a
few steps and, in theory, with some Bash-fu, you could work it out in a one-liner. So
why would we need a system like Airflow for this job?

 The nice thing about Airflow is that we can split a large job, which consists of one
or more steps, into individual “tasks” that together form a DAG. Multiple tasks can be
run in parallel, and tasks can run different technologies. For example, we could first
run a Bash script and next run a Python script. We broke down John’s mental model
of his workflow into three logical tasks in Airflow in figure 2.3.
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computer
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Figure 2.1 John’s mental model of downloading rocket pictures
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Figure 2.2 Example image 
of the Ariane 5 ECA rocket
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Figure 2.3 John’s mental model mapped to tasks in Airflow
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Why these three tasks, you might ask? Why not download the launches and corre-
sponding pictures in one single task? Or why not split them into five tasks? After all,
we have five arrows in John’s plan. These are all valid questions to ask while develop-
ing a workflow, but the truth is, there’s no right or wrong answer. There are several
points to take into consideration, though, and throughout this book we work out
many of these use cases to get a feeling for what is right and wrong. The code for this
workflow is as follows.

import json
import pathlib

import airflow
import requests
import requests.exceptions as requests_exceptions
from airflow import DAG
from airflow.operators.bash import BashOperator
from airflow.operators.python import PythonOperator

dag = DAG(                                                    B
   dag_id="download_rocket_launches",                         c
   start_date=airflow.utils.dates.days_ago(14),               d
   schedule_interval=None,                                    e
)

download_launches = BashOperator(                             f
   task_id="download_launches",                               g
   bash_command="curl -o /tmp/launches.json -L 

'https://ll.thespacedevs.com/2.0.0/launch/upcoming'",
   dag=dag,
)

def _get_pictures():                                          h
   # Ensure directory exists
   pathlib.Path("/tmp/images").mkdir(parents=True, exist_ok=True)

   # Download all pictures in launches.json
   with open("/tmp/launches.json") as f:
       launches = json.load(f)
       image_urls = [launch["image"] for launch in launches["results"]]
       for image_url in image_urls:
           try:
               response = requests.get(image_url)
               image_filename = image_url.split("/")[-1]
               target_file = f"/tmp/images/{image_filename}"
               with open(target_file, "wb") as f:
                   f.write(response.content)
               print(f"Downloaded {image_url} to {target_file}")
           except requests_exceptions.MissingSchema:
               print(f"{image_url} appears to be an invalid URL.")
           except requests_exceptions.ConnectionError:
               print(f"Could not connect to {image_url}.")

Listing 2.2 DAG for downloading and processing rocket launch data
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get_pictures = PythonOperator(                               i
   task_id="get_pictures",
   python_callable=_get_pictures,                            i
   dag=dag,
)

notify = BashOperator(
   task_id="notify",
   bash_command='echo "There are now $(ls /tmp/images/ | wc -l) images."',
   dag=dag,
)

download_launches >> get_pictures >> notify                  j

B Instantiate a DAG object; this is the starting point of any workflow.

c The name of the DAG

d The date at which the DAG should first start running

e At what interval the DAG should run

f Apply Bash to download the URL response with curl.

g The name of the task

h A Python function will parse the response and download all rocket pictures.

i Call the Python function in the DAG with a PythonOperator.

j Set the order of execution of tasks.

Let’s break down the workflow. The DAG is the starting point of any workflow. All
tasks within the workflow reference this DAG object so that Airflow knows which tasks
belong to which DAG.

dag = DAG(                                         B
   dag_id="download_rocket_launches",              c
   start_date=airflow.utils.dates.days_ago(14),    d
   schedule_interval=None,
)

B The DAG class takes two required arguments.

c The name of the DAG displayed in the Airflow user interface (UI) 

d The datetime at which the workflow should first start running

Note the (lowercase) dag is the name assigned to the instance of the (uppercase) DAG
class. The instance name could have any name; you can name it rocket_dag or
whatever_name_you_like. We will reference the variable (lowercase dag) in all opera-
tors, which tells Airflow which DAG the operator belongs to.

 Also note we set schedule_interval to None. This means the DAG will not run
automatically. For now, you can trigger it manually from the Airflow UI. We will get to
scheduling in section 2.4.

 Next, an Airflow workflow script consists of one or more operators, which perform
the actual work. In listing 2.4, we apply the BashOperator to run a Bash command.

Listing 2.3 Instantiating a DAG object
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download_launches = BashOperator(
   task_id="download_launches",                          B
   bash_command="curl -o /tmp/launches.json 'https://    c

ll.thespacedevs.com/2.0.0/launch/upcoming'",        c
   dag=dag,                                              d
)

B The name of the task

c The Bash command to execute

d Reference to the DAG variable

Each operator performs a single unit of work, and multiple operators together form a
workflow or DAG in Airflow. Operators run independently of each other, although
you can define the order of execution, which we call dependencies in Airflow. After all,
John’s workflow wouldn’t be useful if you first tried downloading pictures while there
is no data about the location of the pictures. To make sure the tasks run in the correct
order, we can set dependencies between tasks.

download_launches >> get_pictures >> notify       B

B Arrows set the order of execution of tasks.

In Airflow, we can use the binary right shift operator (i.e., “rshift” [>>]) to define depen-
dencies between tasks. This ensures the get_pictures task runs only after download
_launches has completed successfully, and the notify task runs only after get_pictures
has completed successfully.

NOTE In Python, the rshift operator (>>) is used to shift bits, which is a
common operation in, for example, cryptography libraries. In Airflow, there
is no use case for bit shifting, and the rshift operator was overridden to pro-
vide a readable way to define dependencies between tasks.

2.2.1 Tasks vs. operators

You might wonder what the difference is between tasks and operators. After all, they
both execute a bit of code. In Airflow, operators have a single piece of responsibility:
they exist to perform one single piece of work. Some operators perform generic work,
such as the BashOperator (used to run a Bash script) or the PythonOperator (used to
run a Python function); others have more specific use cases, such as the EmailOperator
(used to send an email) or the SimpleHTTPOperator (used to call an HTTP endpoint).
Either way, they perform a single piece of work.

 The role of a DAG is to orchestrate the execution of a collection of operators. That
includes the starting and stopping of operators, starting consecutive tasks once an
operator is done, ensuring dependencies between operators are met, and so on.

Listing 2.4 Instantiating a BashOperator to run a Bash command

Listing 2.5 Defining the order of task execution



27Writing your first Airflow DAG
 In this context and throughout the Airflow documentation, we see the terms opera-
tor and task used interchangeably. From a user’s perspective, they refer to the same
thing, and the two often substitute each other in discussions. Operators provide the
implementation of a piece of work. Airflow has a class called BaseOperator and many
subclasses inheriting from the BaseOperator, such as PythonOperator, EmailOperator,
and OracleOperator.

 There is a difference, though. Tasks in Airflow manage the execution of an oper-
ator; they can be thought of as a small wrapper or manager around an operator that
ensures the operator executes correctly. The user can focus on the work to be done
by using operators, while Airflow ensures correct execution of the work via tasks
(figure 2.4).

2.2.2 Running arbitrary Python code

Fetching the data for the next rocket launches was a single curl command in Bash, which
is easily executed with the BashOperator. However, parsing the JSON result, selecting the
image URLs from it, and downloading the respective images require a bit more effort.
Although all this is still possible in a Bash one-liner, it’s often easier and more readable
with a few lines of Python or any other language of your choice. Since Airflow code is
defined in Python, it’s convenient to keep both the workflow and execution logic in the
same script. For downloading the rocket pictures, we implemented listing 2.6.

def _get_pictures():                                                   B
   # Ensure directory exists
   pathlib.Path("/tmp/images").mkdir(parents=True, exist_ok=True)      c

   # Download all pictures in launches.json
   with open("/tmp/launches.json") as f:                               d
       launches = json.load(f)
       image_urls = [launch["image"] for launch in launches["results"]]
       for image_url in image_urls:
           try:
               response = requests.get(image_url)                      e
               image_filename = image_url.split("/")[-1]
               target_file = f"/tmp/images/{image_filename}"
               with open(target_file, "wb") as f:
                   f.write(response.content)                           f

Listing 2.6 Running a Python function using the PythonOperator

DAG

Task

Operator

Task

Operator

Task

Operator

Figure 2.4 DAGs and operators are used by Airflow users. Tasks are 
internal components to manage operator state and display state 
changes (e.g., started/finished) to the user.
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               print(f"Downloaded {image_url} to {target_file}")       g
           except requests_exceptions.MissingSchema:
               print(f"{image_url} appears to be an invalid URL.")
           except requests_exceptions.ConnectionError:
               print(f"Could not connect to {image_url}.")

get_pictures = PythonOperator(                                         h
   task_id="get_pictures",
   python_callable=_get_pictures,                                      i
   dag=dag,
)

B Python function to call

c Create pictures directory if it doesn’t exist.

d Open the result from the previous task.

e Download each image.

f Store each image.

g Print to stdout; this will be captured in Airflow logs.

h Instantiate a PythonOperator to call the Python function.

i Point to the Python function to execute.

The PythonOperator in Airflow is responsible for running any Python code. Just like
the BashOperator used before, this and all other operators require a task_id. The
task_id is referenced when running a task and displayed in the UI. The use of a
PythonOperator is always twofold:

1 We define the operator itself (get_pictures). 
2 The python_callable argument points to a callable, typically a function

(_get_pictures).

When running the operator, the Python function is called and will execute the func-
tion. Let’s break it down. The basic usage of the PythonOperator always looks like fig-
ure 2.5.

Although not required, for convenience we keep the variable name get_pictures equal
to the task_id.

PythonOperator

PythonOperator callable
def _get_pictures():

# do work here ...

get_pictures = PythonOperator(
task_id="get_pictures",
python_callable =_get_pictures,
dag=dag

)

Figure 2.5 The python_callable argument in the 
PythonOperator points to a function to execute.
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# Ensure directory exists
pathlib.Path("/tmp/images").mkdir(parents=True, exist_ok=True)

The first step in the callable is to ensure the directory in which the images will be
stored exists, as shown in listing 2.7. Next, we open the result downloaded from the
Launch Library API and extract the image URLs for every launch.

with open("/tmp/launches.json") as f:                                 B
    launches = json.load(f)                                           c
    image_urls = [launch["image"] for launch in launches["results"]]  d

B Open the rocket launches’ JSON.

c Read as a dict so we can mingle the data.

d For every launch, fetch the element “image”.

Each image URL is called to download the image and save it in /tmp/images.

for image_url in image_urls:                                B
   try:
       response = requests.get(image_url)                   c
       image_filename = image_url.split("/")[-1]            d
       target_file = f"/tmp/images/{image_filename}"        e
       with open(target_file, "wb") as f:                   f
           f.write(response.content)                        g
       print(f"Downloaded {image_url} to {target_file}")    h
   except requests_exceptions.MissingSchema:                i
       print(f"{image_url} appears to be an invalid URL.")  i
   except requests_exceptions.ConnectionError:              i
       print(f"Could not connect to {image_url}.")          i

B Loop over all image URLs.

c Get the image.

d Get only the filename by selecting everything after the last. For example, 
https://host/RocketImages/Electron.jpg_1440.jpg  Electron.jpg_1440.jpg.

e Construct the target file path.

f Open target file handle.

g Write image to file path.

h Print result.

i Catch and process potential errors.

2.3 Running a DAG in Airflow
Now that we have our basic rocket launch DAG, let’s get it up and running and view it
in the Airflow UI. The bare minimum Airflow consists of three core components: a
scheduler, a webserver, and a database. In order to get Airflow up and running, you
can either install Airflow in your Python environment or run a Docker container.

Listing 2.7 Ensures that the output directory exists and creates it if it doesn’t

Listing 2.8 Extracts image URLs for every rocket launch

Listing 2.9 Downloads all images from the retrieved image URLs



30 CHAPTER 2 Anatomy of an Airflow DAG
2.3.1 Running Airflow in a Python environment

There are several steps to installing and running Airflow as a Python package from PyPi:

pip install apache-airflow

Make sure you install apache-airflow and not just airflow. After joining the Apache
Foundation in 2016, the PyPi airflow repository was renamed to apache-airflow.
Since many people were still installing airflow instead of removing the old reposi-
tory, it was kept as a dummy to provide everybody a message pointing to the correct
repository.

 Some operating systems come with a Python installation. Running just pip
install apache-airflow will install Airflow in this “system” environment. When
working on Python projects, it is desirable to keep each project in its own Python envi-
ronment to create a reproducible set of Python packages and avoid dependency
clashes. Such environments are created with tools such as these:

 pyenv: https://github.com/pyenv/pyenv
 Conda: https://docs.conda.io
 virtualenv: https://virtualenv.pypa.io

After installing Airflow, start it by initializing the metastore (a database in which all
Airflow state is stored), creating a user, copying the rocket launch DAG into the DAGs
directory, and starting the scheduler and webserver:

1 airflow db init
2 airflow users create --username admin --password admin --firstname Anon-

ymous --lastname Admin --role Admin --email admin@example.org
3 cp download_rocket_launches.py ~/airflow/dags/
4 airflow webserver
5 airflow scheduler

Note the scheduler and webserver are both continuous processes that keep your ter-
minal open, so either run in the background with airflow webserver and/or open a
second terminal window to run the scheduler and webserver separately. After you’re
set up, go to http:/ /localhost:8080 and log in with username “admin” and password
“admin” to view Airflow.

2.3.2 Running Airflow in Docker containers

Docker containers are also popular to create isolated environments to run a reproduc-
ible set of Python packages and avoid dependency clashes. However, Docker contain-
ers create an isolated environment on the operating system level, whereas Python
environments isolate only on the Python runtime level. As a result, you can create
Docker containers that contain not only a set of Python packages, but also other
dependencies such as database drivers or a GCC compiler. Throughout this book we
will demonstrate Airflow running in Docker containers in several examples.

https://github.com/pyenv/pyenv
https://docs.conda.io
https://virtualenv.pypa.io
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 Running Docker containers requires a Docker Engine to be installed on your
machine. You can then run Airflow in Docker with the following command.

docker run \
-ti \
-p 8080:8080 \                                                            B
-v ➥ /path/to/dag/download_rocket_launches.py:/opt/airflow/dags/         c

download_rocket_launches.py \                                        c
--entrypoint=/bin/bash \
--name airflow \
apache/airflow:2.0.0-python3.8 \                                          d
-c '( \
airflow db init && \                                                      e
➥ airflow users create --username admin --password admin --firstname     f

Anonymous --lastname Admin --role Admin --email admin@example.org \  f
); \
airflow webserver & \                                                     g
airflow scheduler \                                                       h
'

B Expose on host port 8080.

c Mount DAG file in container.

d Airflow Docker image

e Initialize the metastore in the container.

f Create a user.

g Start the webserver.

h Start the scheduler.

NOTE If you’re familiar with Docker, you would probably argue it’s not desir-
able to run multiple processes in a single Docker container as shown in list-
ing 2.10. The command is a single command, intended for demonstration
purposes to get up and running quickly. In a production setting, you should
run the Airflow webserver, scheduler, and metastore in separate containers,
explained in detail in chapter 10.

It will download and run the Airflow Docker image apache/airflow. Once running,
you can view Airflow on http:/ /localhost:8080 and log in with username “admin” and
password “admin”.

2.3.3 Inspecting the Airflow UI

The first view of Airflow on http:/ /localhost:8080 you will see is the login screen,
shown in figure 2.6.

 After logging in, you can inspect the download_rocket_launches DAG, as shown in
figure 2.7.

 This is the first glimpse of Airflow you will see. Currently, the only DAG is the
download_rocket_launches, which is available to Airflow in the DAGs directory.
There’s a lot of information on the main view, but let’s inspect the download_rocket

Listing 2.10 Running Airflow in Docker



32 CHAPTER 2 Anatomy of an Airflow DAG
Figure 2.6 Airflow login view

Figure 2.7 Airflow home screen
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_launches DAG first. Click on the DAG name to open it and inspect the so-called
graph view (figure 2.8).

This view shows us the structure of the DAG script provided to Airflow. Once placed in
the DAGs directory, Airflow will read the script and pull out the bits and pieces that
together form a DAG, so it can be visualized in the UI. The graph view shows us the
structure of the DAG, and how and in which order all tasks in the DAG are connected
and will be run. This is one of the views you will probably use the most while develop-
ing your workflows.

 The state legend shows all colors you might see when running, so let’s see what
happens and run the DAG. First, the DAG needs to be “on” in order to be run; toggle
the button next to the DAG name for that. Next, click the Play button to run it.

 After triggering the DAG, it will start running and you will see the current state of
the workflow represented by colors (figure 2.9). Since we set dependencies between
our tasks, consecutive tasks only start running once the previous tasks have been com-
pleted. Let’s check the result of the notify task. In a real use case, you probably want to
send an email or, for example, Slack notification to inform about the new images. For
sake of simplicity, it now prints the number of downloaded images. Let’s check the logs.

 All task logs are collected in Airflow, so we can search in the UI for output or
potential issues in case of failure. Click on a completed notify task, and you will see a
pop-up with several options, as shown in figure 2.10.

 Click on the top-center Log button to inspect the logs, as shown in figure 2.11. The
logs are quite verbose by default but display the number of downloaded images in
the log. Finally, we can open the /tmp/images directory and view them. When run-
ning in Docker, this directory only exists inside the Docker container and not on your
host system. You must therefore first get into the Docker container:

docker exec -it airflow /bin/bash

DAG structure

Operator
types in DAG

State legend

Toggle DAG on/off Trigger DAG

Figure 2.8 Airflow graph view
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After that you get a Bash terminal in the container and can view the images in
/tmp/images, (figure 2.12).

Figure 2.9 Graph view displaying a running DAG

Figure 2.10 Task pop-up options
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Figure 2.11 Print statement displayed in logs

ariane252052520eca_image_

20190224012333.jpeg

electron_image_

20190705175640.jpeg

falcon25209_image_

20190224025007.jpeg

falcon2520heavy_image_

20190224025007.jpeg

h-iia2520202_image_

20190222031201.jpeg

kuaizhou_image_

20191027094423.jpeg

long2520march25202d_image_

20190222031211.jpeg

long2520march25203_image_

20200102181012.jpg

soyuz25202.1b_image_

20190520165337.jpg

firefly_alpha_image_

20200817170720.jpg

Figure 2.12 Resulting rocket pictures
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2.4 Running at regular intervals
Rocket enthusiast John is happy now that he has a workflow up and running in Air-
flow, which he can trigger every now and then to collect the latest rocket pictures. He
can see the status of his workflow in the Airflow UI, which is already an improvement
compared to a script on the command line he was running before. But he still needs
to trigger his workflow by hand periodically, which could be automated. After all,
nobody likes doing repetitive tasks that computers are good at doing themselves.
In Airflow, we can schedule a DAG to run at certain intervals, for example once an
hour, day, or month. This is controlled on the DAG by setting the schedule_interval
argument.

dag = DAG(
   dag_id="download_rocket_launches",
   start_date=airflow.utils.dates.days_ago(14),
   schedule_interval="@daily",                    B
)

B Airflow alias for 0 0 * * * (i.e., midnight)

Setting the schedule_interval to @daily tells Airflow to run this workflow once a day
so that John doesn’t have to trigger it manually once a day. This behavior is best
viewed in the tree view, as shown in figure 2.13.

The tree view is similar to the graph view but displays the graph structure as it runs
over time. An overview of the status of all runs of a single workflow can be seen in fig-
ure 2.14.

Listing 2.11 Running a DAG once a day

DAG structure Task state over time

Figure 2.13 Airflow tree view
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The structure of the DAG is displayed to fit a “rows and columns” layout, specifically
the status of all runs of the specific DAG, where each column represents a single run
at some point in time.

 When we set the schedule_interval to @daily, Airflow knew it had to run this
DAG once a day. Given the start_date provided to the DAG of 14 days ago, that
means the time from 14 days ago up to now can be divided into 14 equal intervals of
one day. Since both the start and end date of these 14 intervals lie in the past, they will
start running once we provide a schedule_interval to Airflow. The semantics of
the schedule interval and various ways to configure it are covered in more detail in
chapter 3.

2.5 Handling failing tasks
So far we’ve seen only green in the Airflow UI. But what happens if something fails?
It’s not uncommon for tasks to fail, which could be for a multitude of reasons (e.g., an
external service is down, network connectivity issues, or a broken disk).

 Say, for example, at some point we experienced a network hiccup while getting
John’s rocket pictures. As a consequence, the Airflow task fails, and we see the failing
task in the Airflow UI. It would look figure 2.15.

The specific failed task would be displayed in red in both the graph and tree views, as
a result of not being able to get the images from the internet, and therefore raise an
error. The successive notify task would not run at all because it’s dependent on the
successful state of the get_pictures task. Such task instances are displayed in orange.

Figure 2.14 Relationship between graph view and tree view

Figure 2.15 Failure displayed in graph view and tree view



38 CHAPTER 2 Anatomy of an Airflow DAG
By default, all previous tasks must run successfully, and any successive task of a failed
task will not run.

 Let’s figure out the issue by inspecting the logs again. Open the logs of the get_
pictures task (figure 2.16).

In the stack trace, we uncover the potential cause of the issue:

urllib3.exceptions.NewConnectionError: <urllib3.connection.HTTPSConnection 
object at 0x7f37963ce3a0>: Failed to establish a new connection: [Errno 
-2] Name or service not known

This indicates urllib3 (i.e., the HTTP client for Python) is trying to establish a connec-
tion but cannot, which could hint at a firewall rule blocking the connection or no
internet connectivity. Assuming we fixed the issue (e.g., plugged in the internet cable),
let’s restart the task. 

NOTE It is unnecessary to restart the entire workflow. A nice feature of Air-
flow is that you can restart from the point of failure and onward, without hav-
ing to restart any previously succeeded tasks.

Figure 2.16 Stack trace of failed get_pictures task
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Click the failed task, and then click the Clear button in the pop-up (figure 2.17). It
will show you the tasks you’re about to clear, meaning you will reset the state of these
tasks and Airflow will rerun them, as shown in figure 2.18.

Click OK! and the failed task and its successive tasks will be cleared, as can be seen in
figure 2.19.

Assuming the connectivity issues are resolved, the tasks will now run successfully and
make the whole tree view green (figure 2.20).

Figure 2.17 Click on a failed task 
for options to clear it.

Figure 2.18 Clearing the state of get_pictures and successive tasks

Figure 2.19 Cleared tasks 
displayed in graph view

Figure 2.20 Successfully completed 
tasks after clearing failed tasks
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In any piece of software, there are many reasons for failure. In Airflow workflows,
sometimes failure is accepted, sometimes it is not, and sometimes it is only in certain
conditions. The criteria for dealing with failure can be configured on any level in the
workflow and is covered in more detail in chapter 4.

 After clearing the failed tasks, Airflow will automatically rerun these tasks. If all
goes well, John will now have downloaded the rocket images resulting from the failed
tasks. Note that the called URL in the download_launches task simply requests the
next rocket launches—meaning it will return the next rocket launches at the time of
calling the API. Incorporating the runtime context at which a DAG was run into your
code is covered in chapter 4.

Summary
 Workflows in Airflow are represented in DAGs.
 Operators represent a single unit of work.
 Airflow contains an array of operators both for generic and specific types of

work.
 The Airflow UI offers a graph view for viewing the DAG structure and tree view

for viewing DAG runs over time.
 Failed tasks can be restarted anywhere in the DAG.



Scheduling in Airflow
In the previous chapter, we explored Airflow’s UI and showed you how to define a
basic Airflow DAG and run it every day by defining a scheduled interval. In this
chapter, we will dive a bit deeper into the concept of scheduling in Airflow and
explore how this allows you to process data incrementally at regular intervals. First,
we’ll introduce a small use case focused on analyzing user events from our website
and explore how we can build a DAG to analyze these events at regular intervals.
Next, we’ll explore ways to make this process more efficient by taking an incremen-
tal approach to analyzing our data and understanding how this ties into Airflow’s
concept of execution dates. Finally, we’ll finish by showing how we can fill in past
gaps in our data set using backfilling and discussing some important properties of
proper Airflow tasks.

This chapter covers
 Running DAGs at regular intervals

 Constructing dynamic DAGs to process data 
incrementally

 Loading and reprocessing past data sets using 
backfilling

 Applying best practices for reliable tasks
40
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3.1 An example: Processing user events
To understand how Airflow’s scheduling works, we’ll first consider a small example.
Imagine we have a service that tracks user behavior on our website and allows us to
analyze which pages users (identified by an IP address) accessed. For marketing pur-
poses, we would like to know how many different pages users access and how much
time they spend during each visit. To get an idea of how this behavior changes over
time, we want to calculate these statistics daily, as this allows us to compare changes
across different days and larger time periods.

 For practical reasons, the external tracking service does not store data for more
than 30 days, so we need to store and accumulate this data ourselves, as we want to
retain our history for longer periods of time. Normally, because the raw data might be
quite large, it would make sense to store this data in a cloud storage service such as
Amazon’s S3 or Google’s Cloud Storage, as they combine high durability with rela-
tively low costs. However, for simplicity’s sake, we won’t worry about these things and
will keep our data locally.

 To simulate this example, we have created a simple (local) API that allows us to
retrieve user events. For example, we can retrieve the full list of available events from
the past 30 days using the following API call:

curl -o /tmp/events.json http:/ /localhost:5000/events

This call returns a (JSON-encoded) list of user events we can analyze to calculate our
user statistics. 

 Using this API, we can break our workflow into two separate tasks: one for fetching
user events and another for calculating the statistics. The data itself can be down-
loaded using the BashOperator, as we saw in the previous chapter. For calculating the
statistics, we can use a PythonOperator, which allows us to load the data into a Pandas
DataFrame and calculate the number of events using a groupby and an aggregation.
Altogether, this gives us the DAG shown in listing 3.1.

import datetime as dt
from pathlib import Path

import pandas as pd
from airflow import DAG
from airflow.operators.bash import BashOperator
from airflow.operators.python import PythonOperator

dag = DAG(
   dag_id="01_unscheduled",
   start_date=dt.datetime(2019, 1, 1),                          B
   schedule_interval=None,                                      c
)

Listing 3.1 Initial (unscheduled) version of the event DAG (dags/01_unscheduled.py)
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fetch_events = BashOperator(
   task_id="fetch_events",
   bash_command=(
      "mkdir -p /data && "
      "curl -o /data/events.json "
      "https:/ /localhost:5000/events"                            d
   ), 
   dag=dag,
)

def _calculate_stats(input_path, output_path):
   """Calculates event statistics."""

   events = pd.read_json(input_path)                             e
   stats = events.groupby(["date", "user"]).size().reset_index() e
   Path(output_path).parent.mkdir(exist_ok=True)                 f
   stats.to_csv(output_path, index=False)                        f

calculate_stats = PythonOperator(
   task_id="calculate_stats",
   python_callable=_calculate_stats,
   op_kwargs={
       "input_path": "/data/events.json",
       "output_path": "/data/stats.csv",
   },
   dag=dag,
)

fetch_events >> calculate_stats                                  g

B Define the start date for the DAG.

c Specify that this is an unscheduled DAG.

d Fetch and store the events from the API.

e Load the events and calculate the required statistics.

f Make sure the output directory exists and write results to CSV.

g Set order of execution.

Now we have our basic DAG, but we still need to make sure it’s run regularly by Air-
flow. Let’s get it scheduled so that we have daily updates!

3.2 Running at regular intervals
As we saw in chapter 2, Airflow DAGs can be run at regular intervals by defining a sched-
uled interval for it using the schedule_interval argument when initializing the DAG.
By default, the value of this argument is None, which means the DAG will not be sched-
uled and will be run only when triggered manually from the UI or the API.

3.2.1 Defining scheduling intervals

In our example of ingesting user events, we would like to calculate statistics daily, so it
would make sense to schedule our DAG to run once every day. As this is a common
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use case, Airflow provides the convenient macro @daily for defining a daily scheduled
interval, which runs our DAG once every day at midnight. 

dag = DAG(
    dag_id="02_daily_schedule",
    schedule_interval="@daily",            B
    start_date=dt.datetime(2019, 1, 1),    c
    ...
)

B Schedule the DAG to run every day at midnight.

c Date/time to start scheduling DAG runs

Airflow also needs to know when we want to start executing the DAG, specified by its
start date. Based on this start date, Airflow will schedule the first execution of our
DAG to run at the first schedule interval after the start date (start + interval). Subse-
quent runs will continue executing at schedule intervals following this first interval.

NOTE Pay attention to the fact that Airflow starts tasks in an interval at the
end of the interval. If developing a DAG on January 1, 2019 at 13:00, with a
start_date of 01-01-2019 and @daily interval, this means it first starts run-
ning at midnight. At first, nothing will happen if you run the DAG on January
1 at 13:00 until midnight is reached.

For example, say we define our DAG with a start date on the first of January, as previ-
ously shown in listing 3.2. Combined with a daily scheduling interval, this will result in
Airflow running our DAG at midnight on every day following the first of January (fig-
ure 3.1). Note that our first execution takes place on the second of January (the first
interval following the start date) and not the first. We’ll get into the reasoning behind
this behavior later in this chapter (section 3.4).

Without an end date, Airflow will (in principle) keep executing our DAG on this daily
schedule until the end of time. However, if we already know that our project has a

Listing 3.2 Defining a daily schedule interval (dags/02_daily_schedule.py)

Start

date

First

execution

Second

execution

Third

execution

Future

executions

2019-01-01

00:00

2019-01-02

00:00

2019-01-03

00:00

2019-01-04

00:00

Figure 3.1 Schedule intervals for a daily scheduled DAG with a specified start 
date (2019-01-01). Arrows indicate the time point at which a DAG is executed. 
Without a specified end date, the DAG will keep being executed every day until 
the DAG is switched off.
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fixed duration, we can tell Airflow to stop running our DAG after a certain date using
the end_date parameter.

dag = DAG(
    dag_id="03_with_end_date",
    schedule_interval="@daily",
    start_date=dt.datetime(year=2019, month=1, day=1),
    end_date=dt.datetime(year=2019, month=1, day=5),
)

This will result in the full set of schedule intervals shown in figure 3.2.

3.2.2 Cron-based intervals

So far, all our examples have shown DAGs running at daily intervals. But what if we
want to run our jobs on hourly or weekly intervals? And what about more complicated
intervals in which we may want to run our DAG at 23:45 every Saturday?

 To support more complicated scheduling intervals, Airflow allows us to define
scheduling intervals using the same syntax as used by cron, a time-based job scheduler
used by Unix-like computer operating systems such as macOS and Linux. This syntax
consists of five components and is defined as follows:

# ┌─────── minute (0 - 59)
# │ ┌────── hour (0 - 23)
# │ │ ┌───── day of the month (1 - 31)
# │ │ │ ┌───── month (1 - 12)
# │ │ │ │ ┌──── day of the week (0 - 6) (Sunday to Saturday;
# │ │ │ │ │      7 is also Sunday on some systems)
# * * * * *

In this definition, a cron job is executed when the time/date specification fields
match the current system time/date. Asterisks (*) can be used instead of numbers to
define unrestricted fields, meaning we don’t care about the value of that field. 

 Although this cron-based representation may seem a bit convoluted, it provides us
with considerable flexibility for defining time intervals. For example, we can define
hourly, daily, and weekly intervals using the following cron expressions:

Listing 3.3 Defining an end date for the DAG (dags/03_with_end_date.py)

Start

date

First

execution

Second

execution

Third

execution

Fourth

execution

Final

execution

End

date

2019-01-01

00:00

2019-01-02

00:00

2019-01-03

00:00

2019-01-04

00:00

2019-01-04

00:00

2019-01-05

00:00

Figure 3.2 Schedule intervals for a daily scheduled DAG with specified start (2019-01-01) 
and end dates (2019-01-05), which prevents the DAG from executing beyond this date
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 0 * * * * = hourly (running on the hour)
 0 0 * * * = daily (running at midnight)
 0 0 * * 0 = weekly (running at midnight on Sunday)

Besides this, we can also define more complicated expressions such as the following:

 0 0 1 * * = midnight on the first of every month
 45 23 * * SAT = 23:45 every Saturday

Additionally, cron expressions allow you to define collections of values using a comma
(,) to define a list of values or a dash (-) to define a range of values. Using this syntax,
we can build expressions that enable running jobs on multiple weekdays or multiple
sets of hours during a day:

 0 0 * * MON,WED,FRI = run every Monday, Wednesday, Friday at midnight
 0 0 * * MON-FRI = run every weekday at midnight
 0 0,12 * * * = run every day at 00:00 and 12:00 

Airflow also provides support for several macros that represent shorthand for com-
monly used scheduling intervals. We have already seen one of these macros (@daily)
for defining daily intervals. An overview of the other macros supported by Airflow is
shown in table 3.1.

Although Cron expressions are extremely powerful, they can be difficult to work with.
As such, it may be a good idea to test your expression before trying it out in Airflow.
Fortunately, there are many tools1 available online that can help you define, verify, or
explain your Cron expressions in plain English. It also doesn’t hurt to document the
reasoning behind complicated cron expressions in your code. This may help others
(including future you!) understand the expression when revisiting your code.

Table 3.1 Airflow presets for frequently used scheduling intervals

Preset Meaning

@once Schedule once and only once.

@hourly Run once an hour at the beginning of the hour.

@daily Run once a day at midnight.

@weekly Run once a week at midnight on Sunday morning.

@monthly Run once a month at midnight on the first day of the month.

@yearly Run once a year at midnight on January 1.

1 https://crontab.guru translates cron expressions to human-readable language.

https://crontab.guru
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3.2.3 Frequency-based intervals

An important limitation of cron expressions is that they are unable to represent certain
frequency-based schedules. For example, how would you define a cron expression that
runs a DAG once every three days? It turns out that you could write an expression that
runs on every first, fourth, seventh, and so on day of the month, but this approach
would run into problems at the end of the month as the DAG would run consecutively
on both the 31st and the first of the next month, violating the desired schedule.

 This limitation of cron stems from the nature of cron expressions, as they define a
pattern that is continuously matched against the current time to determine whether
a job should be executed. This has the advantage of making the expressions stateless,
meaning that you don’t have to remember when a previous job was run to calculate the
next interval. However, as you can see, this comes at the price of some expressiveness.

 What if we really want to run our DAG once every three days? To support this type
of frequency-based schedule, Airflow also allows you to define scheduling intervals in
terms of a relative time interval. To use such a frequency-based schedule, you can pass
a timedelta instance (from the datetime module in the standard library) as a sched-
ule interval.

dag = DAG(
    dag_id="04_time_delta",
    schedule_interval=dt.timedelta(days=3),             B
    start_date=dt.datetime(year=2019, month=1, day=1),
    end_date=dt.datetime(year=2019, month=1, day=5),
)

B timedelta gives the ability to use frequency-based schedules.

This would result in our DAG being run every three days following the start date (on
the 4th, 7th, 10th, and so on of January 2019). Of course, you can also use this approach
to run your DAG every 10 minutes (using timedelta(minutes=10)) or every two
hours (using timedelta(hours=2)).

3.3 Processing data incrementally
Although we now have our DAG running at a daily interval (assuming we stuck with
the @daily schedule), we haven’t quite achieved our goal. For one, our DAG is down-
loading and calculating statistics for the entire catalog of user events every day, which
is hardly efficient. Moreover, this process is only downloading events for the past 30
days, which means we are not building any history for earlier dates.

3.3.1 Fetching events incrementally

One way to solve these issues is to change our DAG to load data incrementally, in
which we only load events from the corresponding day in each schedule interval and
only calculate statistics for the new events (figure 3.3).

Listing 3.4 Defining a frequency-based schedule interval (dags/04_time_delta.py)
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This incremental approach is much more efficient than fetching and processing the
entire data set, as it significantly reduces the amount of data that has to be processed
in each schedule interval. Additionally, because we are now storing our data in sepa-
rate files per day, we also have the opportunity to start building a history of files over
time, way past the 30-day limit of our API.

 To implement incremental processing in our workflow, we need to modify our
DAG to download data for a specific day. Fortunately, we can adjust our API call to
fetch events for the current date by including start and end date parameters:

curl -O http:/ /localhost:5000/events?start_date=2019-01-01&end_date=2019-01-02

Together, these date parameters indicate the time range for which we would like to
fetch events. Note that in this example start_date is inclusive, while end_date is
exclusive, meaning we are effectively fetching events that occur between 2019-01-01
00:00:00 and 2019-01-01 23:59:59.

 We can implement this incremental data fetching in our DAG by changing our
bash command to include the two dates. 

fetch_events = BashOperator(
    task_id="fetch_events",
    bash_command=(
        "mkdir -p /data && "
        "curl -o /data/events.json " 
        "http:/ /localhost:5000/events?"
        "start_date=2019-01-01&"
        "end_date=2019-01-02"

Listing 3.5 Fetching events for a specific time interval (dags/05_query_with_dates.py)

Day 1

Day 2

Events

Fetch Aggregate

events/day1.json stats/day1.csv

Fetch Aggregate

events/day2.json stats/day2.csv

Day 3

Figure 3.3 Fetching and processing data incrementally
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    ),
    dag=dag,
)

However, to fetch data for any other date than 2019-01-01, we need to change the
command to use start and end dates that reflect the day for which the DAG is being
executed. Fortunately, Airflow provides us with several extra parameters for doing so,
which we’ll explore in the next section.

3.3.2 Dynamic time references using execution dates

For many workflows involving time-based processes, it is important to know for which
time interval a given task is being executed. For this reason, Airflow provides tasks
with extra parameters that can be used to determine for which schedule interval a task
is being executed (we’ll go into more detail on these parameters in the next chapter).

 The most important of these parameters is called the execution_date, which rep-
resents the date and time for which our DAG is being executed. Contrary to what the
name of the parameter suggests, the execution_date is not a date but a timestamp,
which reflects the start time of the schedule interval for which the DAG is being exe-
cuted. The end time of the schedule interval is indicated by another parameter called
the next_execution_date. Together these dates define the entire length of a task’s
schedule interval (figure 3.4).

Airflow also provides a previous_execution_date parameter, which describes the
start of the previous schedule interval. Although we won’t be using this parameter
here, it can be useful for performing analyses that contrast data from the current time
interval with results from the previous interval.

 In Airflow, we can use these execution dates by referencing them in our operators.
For example, in the BashOperator, we can use Airflow’s templating functionality to
include the execution dates dynamically in our Bash command. Templating is covered
in detail in chapter 4.

 
 

Start

date

Previous

execution date

Execution

date

Next

execution date

Future

executions

2019-01-01

00:00

2019-01-02

00:00

2019-01-03

00:00

2019-01-04

00:00

Current

interval

Now

Figure 3.4 Execution dates in Airflow
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fetch_events = BashOperator(
    task_id="fetch_events",
    bash_command=(
         "mkdir -p /data && "
         "curl -o /data/events.json "
         "http:/ /localhost:5000/events?"
         "start_date={{execution_date.strftime('%Y-%m-%d')}}"       B
         "&end_date={{next_execution_date.strftime('%Y-%m-%d')}}"   c
    ),
    dag=dag,
)

B Formatted execution_date inserted with Jinja templating

c next_execution_date holds the execution date of the next interval.

In this example, the syntax {{variable_name}} is an example of using Airflow’s Jinja-
based (http://jinja.pocoo.org) templating syntax for referencing one of Airflow’s spe-
cific parameters. Here, we use this syntax to reference the execution dates and format
them to the expected string format using the datetime strftime method (as both exe-
cution dates are datetime objects).

 Because the execution_date parameters are often used in this fashion to refer-
ence dates as formatted strings, Airflow also provides several shorthand parameters
for common date formats. For example, the ds and ds_nodash parameters are differ-
ent representations of the execution_date, formatted as YYYY-MM-DD and YYYYM-
MDD, respectively. Similarly, next_ds, next_ds_nodash, prev_ds, and prev_ds_nodash
provide shorthand notations for the next and previous execution dates, respectively.2 

 Using these shorthand notations, we can also write our incremental fetch com-
mand as follows.

fetch_events = BashOperator(
   task_id="fetch_events",
   bash_command=(
     "mkdir -p /data && "
     "curl -o /data/events.json "     
      "http:/ /localhost:5000/events?"
      "start_date={{ds}}&"             B
      "end_date={{next_ds}}"           c
   ),
   dag=dag,
)

B ds provides YYYY-MM-DD formatted execution_date.

c next_ds provides the same for next_execution_date.

Listing 3.6 Using templating for specifying dates (dags/06_templated_query.py)

2 See https://airflow.readthedocs.io/en/stable/macros-ref.html for an overview of all available shorthand
options.

Listing 3.7 Using template shorthand (dags/07_templated_query_ds.py) 

http://jinja.pocoo.org
https://airflow.readthedocs.io/en/stable/macros-ref.html
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This shorter version is quite a bit easier to read. However, for more complicated date (or
datetime) formats, you will likely still need to use the more flexible strftime method.

3.3.3 Partitioning your data

Although our new fetch_events task now fetches events incrementally for each new
schedule interval, the astute reader may have noticed that each new task is simply
overwriting the result of the previous day, meaning that we are effectively not building
any history.

 One way to solve this problem is to simply append new events to the events.json
file, which would allow us to build our history in a single JSON file. However, a draw-
back of this approach is that it requires any downstream processing jobs to load the
entire data set, even if we are only interested in calculating statistics for a given day.
Additionally, it also makes this file a single point of failure, by which we may risk losing
our entire data set should this file become lost or corrupted.

 An alternative approach is to divide our data set into daily batches by writing the
output of the task to a file bearing the name of the corresponding execution date.

fetch_events = BashOperator(
    task_id="fetch_events",
    bash_command=(
        "mkdir -p /data/events && " 
        "curl -o /data/events/{{ds}}.json "     B
        "http:/ /localhost:5000/events?"
        "start_date={{ds}}&"
        "end_date={{next_ds}}", 
    dag=dag,
)

B Response written to templated filename

This would result in any data being downloaded for an execution date of 2019-01-01
being written to the file /data/events/2019-01-01.json. 

 This practice of dividing a data set into smaller, more manageable pieces is a com-
mon strategy in data storage and processing systems and is commonly referred to as
partitioning, with the smaller pieces of a data set the partitions. The advantage of parti-
tioning our data set by execution date becomes evident when we consider the second
task in our DAG (calculate_stats), in which we calculate statistics for each day’s
worth of user events. In our previous implementation, we were loading the entire data
set and calculating statistics for our entire event history, every day.

def _calculate_stats(input_path, output_path):
    """Calculates event statistics."""
    Path(output_path).parent.mkdir(exist_ok=True)
    events = pd.read_json(input_path)
    stats = events.groupby(["date", "user"]).size().reset_index()

Listing 3.8 Writing event data to separate files per date (dags/08_templated_path.py)

Listing 3.9 Previous implementation for event statistics (dags/01_scheduled.py)
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    stats.to_csv(output_path, index=False)

calculate_stats = PythonOperator(
    task_id="calculate_stats",
    python_callable=_calculate_stats,
    op_kwargs={
        "input_path": "/data/events.json",
        "output_path": "/data/stats.csv",
    },
    dag=dag,
)

However, using our partitioned data set, we can calculate these statistics more effi-
ciently for each separate partition by changing the input and output paths of this task
to point to the partitioned event data and a partitioned output file.

def _calculate_stats(**context):                            B
   """Calculates event statistics."""
   input_path = context["templates_dict"]["input_path"]     c
   output_path = context["templates_dict"]["output_path"]

   Path(output_path).parent.mkdir(exist_ok=True)

   events = pd.read_json(input_path)
   stats = events.groupby(["date", "user"]).size().reset_index()
   stats.to_csv(output_path, index=False)

calculate_stats = PythonOperator(
   task_id="calculate_stats",
   python_callable=_calculate_stats,
   templates_dict={
       "input_path": "/data/events/{{ds}}.json",            d
       "output_path": "/data/stats/{{ds}}.csv",
   },
   dag=dag,
)

B Receive all context variables in this dict.

c Retrieve the templated values from the templates_dict object.

d Pass the values that we want to be templated.

Although these changes may look somewhat complicated, they mostly involve boiler-
plate code for ensuring that our input and output paths are templated. To achieve this
templating in the PythonOperator, we need to pass any arguments that should be tem-
plated using the operator’s templates_dict parameter. We then can retrieve the
templated values inside our function from the context object that is passed to our
_calculate_stats function by Airflow.3 

Listing 3.10 Calculating statistics per execution interval (dags/08_templated_path.py)

3 For Airflow 1.10.x, you’ll need to pass the extra argument provide_context=True to the PythonOperator;
otherwise, the _calculate_stats function won’t receive the context values.
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 If this all went a bit too quickly, don’t worry; we’ll dive into the task context in
more detail in the next chapter. The important point to understand here is that these
changes allow us to compute our statistics incrementally, by only processing a small
subset of our data each day.

3.4 Understanding Airflow’s execution dates
Because execution dates are such an important part of Airflow, let’s take a minute to
make sure we fully understand how these dates are defined.

3.4.1 Executing work in fixed-length intervals

As we’ve seen, we can control when Airflow runs a DAG with three parameters: a start
date, a schedule interval, and an (optional) end date. To actually start scheduling our
DAG, Airflow uses these three parameters to divide time into a series of schedule inter-
vals, starting from the given start date and optionally ending at the end date (figure 3.5).

In this interval-based representation of time, a DAG is executed for a given interval as
soon as the time slot of that interval has passed. For example, the first interval in fig-
ure 3.5 would be executed as soon as possible after 2019-01-01 23:59:59, because by
then the last time point in the interval has passed. Similarly, the DAG would execute
for the second interval shortly after 2019-01-02 23:59:59, and so on, until we reach our
optional end date. 

 An advantage of using this interval-based approach is that it is ideal for performing
the type of incremental data processing we saw in the previous sections, as we know
exactly for which interval of time a task is executing for—the start and end of the cor-
responding interval. This is in stark contrast to, for example, a time point–based
scheduling system such as cron, where we only know the current time for which our
task is being executed. This means that, for example in cron, we either have to calcu-
late or guess where our previous execution left off by assuming that the task is execut-
ing for the previous day (figure 3.6).

 Understanding that Airflow’s handling of time is built around schedule intervals
also helps understand how execution dates are defined within Airflow. For example,
say we have a DAG that follows a daily schedule interval, and then consider the corre-
sponding interval that should process data for 2019-01-03. In Airflow, this interval will
be run shortly after 2019-01-04 00:00:00, because at that point we know we will no longer

Start

date

First

interval

Second

interval

Third

interval
(Optional)

End date

Future

intervals

2019-01-01

00:00

2019-01-02

00:00

2019-01-03

00:00

2019-01-04

00:00

Figure 3.5 Time represented in terms of Airflow’s scheduling intervals. Assumes 
a daily interval with a start date of 2019-01-01.
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be receiving any new data for 2019-01-03. Thinking back to our explanation of using
execution dates in our tasks from the previous section, what do you think that the
value of execution_date will be for this interval?

 Many people expect that the execution date of this DAG run will be 2019-01-04, as
this is the moment at which the DAG is actually run. However, if we look at the value
of the execution_date variable when our tasks are executed, we will actually see an
execution date of 2019-01-03. This is because Airflow defines the execution date of a
DAG as the start of the corresponding interval. Conceptually, this makes sense if we
consider that the execution date marks our schedule interval rather than the moment
our DAG is actually executed. Unfortunately, the naming can be a bit confusing.

 With Airflow execution dates being defined as the start of the corresponding
schedule intervals, they can be used to derive the start and end of a specific interval
(figure 3.7). For example, when executing a task, the start and end of the correspond-
ing interval are defined by the execution_date (the start of the interval) and the
next_execution date (the start of the next interval) parameters. Similarly, the pre-
vious schedule interval can be derived using the previous_execution_date and
execution_date parameters.

 However, one caveat to keep in mind when using the previous_execution_date
and next_execution_date parameters in your tasks is that these are only defined for

Run for
this explicit
interval

Time point–based

scheduling

Interval-based

scheduling

Guess where
interval
starts/ends

? ?

Now

Figure 3.6 Incremental processing in interval-based scheduling windows 
(e.g., Airflow) versus windows derived from time point–based systems (e.g., 
cron). For incremental (data) processing, time is typically divided into discrete 
time intervals that are processed as soon as the corresponding interval has 
passed. Interval-based scheduling approaches (such as Airflow) explicitly 
schedule tasks to run for each interval while providing exact information to 
each task concerning the start and the end of the interval. In contrast, time 
point–based scheduling approaches only execute tasks at a given time, 
leaving it up to the task itself to determine for which incremental interval 
the task is executing.
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DAG runs following the schedule interval. As such, the values of these parameters will
be undefined for any runs that are triggered manually using Airflow UI or CLI because
Airflow cannot provide information about next or previous schedule intervals if you
are not following a schedule interval. 

3.5 Using backfilling to fill in past gaps
As Airflow allows us to define schedule intervals from an arbitrary start date, we can
also define past intervals from a start date in the past. We can use this property to per-
form historical runs of our DAG for loading or analyzing past data sets—a process typ-
ically referred to as backfilling.

3.5.1 Executing work back in time

By default, Airflow will schedule and run any past schedule intervals that have not
been run. As such, specifying a past start date and activating the corresponding DAG
will result in all intervals that have passed before the current time being executed.
This behavior is controlled by the DAG catchup parameter and can be disabled by set-
ting catchup to false.

dag = DAG(
   dag_id="09_no_catchup",
   schedule_interval="@daily",
   start_date=dt.datetime(year=2019, month=1, day=1),
   end_date=dt.datetime(year=2019, month=1, day=5),
   catchup=False,
)

With this setting, the DAG will only be run for the most recent schedule interval rather
than executing all open past intervals (figure 3.8). The default value for catchup can

Listing 3.11 Disabling catchup to avoid running past runs (dags/09_no_catchup.py)

Start

date

Previous

execution date

Execution

date

Next

execution date

Future

intervals

2019-01-01

00:00

2019-01-02

00:00

2019-01-03

00:00

2019-01-04

00:00

Previous

interval

Current

interval

Next

interval

Figure 3.7 Execution dates in the context of schedule intervals. In Airflow, the execution 
date of a DAG is defined as the start time of the corresponding schedule interval rather 
than the time at which the DAG is executed (which is typically the end of the interval). As 
such, the value of execution_date points to the start of the current interval, while the 
previous_execution_date and next_execution_date parameters point to the 
start of the previous and next schedule intervals, respectively. The current interval can be 
derived from a combination of the execution_date and the next_execution_date, 
which signifies the start of the next interval and thus the end of the current one.
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be controlled from the Airflow configuration file by setting a value for the catch-
up_by_default configuration setting.

 Although backfilling is a powerful concept, it is limited by the availability of data
in source systems. For example, in our example use case we can load past events
from our API by specifying a start date up to 30 days in the past. However, as the
API only provides up to 30 days of history, we cannot use backfilling to load data
from earlier days.

 Backfilling can also be used to reprocess data after we have made changes in our
code. For example, say we make a change to our calc_statistics function to add a
new statistic. Using backfilling, we can clear past runs of our calc_statistics task to
reanalyze our historical data using the new code. Note that in this case we aren’t lim-
ited by the 30-day limit of our data source, as we have already loaded these earlier data
partitions as part of our past runs. 

3.6 Best practices for designing tasks
Although Airflow does much of the heavy lifting when it comes to backfilling and
rerunning tasks, we need to ensure our tasks fulfill certain key properties for proper
results. In this section, we dive into two of the most important properties of proper
Airflow tasks: atomicity and idempotency. 

3.6.1 Atomicity

The term atomicity is frequently used in database systems, where an atomic transaction
is considered an indivisible and irreducible series of database operations such that
either all occur or nothing occurs. Similarly, in Airflow, tasks should be defined so that

Start

date

Now

Start

date

Now

Catchup = false

Airflow starts processing, including
past intervals (= backfilling).

Catchup = true (default)

Current

interval

Current

interval

Airflow starts processing
from the current interval.

Figure 3.8 Backfilling in Airflow. By default, Airflow will run tasks for all 
past intervals up to the current time. This behavior can be disabled by 
setting the catchup parameter of a DAG to false, in which case Airflow 
will only start executing tasks from the current interval.
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they either succeed and produce some proper result or fail in a manner that does not
affect the state of the system (figure 3.9).

As an example, consider a simple extension to our user event DAG, in which we would
like to add some functionality that sends an email of our top 10 users at the end of
each run. One simple way to add this is to extend our previous function with an addi-
tional call to some function that sends an email containing our statistics.

def _calculate_stats(**context):
    """Calculates event statistics."""
    input_path = context["templates_dict"]["input_path"]
    output_path = context["templates_dict"]["output_path"]

    events = pd.read_json(input_path)
    stats = events.groupby(["date", "user"]).size().reset_index()
    stats.to_csv(output_path, index=False)

    email_stats(stats, email="user@example.com")     B

B Sending an email after writing to CSV creates two pieces of work in a single function, which breaks 
the atomicity of the task.

Unfortunately, a drawback of this approach is that the task is no longer atomic. Can
you see why? If not, consider what happens if our _send_stats function fails (which is
bound to happen if our email server is a bit flaky). In this case, we will already have
written our statistics to the output file at output_path, making it seem as if our task
succeeded even though it ended in failure.

 To implement this functionality in an atomic fashion, we could simply split the
email functionality into a separate task.

 

Listing 3.12 Two jobs in one task, to break atomicity (dags/10_non_atomic_send.py)

Write to CSV Send statistics

Line 1

Line 2

Line 3

Line 1

Line 2

Line 3

. . . fail . . .

There are three

lines . . .

Non-atomic operation Atomic operation

Write to CSV

Line 1

Line 2

Line 3

. . . fail . . .

No output

Send statisticsX

Figure 3.9 Atomicity ensures either everything or nothing completes. No half work is produced, and 
as a result, incorrect results are avoided down the line.
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def _send_stats(email, **context):
    stats = pd.read_csv(context["templates_dict"]["stats_path"])
    email_stats(stats, email=email)                               B

send_stats = PythonOperator(
    task_id="send_stats",
    python_callable=_send_stats,
    op_kwargs={"email": "user@example.com"},
    templates_dict={"stats_path": "/data/stats/{{ds}}.csv"},
    dag=dag,
)

calculate_stats >> send_stats

B Split off the email_stats statement into a separate task for atomicity.

This way, failing to send an email no longer affects the result of the calculate_stats
task, but only fails send_stats, thus making both tasks atomic.

 From this example, you might think that separating all operations into individual
tasks is sufficient to make all our tasks atomic. However, this is not necessarily true. To
understand why, think about if our event API had required us to log in before query-
ing for events. This would generally require an extra API call to fetch some authenti-
cation token, after which we can start retrieving our events. 

 Following our previous reasoning of one operation = one task, we would have to
split these operations into two separate tasks. However, doing so would create a strong
dependency between them, as the second task (fetching the events) will fail without
running the first shortly before. This strong dependency between means we are likely
better off keeping both operations within a single task, allowing the task to form a sin-
gle, coherent unit of work. 

 Most Airflow operators are already designed to be atomic, which is why many
operators include options for performing tightly coupled operations such as authenti-
cation internally. However, more flexible operators such as the Python and Bash oper-
ators may require you to think carefully about your operations to make sure your tasks
remain atomic.

3.6.2 Idempotency

Another important property to consider when writing Airflow tasks is idempotency.
Tasks are said to be idempotent if calling the same task multiple times with the same
inputs has no additional effect. This means that rerunning a task without changing
the inputs should not change the overall output.

 For example, consider our last implementation of the fetch_events task, which
fetches the results for a single day and writes this to our partitioned data set.

 
 

Listing 3.13 Splitting into multiple tasks to improve atomicity (dags/11_atomic_send.py)
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fetch_events = BashOperator(
    task_id="fetch_events",
    bash_command=(
        "mkdir -p /data/events && "
        "curl -o /data/events/{{ds}}.json "      b
        "http:/ /localhost:5000/events?"
        "start_date={{ds}}&"
        "end_date={{next_ds}}"
    ), 
    dag=dag,
)

b Partitioning by setting templated filename

Rerunning this task for a given date would result in the task fetching the same set of
events as its previous execution (assuming the date is within our 30-day window), and
overwriting the existing JSON file in the /data/events folder, producing the same result.
As such, this implementation of the fetch events task is clearly idempotent.

 To show an example of a non-idempotent task, consider using a single JSON file
(/data/events.json) and simply appending events to this file. In this case, rerunning a
task would result in the events simply being appended to the existing data set, thus
duplicating the day’s events (figure 3.10). As such, this implementation is not idempo-
tent, as additional executions of the task change the overall result.

In general, tasks that write data can be made idempotent by checking for existing results
or making sure that previous results are overwritten by the task. In time-partitioned data
sets, this is relatively straightforward, as we can simply overwrite the corresponding
partition. Similarly, for database systems, we can use upsert operations to insert data,

Listing 3.14 Existing implementation for fetching events (dags/08_templated_paths.py)

Non-idempotent task Idempotent task
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data task

Line 1

Line 2

Line 3

Process

data task
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Attempt 1 Attempt 3Attempt 2

Line 1

Line 2

Line 3
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Line 2

Line 3

Line 1

Line 2

Line 3

Line 1

Line 2

Line 3

Line 1

Line 2

Line 3
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data task

Line 1

Line 2

Line 3

Process

data task

Process

data task
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Line 3
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Line 2

Line 3

Figure 3.10 An idempotent task produces the same result, no matter how many times you run it. 
Idempotency ensures consistency and the ability to deal with failure.



59Summary
which allows us to overwrite existing rows that were written by previous task executions.
However, in more general applications, you should carefully consider all side effects
of your task and make sure they are performed in an idempotent fashion.

Summary
 DAGs can run at regular intervals by setting the schedule interval.
 The work for an interval is started at the end of the interval.
 The schedule interval can be configured with cron and timedelta expressions.
 Data can be processed incrementally by dynamically setting variables with

templating.
 The execution date refers to the start datetime of the interval, not to the actual

time of execution.
 A DAG can be run back in time with backfilling.
 Idempotency ensures tasks can be rerun while producing the same output results.



Templating tasks
using the Airflow context
In the previous chapters, we touched the surface of how DAGs and operators work
together and how to schedule a workflow in Airflow. In this chapter, we look in-
depth at what operators represent, what they are, how they function, and when and
how they are executed. We also demonstrate how operators can be used to commu-
nicate with remote systems via hooks, which allows you to perform tasks such as
loading data into a database, running a command in a remote environment, and
performing workloads outside of Airflow.

 
 

This chapter covers
 Rendering variables at runtime with templating

 Variable templating with the PythonOperator 
versus other operators

 Rendering templated variables for debugging 
purposes

 Performing operations on external systems
60
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4.1 Inspecting data for processing with Airflow
Throughout this chapter, we will work out several components of operators with the
help of a (fictitious) stock market prediction tool that applies sentiment analysis,
which we’ll call StockSense. Wikipedia is one the largest public information resources on
the internet. Besides the wiki pages, other items such as pageview counts are also pub-
licly available. For the purposes of this example, we will apply the axiom that an
increase in a company’s pageviews shows a positive sentiment, and the company’s
stock is likely to increase. On the other hand, a decrease in pageviews tells us a loss in
interest, and the stock price is likely to decrease.

4.1.1 Determining how to load incremental data

The Wikimedia Foundation (the organization behind Wikipedia) provides all pageviews
since 2015 in machine-readable format.1 The pageviews can be downloaded in gzip
format and are aggregated per hour per page. Each hourly dump is approximately
50 MB in gzipped text files and is somewhere between 200 and 250 MB in size
unzipped.

 Whenever working with any sort of data, these are essential details. Any data, both
small and big, can be complex, and it is important to have a technical plan of
approach before building a pipeline. The solution is always dependent on what you,
or other users, want to do with the data, so ask yourself and others questions such as
“Do we want to process the data again at some other time in the future?”; “How do I
receive the data (e.g., frequency, size, format, source type)?”; and “What are we going
to build with the data?” After knowing the answers to such questions, we can address
the technical details.

 Let’s download one single hourly dump and inspect the data by hand. In order to
develop a data pipeline, we must understand how to load it in an incremental fashion
and how to work the data (figure 4.1).

 
 
 
 
 
 
 
 
 
 
 

1 https://dumps.wikimedia.org/other/pageviews. The structure and technical details of Wikipedia pageviews
data is documented here: https://meta.wikimedia.org/wiki/Research:Page_view and https://wikitech.wikimedia
.org/wiki/Analytics/Data_Lake/Traffic/Pageviews.

https://dumps.wikimedia.org/other/pageviews
https://meta.wikimedia.org/wiki/Research:Page_view
https://wikitech.wikimedia.org/wiki/Analytics/Data_Lake/Traffic/Pageviews
https://wikitech.wikimedia.org/wiki/Analytics/Data_Lake/Traffic/Pageviews
https://wikitech.wikimedia.org/wiki/Analytics/Data_Lake/Traffic/Pageviews
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We see the URLs follow a fixed pattern, which we can use when downloading the data
in batch fashion (briefly touched on in chapter 3). As a thought experiment and to
validate the data, let’s see what the most commonly used domain codes are for July 7,
10:00–11:00 (figure 4.2).

 Seeing the top results, 1061202 en and 995600 en.m, tells us the most viewed
domains between July 7 10:00 and 11:00 are “en” and “en.m” (the mobile version of
.en), which makes sense given English is the most used language in the world. Also,
results are returned as we expect to see them, which confirms there are no unex-
pected characters or misalignment of columns, meaning we don’t have to perform
any additional processing to clean up the data. Oftentimes, cleaning and transform-
ing data into a consistent state is a large part of the work.

$ wget https://dumps.wikimedia.org/other/pageviews/
2019/2019-07/pageviews-20190701-010000.gz
$ gunzip pageviews-20190701-010000.gz
$ head pageviews-20190701-010000

aa Main_Page 1 0
aa Special:GlobalUsers/sysadmin 1 0
aa User_talk:Qoan 1 0
aa Wikipedia:Community_Portal 1 0
aa.d Main_Page 2 0
aa.m Main_Page 1 0
ab 1005 1 0
ab 105 2 0
ab 1099 1 0
ab 1150 1 0

The date and time in the filename refer to the end of the period,
so for example, 2 0000 refers to 20:00:00 - 2 :00:00.1 1

The pageview data is typically released ~45 minutes after finishing
the interval; however, sometimes the release can take up to 3–4 hours.

The (g)zipped file contains a single text
file with the same name as the archive.

The file contents provide the
following elements, separated
by whitespace:
1. Domain code
2. Page title
3. View count
4. Response size in bytes
So, for example, “en.m American_Bobtail 6 0” refers to six pageviews
of https://en.m.wikipedia.org/wiki/American_Bobtail (a cat species) in a given hour.

https://dumps.wikimedia.org/other/pageviews/{year}/
{year}-{month}/pageviews-{year}{month}{day}-{hour}0000.gz

The wikimedia URL format follows this structure:

Figure 4.1 Downloading and inspecting Wikimedia pageviews data
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4.2 Task context and Jinja templating
Now let’s put all this together and create the first version of a DAG pulling in the Wiki-
pedia pageview counts. Let’s start simple by downloading, extracting, and reading the
data. We’ve selected five companies (Amazon, Apple, Facebook, Google, and Micro-
soft) to initially track and validate the hypothesis (figure 4.3).

The first step is to download the .zip file for every interval. The URL is constructed of
various date and time components:

https://dumps.wikimedia.org/other/pageviews/
{year}/{year}-{month}/pageviews-{year}{month}{day}-{hour}0000.gz

For every interval, we’ll have to insert the date and time for that specific interval in the
URL. In chapter 3, we briefly touched on scheduling and how to use the execution

$                                                  2wget https://dumps.wikimedia.org/other/pageviews/ 019/2019-07/pageviews-20190707-110000.gz
$ gunzip pageviews-20190707-110000.gz
$                                                  |awk -F' ' '{print $1}' pageviews-20190707-110000 sort | uniq -c | sort -nr | head

1061202 en
995600 en.m
300753 ja.m
286381 de.m
257751 de
226334 ru
201930 ja
198182 fr.m
193331 ru.m
171510 it.m

Example:
aa Main_Page 3 0
af Ford_EcoSport 01

ab 9 01 11 1

ab 2009 01

aa
af
ab
ab
aa
ab
ab
af
1 aa
2 ab
1 af
2 ab
1 af
1 aa

Figure 4.2 First simple analysis on Wikimedia pageviews data
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Figure 4.3 First version of the StockSense workflow
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date in our code for it to execute one specific interval. Let’s dive a bit deeper into how
that works. There are many ways to download the pageviews; however, let’s focus on
the BashOperator and PythonOperator. The method to insert variables at runtime in
those operators can be generalized to all other operator types.

4.2.1 Templating operator arguments

To start, let’s download the Wikipedia pageviews using the BashOperator, which takes
an argument, bash_command, to which we provide a Bash command to execute—all
components of the URL where we need to insert a variable at runtime start and end
with double curly braces.

import airflow.utils.dates
from airflow import DAG
from airflow.operators.bash import BashOperator

dag = DAG(
  dag_id="chapter4_stocksense_bashoperator",
  start_date=airflow.utils.dates.days_ago(3),
  schedule_interval="@hourly",
)

get_data = BashOperator(
  task_id="get_data",
  bash_command=(
    "curl -o /tmp/wikipageviews.gz "
    "https://dumps.wikimedia.org/other/pageviews/"
    "{{ execution_date.year }}/"                         B
    "{{ execution_date.year }}-"
    "{{ '{:02}'.format(execution_date.month) }}/"
    "pageviews-{{ execution_date.year }}"
    "{{ '{:02}'.format(execution_date.month) }}"
    "{{ '{:02}'.format(execution_date.day) }}-"
    "{{ '{:02}'.format(execution_date.hour) }}0000.gz"   c
  ),
  dag=dag,
)

B Double curly braces denote a variable inserted at runtime.

c Any Python variable or expression can be provided.

As briefly touched on in chapter 3, the execution_date is one of the variables that is
“magically” available in the runtime of a task. The double curly braces denote a Jinja-
templated string. Jinja is a templating engine, which replaces variables and/or expres-
sions in a templated string at runtime. Templating is used when you, as a programmer,
don’t know the value of something at the time of writing, but do know the value of
something at runtime. An example is when you have a form in which you can insert
your name, and the code prints the inserted name (figure 4.4).

Listing 4.1 Downloading Wikipedia pageviews with the BashOperator
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The value of name is not known when programming because the user will enter their
name in the form at runtime. What we do know is that the inserted value is assigned to a
variable called name, and we can then provide a templated string, "Hello {{ name }}!",
to render and insert the value of name at runtime.

 In Airflow, you have a number of variables available at runtime from the task con-
text. One of these variables is execution_date. Airflow uses the Pendulum (https://
pendulum.eustace.io) library for datetimes, and execution_date is such a Pendulum
datetime object. It is a drop-in replacement for native Python datetime, so all methods
that can be applied to Python can also be applied to Pendulum. Just like you can do
datetime.now().year, you get the same result with pendulum.now().year.

>>> from datetime import datetime
>>> import pendulum
>>> datetime.now().year
2020
>>> pendulum.now().year
2020

The Wikipedia pageviews URL requires zero-padded months, days, and hours (e.g.,
“07” for hour 7). Within the Jinja-templated string we therefore apply string format-
ting for padding:

{{ '{:02}'.format(execution_date.hour) }}

Listing 4.2 Pendulum behavior equal to native Python datetime

Which arguments are templated?
It is important to know not all operator arguments can be templates! Every operator
can keep an allowlist of attributes that can be made into templates. By default, they
are not, so a string {{ name }} will be interpreted as literally {{ name }} and not tem-
plated by Jinja, unless included in the list of attributes that can be templated. This
list is set by the attribute template_fields on every operator. You can check these
attributes in the documentation (https://airflow.apache.org/docs); go to the operator
of your choice and view the template_fields item.

Note the elements in template_fields are names of class attributes. Typically,
the argument names provided to __init__ match the class attributes names, so
everything listed in template_fields maps 1:1 to the __init__ arguments. How-
ever, technically it’s possible they don’t, and it should be documented as to which
class attribute an argument maps.

Insert name here:

print("Hello {{ name }}!")

The double curly braces tell Jinja there’s
a variable or expression inside to evaluate.

Figure 4.4 Not all variables 
are known upfront when 
writing code, for example, 
when using interactive 
elements such as forms.

https://airflow.apache.org/docs
https://pendulum.eustace.io
https://pendulum.eustace.io
https://pendulum.eustace.io
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4.2.2 What is available for templating?

Now that we understand which arguments of an operator can be templated, which
variables do we have at our disposal for templating? We’ve seen execution_date used
before in a number of examples, but more variables are available. With the help of the
PythonOperator, we can print the full task context and inspect it.

import airflow.utils.dates
from airflow import DAG
from airflow.operators.python import PythonOperator

dag = DAG(
   dag_id="chapter4_print_context",
   start_date=airflow.utils.dates.days_ago(3),
   schedule_interval="@daily",
)

def _print_context(**kwargs):
   print(kwargs)

print_context = PythonOperator(
   task_id="print_context",
   python_callable=_print_context,
   dag=dag,
)

Running this task prints a dict of all available variables in the task context.

{
   'dag': <DAG: print_context>,
   'ds': '2019-07-04',
   'next_ds': '2019-07-04',
   'next_ds_nodash': '20190704',
   'prev_ds': '2019-07-03',
   'prev_ds_nodash': '20190703',
   ...
}

All variables are captured in **kwargs and passed to the print() function. All these
variables are available at runtime. Table 4.1 provides a description of all available task
context variables.

 
 

Listing 4.3 Printing the task context

Listing 4.4 All context variables for the given execution date
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Table 4.1 All task context variables

Key Description Example

conf Provides access to Airflow 
configuration

airflow.configuration
.AirflowConfigParser 
object

dag The current DAG object DAG object

dag_run The current DagRun object DagRun object

ds execution_date formatted as 
%Y-%m-%d

“2019-01-01”

ds_nodash execution_date formatted as 
%Y%m%d

“20190101”

execution_date The start datetime of the task’s interval pendulum.datetime
.DateTime object

inlets Shorthand for task.inlets, a feature 
to track input data sources for data 
lineage

[]

macros airflow.macros module macros module

next_ds execution_date of the next interval
 (= end of current interval) formatted as 
%Y-%m-%d

“2019-01-02”

next_ds_nodash execution_date of the next interval 
(= end of current interval) formatted as 
%Y%m%d

“20190102”

next_execution_
date

The start datetime of the task’s next 
interval (= end of current interval)

pendulum.datetime
.DateTime object

outlets Shorthand for task.outlets, a fea-
ture to track output data sources for 
data lineage

[]

params User-provided variables to the task 
context

{}

prev_ds execution_date of the previous 
interval formatted as %Y-%m-%d

“2018-12-31”

prev_ds_nodash execution_date of the previous 
interval formatted as %Y%m%d

“20181231”

prev_execution_
date

The start datetime of the task’s previ-
ous interval

pendulum.datetime
.DateTime object

prev_execution_
date_success

Start datetime of the last successfully 
completed run of the same task (only 
in past)

pendulum.datetime
.DateTime object

prev_start_date_
success

Date and time on which the last suc-
cessful run of the same task (only in 
past) was started

pendulum.datetime
.DateTime object
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4.2.3 Templating the PythonOperator

The PythonOperator is an exception to the templating shown in section 4.2.1. With
the BashOperator (and all other operators in Airflow), you provide a string to the
bash_command argument (or whatever the argument is named in other operators),
which is automatically templated at runtime. The PythonOperator is an exception to
this standard, because it doesn’t take arguments that can be templated with the run-
time context, but instead a python_callable argument in which the runtime context
can be applied.

 Let’s inspect the code downloading the Wikipedia pageviews as shown in listing 4.1
with the BashOperator, but now implemented with the PythonOperator. Functionally,
this results in the same behavior.

run_id The DagRun’s run_id (a key typically 
composed of a prefix + datetime)

“manual__2019-01-
01T00:00:00+00:00”

task The current operator PythonOperator object

task_instance The current TaskInstance object TaskInstance object

task_instance_
key_str

A unique identifier for the current 
TaskInstance ({dag_id}__
{task_id}__{ds_nodash})

“dag_id__task_id__20190101”

templates_dict User-provided variables to the task 
context

{}

test_mode Whether Airflow is running in test mode 
(configuration property)

False

ti The current TaskInstance object, 
same as task_instance

TaskInstance object

tomorrow_ds ds plus one day “2019-01-02”

tomorrow_ds_nodash ds_nodash plus one day “20190102”

ts execution_date formatted accord-
ing to ISO8601 format

“2019-01-
01T00:00:00+00:00”

ts_nodash execution_date formatted as 
%Y%m%dT%H%M%S

“20190101T000000”

ts_nodash_with_tz ts_nodash with time zone information “20190101T000000+0000”

var Helpers objects for dealing with Airflow 
variables

{}

yesterday_ds ds minus one day “2018-12-31”

yesterday_ds_nodash ds_nodash minus one day “20181231”

Printed using a PythonOperator run manually in a DAG with execution date 2019-01-01T00:00:00, @daily interval.

Table 4.1 All task context variables (continued)

Key Description Example
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from urllib import request

import airflow
from airflow import DAG
from airflow.operators.python import PythonOperator

dag = DAG(
    dag_id="stocksense",
    start_date=airflow.utils.dates.days_ago(1),
    schedule_interval="@hourly",
)

def _get_data(execution_date):                              B
    year, month, day, hour, *_ = execution_date.timetuple()
    url = (
        "https://dumps.wikimedia.org/other/pageviews/"
        f"{year}/{year}-{month:0>2}/"
        f”pageviews-{year}{month:0>2}{day:0>2}-{hour:0>2}0000.gz"
    )
    output_path = "/tmp/wikipageviews.gz"
    request.urlretrieve(url, output_path)

get_data = PythonOperator(
    task_id="get_data",
    python_callable=_get_data,                              B
    dag=dag,
)

B The PythonOperator takes a Python function, whereas the BashOperator takes a Bash command as a 
string to execute.

Functions are first-class citizens in Python, and we provide a callable2 (a function is a
callable object) to the python_callable argument of the PythonOperator. On execu-
tion, the PythonOperator executes the provided callable, which could be any func-
tion. Since it is a function, and not a string as with all other operators, the code within
the function cannot be automatically templated. Instead, the task context variables
can be provided and used in the given function, as shown in figure 4.5.

Listing 4.5 Downloading Wikipedia pageviews with the PythonOperator

2 In Python, any object implementing __call__() is considered a callable (e.g., functions/methods).

provide_context in the Airflow 1 and Airflow 2 PythonOperator
In Airflow 1, the task context variables must be provided explicitly by setting an argu-
ment on the PythonOperator provide_context=True, which passes all(!) task con-
text variables to your callable:

PythonOperator(
   task_id="pass_context",
   python_callable=_pass_context,
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Python allows capturing keyword arguments in a function. This has various use cases,
mainly for if you don’t know the keyword arguments supplied upfront and to avoid
having to explicitly write out all expected keyword argument names.

 
 

(continued)
   provide_context=True,
   dag=dag,
)

In Airflow 2, the PythonOperator determines which context variables must be
passed along to your callable by inferring these from the callable argument names.
It is therefore not required to set provide_context=True anymore:

PythonOperator(
   task_id="pass_context",
   python_callable=_pass_context,
   dag=dag,
)

To remain backward compatible, the provide_context argument is still supported
in Airflow 2; however, you can safely remove it when running on Airflow 2.

All variables for this
task instance

All variables passed
to kwargs

this

Figure 4.5 Providing task context with a PythonOperator
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def _print_context(**kwargs):     B
   print(kwargs)

B Keyword arguments can be captured with two asterisks (**). A convention is to name the capturing 
argument kwargs.

To indicate to your future self and to other readers of your Airflow code about your
intentions of capturing the Airflow task context variables in the keyword arguments, a
good practice is to name this argument appropriately (e.g., “context”).

def _print_context(**context):     B
   print(context)

print_context = PythonOperator(
    task_id="print_context",
    python_callable=_print_context,
    dag=dag,
)

B Naming this argument context indicates we expect Airflow task context.

The context variable is a dict of all context variables, which allows us to give our task
different behavior for the interval it runs in, for example, to print the start and end
datetime of the current interval:

def _print_context(**context):
   start = context["execution_date"]       B
   end = context["next_execution_date"]
   print(f"Start: {start}, end: {end}")

print_context = PythonOperator(
   task_id="print_context", python_callable=_print_context, dag=dag
)

# Prints e.g.:
# Start: 2019-07-13T14:00:00+00:00, end: 2019-07-13T15:00:00+00:00

B Extract the execution_date from the context.

Now that we’ve seen a few basic examples, let’s dissect the PythonOperator download-
ing the hourly Wikipedia pageviews as seen in listing 4.5 (figure 4.6).

 The _get_data function called by the PythonOperator takes one argument:
**context. As we’ve seen before, we could accept all keyword arguments in a single
argument named **kwargs (the double asterisk indicates all keyword arguments, and

Listing 4.6 Keyword arguments stored in kwargs

Listing 4.7 Renaming kwargs to context for expressing intent to store task context

Listing 4.8 Printing start and end date of interval
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kwargs is the actual variable’s name). For indicating we expect task context variables,
we could rename it to **context. There is yet another way in Python to accept key-
words arguments, though.

def _get_data(execution_date, **context):                    B
   year, month, day, hour, *_ = execution_date.timetuple()
   # ...

B This tells Python we expect to receive an argument named execution_date. It will not be captured in 
the context argument.

What happens under the hood is that the _get_data function is called with all context
variables as keyword arguments:

_get_data(conf=..., dag=..., dag_run=..., execution_date=..., ...)

Python will then check if any of the given arguments is expected in the function signa-
ture (figure 4.7).

Listing 4.9 Explicitly expecting variable execution_date

Listing 4.10 All context variables are passed as keyword arguments

Task context
variables

Extract datetime components
from execution_date.

Format URL with
datetime components.

Retrieve data.

def _get_data(**context):
year, month, day, hour, *_ = context["execution_date"].timetuple()
url = (

"https://dumps.wikimedia.org/other/pageviews/"
f"{year}/{year}-{month:0>2}/pageviews-{year}{month:0>2}{day:0>2}-{hour:0>2}0000.gz"

)
output_path = "/tmp/wikipageviews.gz"
request.urlretrieve(url, output_path)

Figure 4.6 The PythonOperator takes a function instead of string arguments and thus cannot be Jinja-
templated. In this called function, we extract datetime components from the execution_date to dynamically 
construct the URL.

_get_data(conf=..., dag=..., dag_run=..., execution_date=..., ...)

def _get_data(execution_date, **context):
year, month, day, hour, *_ = execution_date.timetuple()
# ...

conf in the signature? If no, add to **context.

Figure 4.7 Python determines if a given keyword argument is passed to one specific 
argument in the function, or to the ** argument if no matching name was found.
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The first argument conf is checked and not found in the signature (expected argu-
ments) of _get_data and thus added to **context. This is repeated for dag and
dag_run since both arguments are not in the function’s expected arguments. Next
is execution_date, which we expect to receive, and thus its value is passed to the
execution_date argument in _get_data() (figure 4.8).

The end result with this example is that a keyword with the name execution_date is
passed along to the execution_date argument and all other variables are passed
along to **context since they are not explicitly expected in the function signature
(figure 4.9).

Now, we can directly use the execution_date variable instead of having to extract it
from **context with context["execution_date"]. In addition, your code will be
more self-explanatory and tools such as linters and type hinting will benefit by the
explicit argument definition.

4.2.4 Providing variables to the PythonOperator

Now that we’ve seen how the task context works in operators and how Python deals
with keywords arguments, imagine we want to download data from more than one
data source. The _get_data() function could be duplicated and slightly altered to

_get_data(conf=..., dag=..., dag_run=..., execution_date=..., ...)

def _get_data(execution_date, **context):
ple()year, month, day, hour, *_ = execution_date.timetu

# ...

execution_date in the signature?
If yes, pass to argument.

Figure 4.8 _get_data expects an argument named execution_date. No default 
value is set, so it will fail if not provided.

_get_data(conf=..., dag=..., dag_run=..., execution_date=..., ...)

def _get_data(execution_date, **context):
year, month, day, hour, *_ = execution_date.timetuple()
# ...

Figure 4.9 Any named argument can be given to _get_data(). execution_date 
must be provided explicitly because it’s listed as an argument, all other arguments are 
captured by **context.
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support a second data source. The PythonOperator, however, also supports supplying
additional arguments to the callable function. For example, say we start by making the
output_path configurable, so that, depending on the task, we can configure the output
_path instead of having to duplicate the entire function just to change the output path
(figure 4.10).

The value for output_path can be provided in two ways. The first is via an argument:
op_args.

get_data = PythonOperator(
   task_id="get_data",
   python_callable=_get_data,
   op_args=["/tmp/wikipageviews.gz"],     B
   dag=dag,
)

B Provide additional variables to the callable with op_args.

On execution of the operator, each value in the list provided to op_args is passed along
to the callable function (i.e., the same effect as calling the function as such directly:
_get_data("/tmp/wikipageviews.gz")).

 Since output_path in figure 4.10 is the first argument in the _get_data function,
the value of it will be set to /tmp/wikipageviews.gz when run (we call these non-keyword
arguments). A second approach is to use the op_kwargs argument, shown in the follow-
ing listing.

get_data = PythonOperator(
   task_id="get_data",
   python_callable=_get_data,
   op_kwargs={"output_path": "/tmp/wikipageviews.gz"},    B
   dag=dag,
)

B A dict given to op_kwargs will be passed as keyword arguments to the callable.

Listing 4.11 Providing user-defined variables to the PythonOperator callable

Listing 4.12 Providing user-defined kwargs to callable

def _get_data(output_path, **context):
year, month, day, hour, *_ = context["execution_date"].timetuple()
url = (

"https://dumps.wikimedia.org/other/pageviews/"
f"{year}/{year}-{month:0>2}/pageviews-{year}{month:0>2}{day:0>2}-{hour:0>2}0000.gz"

)
request.urlretrieve(url, output_path)

output_path now configurable via argument

Figure 4.10 The output_path is now configurable via an argument.
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Similar to op_args, all values in op_kwargs are passed along to the callable function,
but this time as keyword arguments. The equivalent call to _get_data would be

_get_data(output_path="/tmp/wikipageviews.gz")

Note that these values can contain strings and thus can be templated. That means we
could avoid extracting the datetime components inside the callable function itself and
instead pass templated strings to our callable function.

def _get_data(year, month, day, hour, output_path, **_):
   url = (
       "https://dumps.wikimedia.org/other/pageviews/"
       f"{year}/{year}-{month:0>2}/”
       f"pageviews-{year}{month:0>2}{day:0>2}-{hour:0>2}0000.gz"
   )
   request.urlretrieve(url, output_path)

get_data = PythonOperator(
   task_id="get_data",
   python_callable=_get_data,
   op_kwargs={
       "year": "{{ execution_date.year }}",     B
       "month": "{{ execution_date.month }}",
       "day": "{{ execution_date.day }}",
       "hour": "{{ execution_date.hour }}",
       "output_path": "/tmp/wikipageviews.gz",
   },
   dag=dag,
)

B User-defined keyword arguments are templated before passing to the callable.

4.2.5 Inspecting templated arguments

A useful tool to debug issues with templated arguments is the Airflow UI. You can
inspect the templated argument values after running a task by selecting it in either the
graph or tree view and clicking the Rendered Template button (figure 4.11).

 The rendered template view displays all attributes of the given operator that are
render-able and their values. This view is visible per task instance. Consequently, a task
must be scheduled by Airflow before being able to inspect the rendered attributes for
the given task instance (i.e., you have to wait for Airflow to schedule the next task
instance). During development, this can be impractical. The Airflow Command Line
Interface (CLI) allows us to render templated values for any given datetime.

# airflow tasks render stocksense get_data 2019-07-19T00:00:00
# ----------------------------------------------------------
# property: templates_dict

Listing 4.13 Providing templated strings as input for the callable function

Listing 4.14 Rendering templated values for any given execution date
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# ----------------------------------------------------------
None

# ----------------------------------------------------------
# property: op_args
# ----------------------------------------------------------
[]

# ----------------------------------------------------------
# property: op_kwargs
# ----------------------------------------------------------
{'year': '2019', 'month': '7', 'day': '19', 'hour': '0', 'output_path': 

'/tmp/wikipageviews.gz'}

The CLI provides us with exactly the same information as shown in the Airflow UI,
without having to run a task, which makes it easier to inspect the result. The com-
mand to render templates using the CLI is

airflow tasks render [dag id] [task id] [desired execution date]

You can enter any datetime and the Airflow CLI will render all templated attributes as
if the task would run for the desired datetime. Using the CLI does not register any-
thing in the metastore and is thus a more lightweight and flexible action.

Figure 4.11 Inspecting the rendered template values after running a task
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4.3 Hooking up other systems
Now that we’ve worked out how templating works, let’s continue the use case by pro-
cessing the hourly Wikipedia pageviews. The following two operators will extract the
archive and process the extracted file by scanning over it and selecting the pageview
counts for the given page names. The result is then printed in the logs.

extract_gz = BashOperator(
    task_id="extract_gz",
    bash_command="gunzip --force /tmp/wikipageviews.gz",
    dag=dag,
)

def _fetch_pageviews(pagenames):
    result = dict.fromkeys(pagenames, 0)
    with open(f"/tmp/wikipageviews", "r") as f:                         B
        for line in f:
            domain_code, page_title, view_counts, _ = line.split(" ")   c
            if domain_code == "en" and page_title in pagenames:         de
                result[page_title] = view_counts

    print(result)
    # Prints e.g. "{'Facebook': '778', 'Apple': '20', 'Google': '451',  

'Amazon': '9', 'Microsoft': '119'}"

fetch_pageviews = PythonOperator(
    task_id="fetch_pageviews",
    python_callable=_fetch_pageviews,
    op_kwargs={
        "pagenames": {
            "Google",
            "Amazon",
            "Apple",
            "Microsoft",
            "Facebook",
        }
    },
    dag=dag,
)

B Open the file written in previous task.

c Extract the elements on a line.

d Filter only domain “en.”

e Check if page_title is in given pagenames.

This prints, for example, {'Apple': '31', 'Microsoft': '87', 'Amazon': '7', 'Face-
book': '228', 'Google': '275'}. As a first improvement, we’d like to write these
counts to our own database, which allow us to query it with SQL and ask questions
such as, “What is the average hourly pageview count on the Google Wikipedia page?”
(figure 4.12).

Listing 4.15 Reading pageviews for given page names
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We have a Postgres database to store the hourly pageviews. The table to keep the data
contains three columns, shown in listing 4.16.

CREATE TABLE pageview_counts (
   pagename VARCHAR(50) NOT NULL,
   pageviewcount INT NOT NULL,
   datetime TIMESTAMP NOT NULL
);

The pagename and pageviewcount columns respectively hold the name of the Wiki-
pedia page and the number of pageviews for that page for a given hour. The datetime
column will hold the date and time for the count, which equals Airflow’s execution
_date for an interval. An example INSERT query would look as follows.

INSERT INTO pageview_counts VALUES ('Google', 333, '2019-07-17T00:00:00');

This code currently prints the found pageview count, and now we want to connect the
dots by writing those results to the Postgres table. The PythonOperator currently
prints the results but does not write to the database, so we’ll need a second task to
write the results. In Airflow, there are two ways of passing data between tasks:

 By using the Airflow metastore to write and read results between tasks. This is
called XCom and covered in chapter 5.

 By writing results to and from a persistent location (e.g., disk or database)
between tasks.

Airflow tasks run independently of each other, possibly on different physical machines
depending on your setup, and therefore cannot share objects in memory. Data between
tasks must therefore be persisted elsewhere, where it resides after a task finishes and
can be read by another task.

 Airflow provides one mechanism out of the box called XCom, which allows storing
and later reading any picklable object in the Airflow metastore. Pickle is Python’s serial-
ization protocol, and serialization means converting an object in memory to a format

Listing 4.16 CREATE TABLE statement for storing output

Listing 4.17 INSERT statement storing output in the pageview_counts table

SQL

database
Wikipedia

pageviews

Local storage

Download

.zip file

Pageviews for

one hour

Extract

.zip file

Extract

pageviews

Required data

for one hour

Wikipedia

Write to

database

Figure 4.12 Conceptual idea of workflow. After extracting the pageviews, write the pageview 
counts to a SQL database.
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that can be stored on disk to be read again later, possibly by another process. By
default, all objects built from basic Python types (e.g., string, int, dict, list) can be pickled.
Examples of non-picklable objects are database connections and file handlers. Using
XComs for storing pickled objects is only suitable for smaller objects. Since Airflow’s
metastore (typically a MySQL or Postgres database) is finite in size and pickled objects
are stored in blobs in the metastore, it’s typically advised to apply XComs only for
transferring small pieces of data such as a handful of strings (e.g., a list of names).

 The alternative for transferring data between tasks is to keep the data outside Air-
flow. The number of ways to store data are limitless, but typically a file on disk is cre-
ated. In the use case, we’ve fetched a few strings and integers, which in itself are not
space-consuming. With the idea in mind that more pages might be added, and thus
data size might grow in the future, we’ll think ahead and persist the results on disk
instead of using XComs.

 In order to decide how to store the intermediate data, we must know where and
how the data will be used again. Since the target database is a Postgres, we’ll use the
PostgresOperator to insert data. First, we must install an additional package to import
the PostgresOperator class in our project:

pip install apache-airflow-providers-postgres

The PostgresOperator will run any query you provide it. Since the PostgresOperator
does not support inserts from CSV data, we will first write SQL queries as our inter-
mediate data first.

def _fetch_pageviews(pagenames, execution_date, **_):
   result = dict.fromkeys(pagenames, 0)                          B
   with open("/tmp/wikipageviews", "r") as f:
       for line in f:
           domain_code, page_title, view_counts, _ = line.split(" ")
           if domain_code == "en" and page_title in pagenames:
               result[page_title] = view_counts                  c

Airflow 2 providers packages
Since Airflow 2, most operators are installed via separate pip packages. This avoids
installing dependencies you probably won’t use while keeping the core Airflow pack-
age small. All additional pip packages are named

apache-airflow-providers-*

Only a few core operators remain in Airflow, such as the BashOperator and Python-
Operator. Refer to the Airflow documentation to find the apache-airflow-providers
package for your needs.

Listing 4.18 Writing INSERT statements to feed to the PostgresOperator
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   with open("/tmp/postgres_query.sql", "w") as f:
       for pagename, pageviewcount in result.items():            d
           f.write(
               "INSERT INTO pageview_counts VALUES ("
               f"'{pagename}', {pageviewcount}, '{execution_date}'"
               ");\n"
           )

fetch_pageviews = PythonOperator(
   task_id="fetch_pageviews",
   python_callable=_fetch_pageviews,
   op_kwargs={"pagenames": {"Google", "Amazon", "Apple", "Microsoft", 

"Facebook"}},
   dag=dag,
)

B Initialize result for all pageviews with zero

c Store pageview count.

d For each result, write SQL query.

Running this task will produce a file (/tmp/postgres_query.sql) for the given interval,
containing all the SQL queries to be run by the PostgresOperator. See the following
example.

INSERT INTO pageview_counts VALUES ('Facebook', 275, '2019-07-18T02:00:00+00:00');
INSERT INTO pageview_counts VALUES ('Apple', 35, '2019-07-18T02:00:00+00:00');
INSERT INTO pageview_counts VALUES ('Microsoft', 136, '2019-07-18T02:00:00+00:00');
INSERT INTO pageview_counts VALUES ('Amazon', 17, '2019-07-18T02:00:00+00:00');
INSERT INTO pageview_counts VALUES ('Google', 399, '2019-07-18T02:00:00+00:00');

Now that we’ve generated the queries, it’s time to connect the last piece of the puzzle.

from airflow.providers.postgres.operators.postgres import PostgresOperator

dag = DAG(..., template_searchpath="/tmp")   B

write_to_postgres = PostgresOperator(
   task_id="write_to_postgres",
   postgres_conn_id="my_postgres",           c
   sql="postgres_query.sql",                 d
   dag=dag,
)

B Path to search for sql file

c Identifier to credentials to use for connection

d SQL query or path to file containing SQL queries

The corresponding graph view will look like figure 4.13.

Listing 4.19 Multiple INSERT queries to feed to the PostgresOperator

Listing 4.20 Calling the PostgresOperator
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The PostgresOperator requires filling in only two arguments to run a query against a
Postgres database. Intricate operations such as setting up a connection to the database
and closing it after completion are handled under the hood. The postgres_conn_id
argument points to an identifier holding the credentials to the Postgres database. Air-
flow can manage such credentials (stored encrypted in the metastore), and operators
can fetch one of the credentials when required. Without going into detail, we can add
the my_postgres connection in Airflow with the help of the CLI.

airflow connections add \
--conn-type postgres \
--conn-host localhost \
--conn-login postgres \
--conn-password mysecretpassword \
my_postgres                        b

b The connection identifier

The connection is then visible in the UI (it can also be created from there). Go to
Admin > Connections to view all connections stored in Airflow (figure 4.14).

Listing 4.21 Storing credentials in Airflow with the CLI

Figure 4.13 DAG fetching hourly Wikipedia pageviews and writing results to Postgres

Figure 4.14 Connection listed in Airflow UI
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Once a number of DAG runs have completed, the Postgres database will hold a few
counts:

"Amazon",12,"2019-07-17 00:00:00"
"Amazon",11,"2019-07-17 01:00:00"
"Amazon",19,"2019-07-17 02:00:00"
"Amazon",13,"2019-07-17 03:00:00"
"Amazon",12,"2019-07-17 04:00:00"
"Amazon",12,"2019-07-17 05:00:00"
"Amazon",11,"2019-07-17 06:00:00"
"Amazon",14,"2019-07-17 07:00:00"
"Amazon",15,"2019-07-17 08:00:00"
"Amazon",17,"2019-07-17 09:00:00"

There’s a number of things to point out in this last step. The DAG has an additional
argument: template_searchpath. Besides a string INSERT INTO ..., the content of
files can also be templated. Each operator can read and template files with specific
extensions by providing the file path to the operator. In the case of the Postgres-
Operator, the argument SQL can be templated and thus a path to a file holding a
SQL query can also be provided. Any filepath ending in .sql will be read, templates in
the file will be rendered, and the queries in the file will be executed by the Postgres-
Operator. Again, refer to the documentation of the operators and check the field
template_ext, which holds the file extensions that can be templated by the operator.

NOTE Jinja requires you to provide the path to search for files that can be
templated. By default, only the path of the DAG file is searched for, but since
we’ve stored it in /tmp, Jinja won’t find it. To add paths for Jinja to search, set
the argument template_searchpath on the DAG and Jinja will traverse the
default path plus additional provided paths to search for.

Postgres is an external system and Airflow supports connecting to a wide range of
external systems with the help of many operators in its ecosystem. This does have an
implication: connecting to an external system often requires specific dependencies to
be installed, which allow connecting and communicating with the external system.
This also holds for Postgres; we must install the package apache-airflow-providers-
postgres to install additional Postgres dependencies in our Airflow installation.
The many dependencies is one of the characteristics of any orchestration system—
in order to communicate with many external systems it is inevitable to install many
dependencies.

 Upon execution of the PostgresOperator, a number of things happen (figure 4.15).
The PostgresOperator will instantiate a so-called hook to communicate with Postgres.
The hook deals with creating a connection, sending queries to Postgres and closing the
connection afterward. The operator is merely passing through the request from the user
to the hook in this situation.

NOTE An operator determines what has to be done; a hook determines how
to do something.
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When building pipelines like these, you will only deal with operators and have no
notion of any hooks, because hooks are used internally in operators.

 After a number of DAG runs, the Postgres database will contain a few records
extracted from the Wikipedia pageviews. Once an hour, Airflow now automatically
downloads the new hourly pageviews data set, unzips it, extracts the desired counts,
and writes these to the Postgres database. We can now ask questions such as “At which
hour is each page most popular?”

SELECT x.pagename, x.hr AS "hour", x.average AS "average pageviews"
FROM (
 SELECT
   pagename,
   date_part('hour', datetime) AS hr,
   AVG(pageviewcount) AS average,
   ROW_NUMBER() OVER (PARTITION BY pagename ORDER BY AVG(pageviewcount) DESC)
 FROM pageview_counts
 GROUP BY pagename, hr
) AS x
WHERE row_number=1;

This listing gives us the most popular time to view given pages is between 16:00 and
21:00, shown in table 4.2.

Listing 4.22 SQL query asking which hour is most popular per page

Table 4.2 Query results showing which hour is most popular per page

Pagename Hour Average pageviews

Amazon 18 20

Apple 16 66

Facebook 16 500

Google 20 761

Microsoft 21 181

Airflow

DAG

PostgresOperator
postgres_conn_id="my_postgres"

sql="postgres_query.sql"

Airflow

metastore

Postgres DB

Local storage

PostgresHook
… execute query …

Figure 4.15 Running a SQL script against a Postgres database involves several components. Provide the 
correct settings to the PostgresOperator, and the PostgresHook will do the work under the hood.
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With this query, we have now completed the envisioned Wikipedia workflow, which
performs a full cycle of downloading the hourly pageview data, processing the data,
and writing results to a Postgres database for future analysis. Airflow is responsible for
orchestrating the correct time and order of starting tasks. With the help of the task
runtime context and templating, code is executed for a given interval, using the date-
time values that come with that interval. If all is set up correctly, the workflow can now
run until infinity.

Summary
 Some arguments of operators can be templated.
 Templating happens at runtime.
 Templating the PythonOperator works different from other operators; variables

are passed to the provided callable.
 The result of templated arguments can be checked with airflow tasks render.
 Operators can communicate with other systems via hooks.
 Operators describe what to do; hooks determine how to do work.



Defining dependencies
between tasks
In previous chapters, we saw how to build a basic DAG and define simple depen-
dencies between tasks. In this chapter, we will further explore exactly how task
dependencies are defined in Airflow and how these capabilities can be used to imple-
ment more complex patterns, including conditional tasks, branches, and joins.
Toward the end of the chapter, we’ll also dive into XComs (which allow passing data

This chapter covers
 Examining how to define task dependencies 

in an Airflow DAG

 Explaining how to implement joins using 
trigger rules

 Showing how to make tasks conditional on 
certain conditions

 Giving a basic idea of how trigger rules affect 
the execution of your tasks

 Demonstrating how to use XComs to share 
state between tasks

 Examining how Airflow 2’s Taskflow API can 
help simplify Python-heavy DAGs
85
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between different tasks in a DAG run), and discuss the merits and drawbacks of using
this type of approach. We’ll also show how Airflow 2’s new Taskflow API can help sim-
plify DAGs that make heavy use of Python tasks and XComs. 

5.1 Basic dependencies
Before going into more complex task dependency patterns such as branching and
conditional tasks, let’s first take a moment to examine the different patterns of task
dependencies that we’ve encountered in the previous chapters. This includes both lin-
ear chains of tasks (tasks that are executed one after another), and fan-out/fan-in pat-
terns (which involve one task linking to multiple downstream tasks, or vice versa). To
make sure we’re all on the same page, we’ll briefly go into the implications of these
patterns in the next few sections. 

5.1.1 Linear dependencies

So far, we’ve mainly focused on examples of DAGs consisting of a single linear chain
of tasks. For example, our rocket launch–picture fetching DAG from chapter 2 (fig-
ure 5.1) consisted of a chain of three tasks: one for downloading launch metadata,
one for downloading the images, and one for notifying us when the entire process has
been completed.

download_launches = BashOperator(...)
get_pictures = PythonOperator(...)
notify = BashOperator(...)

Listing 5.1 Tasks in the rocket picture–fetching DAG (chapter02/dags/listing_2_10.py)

John

Launch library

John’s

computer

John’s

computer

Internet

Notification

system

Fetch next

five launches

Save rocket

launches
Fetch rocket

pictures

Save rocket

pictures

Notify

Figure 5.1 Our rocket-picture-fetching DAG from chapter 2 (originally shown in figure 2.3) consists  
of three tasks: downloading metadata, fetching the images, and sending a notification.
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In this type of DAG, each task must be completed before going to the next, because
the result of the preceding task is required as input for the next. As we have seen, Air-
flow allows us to indicate this type of relationship between two tasks by creating a
dependency between them using the right bitshift operator.

download_launches >> get_pictures               B
get_pictures >> notify

download_launches >> get_pictures >> notify     c

B Set task dependencies one-by-one...

c ... or set multiple dependencies in one go.

Task dependencies effectively tell Airflow that it can only start executing a given task
once its upstream dependencies have finished executing successfully. In the example,
this means that get_pictures can only start executing once download_launches has
run successfully. Similarly, notify can only start once the get_pictures task has been
completed without error.

 One advantage of explicitly specifying task dependencies is that it clearly defines
the (implicit) ordering in our tasks. This enables Airflow to schedule tasks only when
their dependencies have been met, which is more robust than (for example) schedul-
ing individual tasks one after another using Cron and hoping that preceding tasks will
have completed by the time the second task is started (figure 5.2). Moreover, any
errors will be propagated to downstream tasks by Airflow, effectively postponing their
execution. This means that in the case of a failure in the download_launches task, Air-
flow won’t try to execute the get_pictures task for that day until the issue with download
_launches has been resolved.

5.1.2 Fan-in/-out dependencies

In addition to linear chains of tasks, Airflow’s task dependencies can be used to create
more complex dependency structures between tasks. For an example, let’s revisit our
umbrella use case from chapter 1, in which we wanted to train a machine learning
model to predict the demand for our umbrellas in the upcoming weeks based on the
weather forecast.

 As you might remember, the main purpose of the umbrella DAG was to fetch
weather and sales data daily from two different sources and combine the data into a
data set for training our model. As such, the DAG (figure 5.2) starts with two sets of tasks
for fetching and cleaning our input data, one for the weather data (fetch_weather and
clean_weather) and one for the sales data (fetch_sales and clean_sales). These
tasks are followed by a task (join_datasets) that takes the resulting cleaned sales and
weather data and joins them into a combined data set for training a model. Finally,
this data set is used to train the model (train_model), after which the model is deployed
by the final task (deploy_model).

Listing 5.2 Adding dependencies between the tasks (chapter02/dags/listing_2_10.py)
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Thinking about this DAG in terms of dependencies, there is a linear dependency
between the fetch_weather and clean_weather tasks, as we need to fetch the data
from our remote data source before we can do any cleaning of the data. However,
because the fetching/cleaning of the weather data is independent of the sales data,
there is no cross dependency between the weather and sales tasks. This means we can
define the dependencies for the fetch and clean tasks as follows.

fetch_weather >> clean_weather
fetch_sales >> clean_sales

Upstream of the two fetch tasks, we also could have added a dummy start task repre-
senting the start of our DAG. In this case, this task is not strictly necessary, but it helps
illustrate the implicit fan-out occurring at the beginning of our DAG, in which the
start of the DAG kicks off both the fetch_weather and fetch_sales tasks. Such a
fan-out dependency (linking one task to multiple downstream tasks) could be defined
as follows.

from airflow.operators.dummy import DummyOperator

start = DummyOperator(task_id="start")    B
start >> [fetch_weather, fetch_sales]     c

B Create a dummy start task

c Create a fan-out (one-to-multiple) dependency.

In contrast to the parallelism of the fetch/clean tasks, building the combined data
set requires input from both the weather and sales branches. As such, the join_
datasets task has a dependency on both the clean_weather and clean_sales tasks
and can run only once both these upstream tasks have been completed successfully.
This type of structure, where one task has a dependency on multiple upstream tasks,
is often referred to as a fan-in structure, as it consists of multiple upstream tasks “fan-
ning into” a single downstream task. In Airflow, fan-in dependencies can be defined
as follows.

Listing 5.3 Adding linear dependencies that execute in parallel (dags/01_start.py)

Listing 5.4 Adding a fan-out (one-to-multiple) dependency (dags/01_start.py)

Fetch weather
forecast

Clean
forecast data

Join data sets

Fetch sales
data

Clean sales
data

Train ML
model

Deploy ML
model

Figure 5.2 Overview of the DAG from the umbrella use case in chapter 1
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[clean_weather, clean_sales] >> join_datasets

After fanning in with the join_datasets task, the remainder of the DAG is a linear
chain of tasks for training and deploying the model.

join_datasets >> train_model >> deploy_model

Combined, this should give something similar to the DAG shown in figure 5.3.

What do you think happens if we now start executing this DAG? Which tasks will start
running first? Which tasks do you think will (not) be running in parallel?

 As you might expect, if we run the DAG, Airflow will start by first running the
start task (figure 5.4). After the start task completes, it will initiate the fetch_sales
and fetch_weather tasks, which will run in parallel (assuming your Airflow is config-
ured to have multiple workers). Completion of either of the fetch tasks will result in
the start of the corresponding cleaning tasks (clean_sales or clean_weather). Only
once both the clean tasks have been completed can Airflow finally start executing the
join_datasets task. Finally, the rest of the DAG will execute linearly, with train
_model running as soon as the join_datasets task has been completed and deploy_
model running after completion of the train_model task.

 
 

Listing 5.5 Adding a fan-in (multiple-to-one) dependency (dags/01_start.py)

Listing 5.6 Adding the remaining dependencies (dags/01_start.py)

Figure 5.3 The umbrella DAG, as rendered by Airflow’s graph view. This DAG performs several tasks, including 
fetching and cleaning sales data, combining them into a data set, and using the data set to train a machine 
learning model. Note that the handling of sales/weather data happens in separate branches of the DAG, as these 
tasks are not directly dependent on each other.
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5.2 Branching
Imagine that you just finished writing the ingestion of sales data in your DAG when
your coworker comes in with some news. Apparently, management decided that they
are going to switch ERP systems, which means that our sales data will be coming from
a different source (and of course in a different format) in one or two weeks. Obvi-
ously, this change should not result in any disruption in the training of our model.
Moreover, they would like us to keep our flow compatible with both the old and new
systems so that we can continue to use historical sales data in our future analyses. How
would you go about solving this problem?

5.2.1 Branching within tasks

One approach could be to rewrite our sales ingestion tasks to check the current exe-
cution date and use that to decide between two separate code paths for ingesting and
processing the sales data. For example, we could rewrite our sales cleaning task to
something like this.

def _clean_sales(**context):    
    if context["execution_date"] < ERP_CHANGE_DATE:
        _clean_sales_old(**context)
    else
        _clean_sales_new(**context)
    
...

clean_sales_data = PythonOperator(
    task_id="clean_sales",
    python_callable=_clean_sales,
)

Listing 5.7 Branching within the cleaning task (dags/02_branch_task.py)

Start

Fetch

weather data

Clean

weather data

Fetch

sales data

Clean

sales data

Join

data sets

Train

model

Deploy

model

1

2a

2b

3a

3b

4 65

Figure 5.4 The execution order of tasks in the umbrella DAG, with numbers indicating the order 
in which tasks are run. Airflow starts by executing the start task, after which it can run the 
sales/weather fetch and clean tasks in parallel (as indicated by the a/b suffix). Note that this 
means that the weather/sales paths run independently, meaning that 3b may, for example, start 
executing before 2a. After completing both clean tasks, the rest of the DAG proceeds linearly 
with the execution of the join, train, and deployment tasks.
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In this example, _clean_sales_old is a function that does the cleaning for the old
sales format and _clean_sales_new does the same for the new format. As long as the
result of these is compatible (in terms of columns, data types, etc.), the rest of our
DAG can stay unchanged and doesn’t need to worry about differences between the
two ERP systems.

 Similarly, we could make our initial ingestion step compatible with both ERP sys-
tems by adding code paths for ingesting from both systems.

def _fetch_sales(**context):
    if context["execution_date"] < ERP_CHANGE_DATE:
        _fetch_sales_old(**context)
    else:
        _fetch_sales_new(**context)
    ...

Combined, these changes would allow our DAG to handle data from both systems in a
relatively transparent fashion, as our initial fetching/cleaning tasks make sure that the
sales data arrives in the same (processed) format independent of the corresponding
data source.

 An advantage of this approach is that it allows us to incorporate some flexibility
in our DAGs without having to modify the structure of the DAG itself. However, this
approach works only in cases where the branches in our code consist of similar
tasks. Here, for example, we effectively have two branches in our code that both per-
form a fetching and cleaning operation with minimal differences. But what if load-
ing data from the new data source requires a very different chain of tasks (figure 5.5)?
In that case, we may be better off splitting our data ingestion into two separate sets
of tasks.

Another drawback of this approach is that it is difficult to see which code branch is
being used by Airflow during a specific DAG run. For example, in figure 5.6, can you

Listing 5.8 Branching within the fetch task (dags/02_branch_task.py)

New system
Fetch sales

(New REST API)
Clean sales

Clean salesExtract zip
Fetch sales zip

(Old download API)

Add customer

information
Old system

Figure 5.5 A possible example of different sets of tasks between the two ERP systems. If there 
is a lot of commonality between different cases, you may be able to get away with a single set of 
tasks and some internal branching. However, if there are many differences between the two flows 
(such as shown here for the two ERP systems), you may be better off taking a different approach.
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guess which ERP system was used for this specific DAG run? This seemingly simple
question is quite difficult to answer using only this view, as the actual branching is
hidden within our tasks. One way to solve this is to include better logging in our
tasks, but as we will see there are also other ways to make branching more explicit in
the DAG itself.

 Finally, we can only encode this type of flexibility into our tasks by falling back to
general Airflow operators such as the PythonOperator. This prevents us from leverag-
ing functionality provided by more specialized Airflow operators, which allow us to
perform more complicated work with minimal coding effort. For example, if one of
our data sources happened to be a SQL database, it would save us a lot of work if we
could simply use the MysqlOperator to execute a SQL query, as this allows us to dele-
gate the actual execution of the query (together with authentication, etc.) to the pro-
vided operator.

 Fortunately, checking for conditions within tasks is not the only way to perform
branching in Airflow. In the next section, we will show how to weave branches into
your DAG structure, which provides more flexibility than the task-based approach.

5.2.2 Branching within the DAG

Another way to support the two different ERP systems in a single DAG is to develop
two distinct sets of tasks (one for each system) and allow the DAG to choose
whether to execute the tasks for fetching data from either the old or new ERP sys-
tem (figure 5.7).

 Building the two sets of tasks is relatively straightforward: we can simply create
tasks for each ERP system separately using the appropriate operators and link the
respective tasks. 

 
 

Figure 5.6 Example run for a DAG that branches between two ERP systems within the fetch_sales and 
clean_sales tasks. Because this branching happens within these two tasks, it is not possible to see which ERP 
system was used in this DAG run from this view. This means we would need to inspect our code (or possibly our 
logs) to identify which ERP system was used.
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fetch_sales_old = PythonOperator(...)
clean_sales_old = PythonOperator(...)

fetch_sales_new = PythonOperator(...)
clean_sales_new = PythonOperator(...)

fetch_sales_old >> clean_sales_old
fetch_sales_new >> clean_sales_new

Now we still need to connect these tasks to the rest of our DAG and make sure that
Airflow knows which it should execute when.

 Fortunately, Airflow provides built-in support for choosing between sets of down-
stream tasks using the BranchPythonOperator. This operator is (as the name sug-
gests) similar to the PythonOperator in the sense that it takes a Python callable as one
of its main arguments.

def _pick_erp_system(**context):
    ...

pick_erp_system = BranchPythonOperator(
    task_id="pick_erp_system",
    python_callable=_pick_erp_system,
)

However, in contrast to the PythonOperator, callables passed to the BranchPython-
Operator are expected to return the ID of a downstream task as a result of their com-
putation. The returned ID determines which of the downstream tasks will be executed
after completion of the branch task. Note that you can also return a list of task IDs, in
which case Airflow will execute all referenced tasks. 

 In this case, we can implement our choice between the two ERP systems by using the
callable to return the appropriate task_id depending on the execution date of the DAG.

Listing 5.9 Adding extra fetch/clean tasks (dags/03_branch_dag.py)

Listing 5.10 Branching with the BranchPythonOperator (dags/03_branch_dag.py)

Pick ERP

system
Start

Fetch sales

data (old)

Clean sales

data (old)

Fetch sales

data (new)

Clean sales

data (new)

Join

data sets

Only one of these two
branches is executed.

Figure 5.7 Supporting two ERP systems using branching within the DAG, implementing different 
sets of tasks for both systems. Airflow can choose between these two branches using a specific 
branching task (here, “Pick ERP system”), which tells Airflow which set of downstream tasks to 
execute.
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def _pick_erp_system(**context):
    if context["execution_date"] < ERP_SWITCH_DATE:
        return "fetch_sales_old"
    else:
        return "fetch_sales_new"

pick_erp_system = BranchPythonOperator(
    task_id="pick_erp_system",
    python_callable=_pick_erp_system,
)

pick_erp_system >> [fetch_sales_old, fetch_sales_new]

This way, Airflow will execute our set of “old” ERP tasks for execution dates occurring
before the switch date while executing the new tasks after this date. Now, all that
needs to be done is connect these tasks with the rest of our DAG.

 To connect our branching task to the start of the DAG, we can add a dependency
between our previous start task and the pick_erp_system task.

start_task >> pick_erp_system

Similarly, you might expect that connecting the two cleaning tasks is as simple as add-
ing a dependency between the cleaning tasks and the join_datasets task (similar to
our earlier situation where clean_sales was connected to join_datasets).

[clean_sales_old, clean_sales_new] >> join_datasets

However, if you do this, running the DAG would result in the join_datasets task and
all its downstream tasks being skipped by Airflow. (You can try it out if you wish.)

 The reason for this is that, by default, Airflow requires all tasks upstream of a given
task to complete successfully before that the task itself can be executed. By connecting
both of our cleaning tasks to the join_datasets task, we created a situation where
this can never occur, as only one of the cleaning tasks is ever executed. As a result, the
join_datasets task can never be executed and is skipped by Airflow (figure 5.8).

 This behavior that defines when tasks are executed is controlled by so-called trigger
rules in Airflow. Trigger rules can be defined for individual tasks using the trigger
_rule argument, which can be passed to any operator. By default, trigger rules are set
to all_success, meaning that all parents of the corresponding task need to succeed
before the task can be run. This never happens when using the BranchPythonOperator,
as it skips any tasks that are not chosen by the branch, which explains why the join_
datasets task and all its downstream tasks were also skipped by Airflow.

Listing 5.11 Adding the branching condition function (dags/03_branch_dag.py)

Listing 5.12 Connecting the branch to the start task (dags/03_branch_dag.py)

Listing 5.13 Connecting the branch to the join_datasets task (dags/03_branch_dag.py)
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To fix this situation, we can change the trigger rule of join_datasets so that it can
still trigger if one of its upstream tasks is skipped. One way to achieve this is to change
the trigger rule to none_failed, which specifies that a task should run as soon as all of
its parents are done with executing and none have failed.

join_datasets = PythonOperator(
    ...,
    trigger_rule="none_failed",
)     

This way, join_datasets will start executing as soon as all of its parents have finished
executing without any failures, allowing it to continue its execution after the branch
(figure 5.9).

Listing 5.14 Fixing the trigger rule of the join_datasets task (dags/03_branch_dag.py)

These tasks are
wrongly skipped.

Figure 5.8 Combining branching with the wrong trigger rules will result in downstream tasks being 
skipped. In this example, the fetch_sales_new task is skipped as a result of the sales branch. This 
results in all tasks downstream of the fetch_sales_new task also being skipped, which is clearly 
not what we want.

Figure 5.9 Branching in the umbrella DAG using trigger rule none_failed for the join_datasets task, 
which allows it (and its downstream dependencies) to still execute after the branch
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One drawback of this approach is that we now have three edges going into the
join_datasets task. This doesn’t really reflect the nature of our flow, in which we
essentially want to fetch sales/weather data (choosing between the two ERP systems
first) and then feed these two data sources into join_datasets. For this reason, many
people choose to make the branch condition more explicit by adding a dummy task
that joins the different branches before continuing with the DAG (figure 5.10).

To add such a dummy task to our DAG, we can use the built-in DummyOperator pro-
vided by Airflow.

from airflow.operators.dummy import DummyOperator

join_branch = DummyOperator(
    task_id="join_erp_branch",
    trigger_rule="none_failed"
)

[clean_sales_old, clean_sales_new] >> join_branch
join_branch >> join_datasets

This change also means that we no longer need to change the trigger rule for the
join_datasets task, making our branch more self-contained than the original.

Listing 5.15 Adding a dummy join task for clarity (dags/04_branch_dag_join.py)

Figure 5.10 To make the branching structure more clear, you can add an extra join task after the branch, which 
ties the lineages of the branch together before continuing with the rest of the DAG. This extra task has the added 
advantage that you don’t have to change any trigger rules for other tasks in the DAG, as you can set the required 
trigger rule on the join task. (Note that this means you no longer need to set the trigger rule for the join_
datasets task.)
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5.3 Conditional tasks
Airflow also provides you with other mechanisms for skipping specific tasks in your
DAG depending on certain conditions. This allows you to make certain tasks run only
if certain data sets are available, or only if your DAG is executing for the most recent
execution date.

 For example, in our umbrella DAG (figure 5.3), we have a task that deploys every
model we train. However, consider what happens if a colleague makes some changes
to the cleaning code and wants to use backfilling to apply these changes to the entire
data set. In this case, backfilling the DAG would also result in deploying many old
instances of our model, which we certainly aren’t interested in.

5.3.1 Conditions within tasks

We can avoid this issue by changing the DAG to only deploy the model for the most
recent DAG run, as this ensures we only deploy one version of our model: the one
trained on the most recent data set. One way to do this is to implement the deploy-
ment using the PythonOperator and explicitly checking the execution date of the
DAG within the deployment function.

def _deploy(**context):
    if context["execution_date"] == ...:
        deploy_model()

deploy = PythonOperator(
    task_id="deploy_model",
    python_callable=_deploy,
)

Although this implementation should have the intended effect, it has the same draw-
backs as the corresponding branching implementation: it confounds the deployment
logic with the condition, we can no longer use any other built-in operators than the
PythonOperator, and tracking of task results in the Airflow UI becomes less explicit
(figure 5.11).

Listing 5.16 Implementing a condition within a task (dags/05_condition_task.py)

Figure 5.11 Example run for umbrella DAG with a condition inside the deploy_model task, which ensures that 
the deployment is only performed for the latest run. Because the condition is checked internally within the 
deploy_model task, we cannot discern from this view whether the model was actually deployed.
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5.3.2 Making tasks conditional

Another way to implement conditional deployments is to make the deployment task
itself conditional, meaning that it is only executed based on a predefined condition
(in this case whether the DAG run is the most recent). In Airflow, you can make tasks
conditional by adding a task to the DAG that tests the said condition and ensures any
downstream tasks are skipped if the condition fails.

 Additionally, we can make our deployment conditional by adding a task that checks
if the current execution is the most recent DAG execution and adding our deploy-
ment task downstream of this task.

def _latest_only(**context):
    ...

latest_only = PythonOperator(
    task_id="latest_only",
    python_callable=_latest_only,
    dag=dag,
)

latest_only >> deploy_model

This now means that our DAG should look something like what’s shown in figure 5.12,
with the train_model task now connected to our new task and the deploy_model task
downstream of this new task.

Next, we need to fill in our _latest_only function to make sure that downstream
tasks are skipped if the execution_date does not belong to the most recent run. To

Listing 5.17 Building the condition into the DAG (dags/06_condition_dag.py)

Figure 5.12 An alternative implementation of the umbrella DAG with conditional deployment, in which the 
condition is included as a task in the DAG, making the condition much more explicit than in our previous 
implementation.
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do so, we need to check our execution date and, if required, raise an AirflowSkip-
Exception from our function, which is Airflow’s way of allowing us to indicate that
the condition and all its downstream tasks should be skipped, thus skipping the
deployment.

 This gives us something like the following implementation for our condition.

from airflow.exceptions import AirflowSkipException

def _latest_only(**context):
    left_window = context["dag"].following_schedule(context["execution_date"])B
    right_window = context["dag"].following_schedule(left_window)

    now = pendulum.utcnow()                                                   c
    if not left_window < now <= right_window:
        raise AirflowSkipException("Not the most recent run!")

B Find the boundaries for our execution window.

c Check if our current time is within the window.

We can check if this does what we expect by executing our DAGs for a few dates. This
should show something similar to figure 5.13, where we see that our deployment task
has been skipped in all DAG runs except the latest one.

How does this work? Essentially, what happens is that when our condition task (latest
_only) raises an AirflowSkipException, the task is finished and assigned a skipped
state. Next, Airflow looks at the trigger rules of any downstream tasks to determine
if they should be triggered. In this case, we only have one downstream task (the
deployment task), which uses the default trigger rule all_success, indicating that

Listing 5.18 Implementing the _latest_only condition (dags/06_condition_dag.py)

Deployment task is
skipped in all runs
except the last one.

Figure 5.13 Result of our latest_only condition for three runs of our umbrella DAG. This tree 
view shows that our deployment task was only run for the most recent execution window, as the 
deployment task was skipped on previous executions. This shows that our condition indeed 
functions as expected.
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the task should only execute if all its upstream tasks are successful. In this case, this is
not true as its parent (the condition task) has a skipped state rather than success, and
therefore the deployment is skipped.

 Conversely, if the condition task does not raise an AirflowSkipException, it com-
pletes successfully and is given a success status. As such, the deployment task gets trig-
gered as all its parents have completed successfully, and we get our deployment.

5.3.3 Using built-in operators

As only running tasks for the most recent DAG run is a common use case, Airflow also
provides the built-in LatestOnlyOperator class. This operator effectively performs
the same job as our custom-built implementation based on the PythonOperator.
Using the LatestOnlyOperator, we can also implement our conditional deployment
like this, which saves us writing our own complex logic.

from airflow.operators.latest_only import LatestOnlyOperator

latest_only = LatestOnlyOperator(
    task_id="latest_only",
    dag=dag,
)

train_model >> latest_only >> deploy_model

Of course, for more complicated cases, the PythonOperator-based route provides
more flexibility for implementing custom conditions.

5.4 More about trigger rules
In the previous sections, we have seen how Airflow allows us to build dynamic behav-
ior DAGs, which allows us to encode branches or conditional statements directly into
our DAGs. Much of this behavior is governed by Airflow’s so-called trigger rules,
which determine exactly when a task is executed. We skipped over trigger rules rela-
tively quickly in the previous sections, so now we’ll explore what they represent and
what you can do with them in more detail.

 To understand trigger rules, we first have to examine how Airflow executes tasks
within a DAG run. In essence, when Airflow is executing a DAG, it continuously checks
each of your tasks to see whether it can be executed. As soon as a task is deemed ready
for execution, it is picked up by the scheduler and scheduled to be executed. As a result,
the task is executed as soon as Airflow has an execution slot available.

 So how does Airflow determine when a task can be executed? That is where trigger
rules come in.

Listing 5.19 Using the built-in LatestOnlyOperator (dags/07_condition_dag_op.py)
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5.4.1 What is a trigger rule?

Trigger rules are essentially the conditions that Airflow applies to tasks to determine
whether they are ready to execute, as a function of their dependencies (= preceding
tasks in the DAG). Airflow’s default trigger rule is all_success, which states that all of
a task’s dependencies must have completed successfully before the task itself can be
executed.

 To see what this means, let’s jump back to our initial implementation of the
umbrella DAG (figure 5.4), which does not use any trigger rules other than the default
all_success rule. If we were to start executing this DAG, Airflow would start looping
over its tasks to determine which tasks can be executed (i.e., which tasks have no
dependencies that have not been completed successfully). 

 In this case, only the start task satisfies this condition by not having any depen-
dencies. As such, Airflow starts executing our DAG by first running the start task (fig-
ure 5.14a). Once the start task has been completed successfully, the fetch_weather
and fetch_sales tasks become ready for execution, as their only dependency now sat-
isfies their trigger rule (figure 5.14b). By following this pattern of execution, Airflow
can continue executing the remaining tasks in the DAG until the entire DAG has
been executed.

A

B

Figure 5.14 Tracing the execution of the basic umbrella DAG (figure 5.4) using the default trigger 
rule all_success. (A) Airflow initially starts executing the DAG by running the only task that has 
no preceding tasks that have not been completed successfully: the start task. (B) Once the 
start task has been completed with success, other tasks become ready for execution and are 
picked up by Airflow.
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5.4.2 The effect of failures

Of course, this only sketches the situation for a happy flow, in which all of our tasks
complete successfully. What, for example, happens if one of our tasks encounters an
error during execution?

 We can easily test this by simulating a failure in one of the tasks. For example, by
simulating a failed fetch_sales task, we can see that Airflow will record the failure
by assigning the fetch_sales the failed state rather than the success state (figure 5.15).
This means that the downstream clean_sales task can no longer be executed, as it
requires fetch_sales to be successful. As a result, the clean_sales task is assigned
the state upstream_failed, which indicates that it cannot proceed as a result of the
upstream failure.

This type of behavior, where the result of upstream tasks also affects downstream tasks,
is often referred to as propagation, as in this case the upstream failure is propagated to
the downstream tasks. The effects of skipped tasks can also be propagated down-
stream by the default trigger rule, resulting in all tasks downstream of a skipped task
also being skipped. 

 This propagation is a direct result of the definition of the all_success trigger
rule, which requires all of its dependencies to have been completed successfully. As
such, if it encounters a skip or failure in a dependency, it has no other option than to
fail in the same manner, thus propagating the skip or failure. 

 
 

Figure 5.15 An upstream failure stops downstream tasks from being executed with the default trigger rule 
all_success, which requires all upstream tasks to be successful. Note that Airflow does continue executing 
tasks that do not have any dependency on the failed task (fetch_weather and clean_weather).
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5.4.3 Other trigger rules

Airflow also supports several other trigger rules. These rules allow for different types
of behavior when responding to successful, failed, or skipped tasks. 

 For example, let’s look back at our branching pattern between the two ERP sys-
tems in section 5.2. In this case, we had to adjust the trigger rule of the task joining
the branch (done by the join_datasets or join_erp_branch tasks) to avoid down-
stream tasks being skipped, because with the default trigger rule the skips resulting
from the branch would be propagated downstream, resulting in all tasks after the
branch being skipped as well. In contrast, the none_failed trigger rule only checks if
all upstream tasks have been completed without failing. This means that it tolerates
both successful and skipped tasks while still waiting for all upstream tasks to complete
before continuing, making the trigger rule suitable for joining the two branches. Note
that in terms of propagation this means the rule does not propagate skips. It does,
however, still propagate failures, meaning that any failures in the fetch/clean tasks
will still halt the execution of downstream tasks. 

 Similarly, other trigger rules can be used to handle other types of situations. For
example, the trigger rule all_done can be used to define tasks that are executed as
soon as their dependencies are finished executing, regardless of their results. This
can, for example, be used to execute cleanup code (e.g., shutting down your machine or
cleaning up resources) that you would like to run regardless of what happens. Another
category of trigger rules includes eager rules such as one_failed or one_success, which
don’t wait for all upstream tasks to complete before triggering but require only one
upstream task to satisfy their condition. As such, these rules can be used to signal early
failure of tasks or to respond as soon as one task out of a group of tasks has been com-
pleted successfully.

 Although we won’t go any deeper into trigger rules here, we hope this gives you an
idea of the role of trigger rules in Airflow and how they can be used to introduce
more complex behavior into your DAG. For a complete overview of the trigger rules
and some potential use cases, see table 5.1.

Table 5.1 An overview of the different trigger rules supported by Airflow

Trigger rule Behavior Example use case

all_success 
(default)

Triggers when all parent tasks have been 
completed successfully

The default trigger rule for a normal 
workflow

all_failed Triggers when all parent tasks have 
failed (or have failed as a result of a 
failure in their parents)

Trigger error handling code in situations 
where you expected at least one suc-
cess among a group of tasks

all_done Triggers when all parents are done with 
their execution, regardless of their 
resulting state

Execute cleanup code that you want to 
execute when all tasks have finished 
(e.g., shutting down a machine or stop-
ping a cluster)
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5.5 Sharing data between tasks
Airflow also allows you to share small pieces of data between tasks using XComs.1 The
idea behind XComs is that they essentially allow you to exchange messages between
tasks, enabling some level of shared state. 

5.5.1 Sharing data using XComs

To see how this works, let’s look back at our umbrella use case (figure 5.3). Imagine
that when training our model (in the train_model task), the trained model is regis-
tered in a model registry using a randomly generated identifier. To deploy the trained
model, we somehow need to pass this identifier to the deploy_model task so that it
knows which version of the model it should deploy.

 One way to solve this problem is to use XComs to share the model identifier
between the train_model and deploy_model tasks. In this case, the train_model task
is responsible for pushing the XCom value, which essentially publishes the value and
makes it available for other tasks. We can publish XCom values explicitly within our
task using the xcom_push method, which is available on the task instance in the Air-
flow context. 

def _train_model(**context):
    model_id = str(uuid.uuid4())
    context["task_instance"].xcom_push(key="model_id", value=model_id)

one_failed Triggers as soon as at least one parent 
has failed; does not wait for other parent 
tasks to finish executing

Quickly trigger some error handling code, 
such as notifications or rollbacks

one_success Triggers as soon as one parent suc-
ceeds; does not wait for other parent 
tasks to finish executing

Quickly trigger downstream computa-
tions/notifications as soon as one 
result becomes available

none_failed Triggers if no parents have failed but 
have either completed successfully or 
been skipped

Join conditional branches in Airflow 
DAGs, as shown in section 5.2

none_skipped Triggers if no parents have been skipped 
but have either completed successfully 
or failed

Trigger a task if all upstream tasks were 
executed, ignoring their result(s)

dummy Triggers regardless of the state of any 
upstream tasks

Testing

1 XCom is an abbreviation of “cross-communication.” 

Listing 5.20 Pushing Xcom values explicitly using xcom_push (dags/09_xcoms.py)

Table 5.1 An overview of the different trigger rules supported by Airflow (continued)

Trigger rule Behavior Example use case
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train_model = PythonOperator(
    task_id="train_model", 
    python_callable=_train_model,
)

This call to xcom_push effectively tells Airflow to register our model_id value as an
XCom value for the corresponding task (train_model) and the corresponding DAG
and execution date. After running this task, you can view these published XCom val-
ues in the web interface in the “Admin > XComs” section (figure 5.16), which shows
an overview of all published XCom values.

You can retrieve the XCom value in other tasks using the xcom_pull method, which is
the inverse of xcom_push.

def _deploy_model(**context):
    model_id = context["task_instance"].xcom_pull(
        task_ids="train_model", key="model_id"
    )
    print(f"Deploying model {model_id}")

deploy_model = PythonOperator(
    task_id="deploy_model", 
    python_callable=_deploy_model,
)

This tells Airflow to fetch the XCom value with key model_id from the train_model
task, which matches the model_id we previously pushed in the train_model task. Note
that xcom_pull also allows you to define the dag_id and execution date when fetching

Listing 5.21 Retrieving XCom values using xcom_pull (dags/09_xcoms.py)

XCom key XCom value
DAG, task + execution date that
generated the XCom entry

Figure 5.16 Overview of registered XCom values (under Admin > XComs in the web interface)
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XCom values. By default, these parameters are set to the current DAG and execution
date so that xcom_pull only fetches values published by the current DAG run.2 

 We can verify this works by running the DAG, which should give us something like
the following result for the deploy_model task.

[2020-07-29 20:23:03,581] {python.py:105} INFO - Exporting the following env 

➥ vars:
AIRFLOW_CTX_DAG_ID=chapter5_09_xcoms
AIRFLOW_CTX_TASK_ID=deploy_model
AIRFLOW_CTX_EXECUTION_DATE=2020-07-28T00:00:00+00:00
AIRFLOW_CTX_DAG_RUN_ID=scheduled__2020-07-28T00:00:00+00:00
[2020-07-29 20:23:03,584] {logging_mixin.py:95} INFO - Deploying model 

➥ f323fa68-8b47-4e21-a687-7a3d9b6e105c
[2020-07-29 20:23:03,584] {python.py:114} INFO - Done. 

➥ Returned value was: None

You can also reference XCom variables in templates.

def _deploy_model(templates_dict, **context):
    model_id = templates_dict["model_id"]
    print(f"Deploying model {model_id}")

deploy_model = PythonOperator(
    task_id="deploy_model",
    python_callable=_deploy_model,
    templates_dict={
        "model_id": "{{task_instance.xcom_pull(
         ➥ task_ids='train_model', key='model_id')}}"
    },
)

Finally, some operators also provide support for automatically pushing XCom values.
For example, the BashOperator has an option xcom_push, which when set to true tells
the operator to push the last line written to stdout by the bash command as an XCom
value. Similarly, the PythonOperator will publish any value returned from the Python
callable as an XCom value. This means you can also write our example as follows.

def _train_model(**context):
    model_id = str(uuid.uuid4())
    return model_id 

This works by registering the XCom under the default key return_value, as we can
see by looking in the Admin section (figure 5.17).

2 You can specify other values to fetch values from other DAGs or other execution dates, but we would strongly
recommend against this unless you have an extremely good reason to do so. 

Listing 5.22 Using XCom values in templates (dags/10_xcoms_template.py)

Listing 5.23 Using return to push XComs (dags/11_xcoms_return.py)    
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5.5.2 When (not) to use XComs

Although XComs may seem pretty useful for sharing state between tasks, their use also
has some drawbacks. For example, one is that they add a hidden dependency between
tasks, as the pulling task has an implicit dependency on the task pushing the required
value. In contrast to explicit task dependencies, this dependency is not visible in the
DAG and will not be taken into account when scheduling the tasks. As such, you’re
responsible for making sure that tasks with XCom dependencies are executed in the
correct order; Airflow won’t do this for you. These hidden dependencies become
even more complicated when sharing XCom values between different DAGs or execu-
tion dates, which is also not a practice we would recommend following.

 XComs can also be a bit of an anti-pattern when they break the atomicity of an
operator. For example, we’ve seen people use an operator to fetch an API token in
one task and then pass the token to the next task using an XCom. In this case, a draw-
back was that the token expired after a couple of hours, meaning that any rerun of the
second task failed. A better approach may have been to combine the fetching of the
token in the second task, as this way both the refreshing of the API token and per-
forming the associated work happen in one go (thus keeping the task atomic).

 Finally, a technical limitation of XComs is that any value stored by an XCom needs
to support being serialized. This means that some Python types, such as lambdas or
many multiprocessing related classes, generally cannot be stored in an XCom (though
you probably shouldn’t want to do that anyway). Additionally, the size of an XCom
value may be limited by the backend used to store them. By default, XComs are stored
in the Airflow metastore and are subject to the following size limits:

 SQLite—Stored as BLOB type, 2GB limit
 PostgreSQL—Stored as BYTEA type, 1 GB limit
 MySQL—Stored as BLOB type, 64 KB limit

Default key
return_value

Figure 5.17 Implicit XComs from the PythonOperator are registered under the return_value key.
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That being said, XComs can be a powerful tool when used appropriately. Just make
sure to carefully consider their usage and to clearly document the dependencies they
introduce between tasks to avoid any surprises down the road.

5.5.3 Using custom XCom backends

A limitation of using the Airflow metastore to store XComs is that it generally does not
scale well for larger data volumes. This means you’d typically want to use XComs for
storing individual values or small results but not for larger data sets. 

 To make XComs more flexible, Airflow 2 introduces an option for specifying a cus-
tom XCom backend for your Airflow deployment. This option essentially allows you to
define a custom class that Airflow will use for storing/retrieving XComs. The only
requirement is that this class inherits from the BaseXCom base class and implements
two static methods for serializing and deserializing values, respectively.

from typing import Any
from airflow.models.xcom import BaseXCom

class CustomXComBackend(BaseXCom):

    @staticmethod
    def serialize_value(value: Any):
        ...

    @staticmethod
    def deserialize_value(result) -> Any:
        ... 

In this custom backend class, the serialize method is called whenever an XCom
value is pushed within an operator, whereas the deserialize method is called when
XCom values are pulled from the backend. Once you have the desired backend
class, you can configure Airflow to use the class with the xcom_backend parameter in
the Airflow config.

 Custom XCom backends greatly expand the options you have for storing XCom
values. For example, if you’d like to store larger XCom values in relatively cheap and
scalable cloud storage, you could implement a custom backend for cloud services
such as Azure Blob storage, Amazon’s S3, or Google’s GCS. As Airflow 2 matures, we
expect backends for common services to become more generally available, meaning
you won’t have to build your own backends for these services. 

5.6 Chaining Python tasks with the Taskflow API
Although XComs can be used to share data between Python tasks, the API can be
cumbersome to use, especially if you’re chaining a large number of tasks. To solve this
issue, Airflow 2 adds a new decorator-based API for defining Python tasks and their

Listing 5.24 Skeleton for a custom XCom backend (lib/custom_xcom_backend.py)
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dependencies called the Taskflow API. Although not without its flaws, the Taskflow API
can considerably simplify your code if you’re primarily using PythonOperators and
passing data between them as XComs. 

5.6.1 Simplifying Python tasks with the Taskflow API

To see what the Taskflow API looks like, let’s revisit our tasks for training and deploy-
ing the machine learning model. In our previous implementation, these tasks and
their dependencies were defined as follows.

def _train_model(**context):                                             B
    model_id = str(uuid.uuid4())
    context["task_instance"].xcom_push(key="model_id", value=model_id)   c

def _deploy_model(**context):                                            B
    model_id = context["task_instance"].xcom_pull(
        task_ids="train_model", key="model_id"
    )                                                                    c
    print(f"Deploying model {model_id}")

with DAG(...) as dag:
    ...

    train_model = PythonOperator(                                        d
        task_id="train_model", 
        python_callable=_train_model,
    )

    deploy_model = PythonOperator(                                       d
        task_id="deploy_model", 
        python_callable=_deploy_model, 
    )

    ... 
    join_datasets >> train_model >> deploy_model                         e

B Defining the train/deploy functions

c Sharing the model ID using XComs

d Creating the train/deploy tasks using the PythonOperator

e Setting dependencies between the tasks

A drawback of this approach is that it first requires us to define a function (e.g., _train
_model and _deploy_model), which we then need to wrap in a PythonOperator to cre-
ate the Airflow task. Moreover, to share the model ID between the two tasks, we need to
explicitly use xcom_push and xcom_pull within the functions to send/retrieve the
model’s ID value. Defining this data dependency is cumbersome and prone to break if
we change the key of the shared value, which is referenced in two different locations.

 The Taskflow API aims to simplify the definition of this type of (PythonOperator-
based) task by making it easier to convert Python functions to tasks and making the

Listing 5.25 Defining train/deploy tasks using the regular API (dags/09_xcoms.py) 



110 CHAPTER 5 Defining dependencies between tasks
sharing of variables via XComs between these tasks more explicit in the DAG definition.
To see how this works, let’s start by converting these functions to use this alternative API.

 First, we can change the definition of our train_model task into a relatively simple
Python function, decorated with the new @task decorator added by the Taskflow API.

...
from airflow.decorators import task
...

with DAG(...) as dag:
    ...
    @task
    def train_model():
        model_id = str(uuid.uuid4())
        return model_id

This effectively tells Airflow to wrap our train_model function so that we can use it to
define Python tasks using the Taskflow API. Note that we are no longer explicitly push-
ing the model ID as an XCom, but simply returning it from the function so that the
Taskflow API can take care of passing it on to the next task.

 Similarly, we can define our deploy_model task as follows. 

@task
def deploy_model(model_id):
    print(f"Deploying model {model_id}")

Here, the model ID is also no longer retrieved using xcom_pull but simply passed to our
Python function as an argument. Now, the only thing left to do is to connect the two
tasks, which we can do using a syntax that looks suspiciously like normal Python code.

model_id = train_model()
deploy_model(model_id)

This code should result in a DAG with two tasks (train_model and deploy_model)
and a dependency between the two tasks (figure 5.18).

Listing 5.26 Defining the train task using the Taskflow API (dags/12_taskflow.py)

Listing 5.27 Defining the deploy task using the Taskflow API (dags/12_taskflow.py)

Listing 5.28 Defining dependencies between Taskflow tasks (dags/12_taskflow.py)

Figure 5.18 Subset of our previous DAG containing the train/deploy tasks, in which tasks and their 
dependencies are defined using the Taskflow API
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Comparing the new code to our previous implementation, the Taskflow-based approach
provides similar results with code that is easier to read and looks more like normal
Python code. But how does it work?

 In essence, when we call the decorated train_model function, it creates a new
operator instance for the train_model task (shown as the _PythonDecoratedOperator
in figure 5.18). From the return statement in the train_model function, Airflow
recognizes that we are returning a value that will automatically be registered as an
XCom returned from the task. For the deploy_model task, we also call the decorated
function to create an operator instance, but now also pass along the model_id out-
put from the train_model task. In doing so, we’re effectively telling Airflow that the
model_id output from train_model should be passed as an argument to the deco-
rated deploy_model function. This way, Airflow will both realize there is a depen-
dency between the two tasks and take care of passing the XCom values between the two
tasks for us.

5.6.2 When (not) to use the Taskflow API

The Taskflow API provides a simple approach for defining Python tasks and their
dependencies, using a syntax that is closer to using regular Python functions than the
more object-oriented operator API. This allows the API to dramatically simplify DAGs
that make heavy use of PythonOperators and pass data between the resulting tasks
using XComs. The API also addresses one of our previous criticisms of using XComs
by ensuring that values are passed explicitly between tasks, rather than hiding depen-
dencies between tasks within the corresponding functions. 

 However, one drawback of the Taskflow API is that its use is currently limited to
Python tasks that would otherwise be implemented using the PythonOperator. As
such, tasks involving any other Airflow operators will require using the regular API to
define tasks and their dependencies. Although this does not prevent you from mixing
and matching the two styles, the resulting code can become confusing if you’re not
careful. For example, when combining our new train/deploy tasks back into our
original DAG (figure 5.19), we need to define a dependency between the join_data-
sets task and the model_id reference, which is not incredibly intuitive.

Figure 5.19 Combining the Taskflow-style train/deploy tasks back into the original DAG, which also 
contains other (non-PythonOperator-based) operators
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with DAG(...) as dag:
    start = DummyOperator(task_id="start")           b
    ...
    [clean_sales, clean_weather] >> join_datasets    b

    @task 
    def train_model():                               c
        model_id = str(uuid.uuid4())
        return model_id

    @task
    def deploy_model(model_id: str):                 c
        print(f"Deploying model {model_id}")

    model_id = train_model()                         c
    deploy_model(model_id)

    join_datasets >> model_id                        d

b Defining tasks and dependencies using the regular API

c Using the Taskflow API for Python tasks and dependencies

d Mixing the two styles with a dependency between a Taskflow style and a regular task

Any data passed between Taskflow-style tasks will be stored as XComs. This means that
all passed values are subject to the technical limitations of XComs (i.e., they must be
serializable). Moreover, the size of data sets passed between tasks may be limited by the
XCom backend used by your Airflow deployment, as discussed in the previous section. 

Summary 
 Airflow’s basic task dependencies can be used to define linear task dependen-

cies and fan-in/fan-out structures in Airflow DAGs.
 Using the BranchPythonOperator, you can build branches into your DAGs, allow-

ing you to choose multiple execution paths depending on certain conditions.
 Using conditional tasks, you can execute tasks depending on specific conditions. 
 Explicitly encoding branches/conditions in your DAG structure provides sub-

stantial benefits in terms of the interpretability of how your DAG was executed.
 The triggering of Airflow tasks is controlled by trigger rules, which govern behav-

iors and can be configured to allow tasks to respond to different situations.
 State can be shared between tasks using XComs. 
 The Taskflow API can help simplify DAGs containing Python-heavy DAGs.

Listing 5.29 Combining other operators with Taskflow (dags/13_taskflow_full.py)
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Beyond the basics

Now that you’re familiar with Airflow’s basics and able to build some of
your own data pipelines, you’re ready to learn some more advanced techniques
that allow you to build more complex cases involving external systems, custom
components, and more.

 In chapter 6, we’ll examine how you can trigger pipelines in ways that don’t
involve fixed schedules. This allows you to trigger pipelines in response to cer-
tain events, such as new files coming in or a call from an HTTP service. 

 Chapter 7 will demonstrate how to use Airflow’s built-in functionality to run
tasks on external systems. This is an extremely powerful feature of Airflow that
allows you to build pipelines that coordinate data flows across many different sys-
tems, such as databases, computational frameworks such as Apache Spark, and
storage systems.

 Next, chapter 8 will show you how you can build custom components for Air-
flow, allowing you to execute tasks on systems not supported by Airflow’s built-in
functionality. This functionality can also be used to build components that can
easily be reused across your pipelines to support common workflows.

 To help increase the robustness of your pipelines, chapter 9 elaborates on
different strategies you can use to test your data pipelines and custom compo-
nents. This has been a commonly recurring topic in Airflow meet-ups, so we’ll
spend some time exploring it.

 Finally, chapter 10 dives into using container-based approaches for imple-
menting tasks in your pipelines. We’ll show you how you can run tasks using
both Docker and Kubernetes and discuss several advantages and drawbacks of
using containers for your tasks.
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 After completing part 2, you should be well underway to becoming an advanced
Airflow user, being able to write complex (and testable) pipelines that optionally
involve custom components and/or containers. However, depending on your inter-
ests, you may want to pick specific chapters to focus on, as not all chapters may be rel-
evant to your use case. 



Triggering workflows
In chapter 3, we explored how to schedule workflows in Airflow based on a time
interval. The time intervals can be given as convenience strings (e.g., "@daily"),
timedelta objects (e.g., timedelta(days=3)), or cron strings (e.g., "30 14 * * *").
These are all notations to instruct the workflow to trigger at a certain time or inter-
val. Airflow will compute the next time to run the workflow given the interval and
start the first task(s) in the workflow at the next date and time.

 In this chapter, we explore other ways to trigger workflows. This is often desired
following a certain action, in contrast to the time-based intervals, which start work-
flows at predefined times. Trigger actions are often the result of external events;
think of a file being uploaded to a shared drive, a developer pushing their code to
a repository, or the existence of a partition in a Hive table, any of which could be a
reason to start running your workflow.

This chapter covers
 Waiting for certain conditions to be met with 

sensors

 Deciding how to set dependencies between tasks 
in different DAGs

 Executing workflows via the CLI and REST API
115
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6.1 Polling conditions with sensors
One common use case to start a workflow is the arrival of new data; imagine a third
party delivering a daily dump of its data on a shared storage system between your com-
pany and the third party. Assume we’re developing a popular mobile couponing app
and are in contact with all supermarket brands to deliver a daily export of their pro-
motions that are going to be displayed in our couponing app. Currently, the promo-
tions are mostly a manual process: most supermarkets employ pricing analysts to take
many factors into account and deliver accurate promotions. Some promotions are
well thought out weeks in advance, and some are spontaneous one-day flash sales. The
pricing analysts carefully study competitors, and sometimes promotions are made late
at night. Hence, the daily promotions data often arrives at random times. We saw data
arrive on the shared storage between 16:00 and 2:00 the next day, although the daily
data can be delivered at any time of the day.

 Let’s develop the initial logic for such a workflow (figure 6.1).

In this workflow, we copy the supermarkets’ (1–4) delivered data into our own raw stor-
age from which we can always reproduce results. The process_supermarket_{1,2,3,4}
tasks then transform and store all raw data in a results database that can be read by the
app. And finally, the create_metrics task computes and aggregates several metrics
that give insights in the promotions for further analysis.

 With data from the supermarkets arriving at varying times, the timeline of this
workflow could look like figure 6.2.

Figure 6.1 Initial logic for processing supermarket promotions data

15:00 21:0016:00 17:00 18:00 19:00 20:00 22:00 23:00 24:00 01:00 02:00 03:00

Supermarket 1 Supermarket 2 Supermarket 3 Supermarket 4
Start of
workflow

Figure 6.2 Timeline of processing supermarket promotion data
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Here we see the data delivery times of the supermarkets and the start time of our
workflow. Since we’ve experienced supermarkets delivering data as late as 2:00, a safe
bet would be to start the workflow at 2:00 to be certain all supermarkets have deliv-
ered their data. However, this results in lots of waiting time. Supermarket 1 delivered
its data at 16:30, while the workflow starts processing at 2:00 but does nothing for
9.5 hours (figure 6.3).

One way to solve this in Airflow is with the help of sensors, which are a special type
(subclass) of operators. Sensors continuously poll for certain conditions to be true
and succeed if so. If false, the sensor will wait and try again until either the condition
is true or a timeout is eventually reached.

from airflow.sensors.filesystem import FileSensor

wait_for_supermarket_1 = FileSensor(
   task_id="wait_for_supermarket_1",
   filepath="/data/supermarket1/data.csv",
)

This FileSensor will check for the existence of /data/supermarket1/data.csv and
return true if the file exists. If not, it returns false and the sensor will wait for a given
period (default 60 seconds) and try again. Both operators (sensors are also operators)
and DAGs have configurable timeouts, and the sensor will continue checking the con-
dition until a timeout is reached. We can inspect the output of sensors in the task logs:

{file_sensor.py:60} INFO - Poking for file /data/supermarket1/data.csv
{file_sensor.py:60} INFO - Poking for file /data/supermarket1/data.csv
{file_sensor.py:60} INFO - Poking for file /data/supermarket1/data.csv
{file_sensor.py:60} INFO - Poking for file /data/supermarket1/data.csv
{file_sensor.py:60} INFO - Poking for file /data/supermarket1/data.csv

Listing 6.1 A FileSensor waits for a filepath to exist

Supermarket 1 (9.5 hours)

Supermarket 2 (7.25 hours)

Supermarket 3 (4.75 hours)

Supermarket 4 (1.5 hours)

Waiting times

15:00 21:0016:00 17:00 18:00 19:00 20:00 22:00 23:00 24:00 01:00 02:00 03:00

Supermarket 1 Supermarket 2 Supermarket 3 Supermarket 4
Start of
workflow

Figure 6.3 Timeline of supermarket promotion workflow with waiting times
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Here we see that approximately once a minute,1 the sensor pokes for the availability of
the given file. Poking is Airflow’s name for running the sensor and checking the sensor
condition.

 When incorporating sensors into this workflow, one change should be made. Now
that we know we won’t wait until 2:00 and assume all data is available, but instead start
continuously, checking if the data is available, the DAG start time should be placed at
the start of the data arrival boundaries (figure 6.4).

The corresponding DAG will have a task (FileSensor) added to the start of process-
ing each supermarket’s data and would look like figure 6.5.

In figure 6.5, sensors were added at the start of the DAG and the DAG’s schedule_
interval was set to start before the expected delivery of data. This way, sensors at the start
of the DAG would continuously poll for the availability of data and continue to the next
task once the condition has been met (i.e., once the data is available in the given path).

 Here we see supermarket 1 has already delivered data, which sets the state of its
corresponding sensor to success and continues processing its downstream tasks. As a

1 Configurable with the poke_interval argument.

15:00 21:0016:00 17:00 18:00 19:00 20:00 22:00 23:00 24:00 01:00 02:00 03:00

Supermarket 1 Supermarket 2 Supermarket 3 Supermarket 4
Start of
workflow

Figure 6.4 Supermarket promotions timeline with sensors

Figure 6.5 Supermarket promotion DAG with sensors in Airflow
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result, data was processed directly after delivery, without unnecessarily waiting until
the end of the expected time of delivery.

6.1.1 Polling custom conditions

Some data sets are large and consist of multiple files (e.g., data-01.csv, data-02.csv,
data-03.csv, etc.). Airflow’s FileSensor supports wildcards to match, for example,
data-*.csv, which will match any file matching the pattern. So, if, for example, the first
file data-01.csv is delivered while others are still being uploaded to the shared storage
by the supermarket, the FileSensor would return true and the workflow would con-
tinue to the copy_to_raw task, which is undesirable.

 Therefore, we agreed with the supermarkets to write a file named _SUCCESS as
the last part of uploading, to indicate the full daily data set was uploaded. The data
team decided they want to check for both the existence of one or more files named
data-*.csv and one file named _SUCCESS. Under the hood the FileSensor uses globbing
(https://en.wikipedia.org/wiki/Glob) to match patterns against file or directory names.
While globbing (similar to regex but more limited in functionality) would be able to
match multiple patterns with a complex pattern, a more readable approach is to imple-
ment the two checks with the PythonSensor.

 The PythonSensor is similar to the PythonOperator in the sense that you supply a
Python callable (function, method, etc.) to execute. However, the PythonSensor call-
able is limited to returning a Boolean value: true to indicate the condition is met suc-
cessfully, false to indicate it is not. Let’s check out a PythonSensor callable checking
these two conditions.

from pathlib import Path

from airflow.sensors.python import PythonSensor

def _wait_for_supermarket(supermarket_id):
   supermarket_path = Path("/data/" + supermarket_id)   B
   data_files = supermarket_path.glob("data-*.csv")     c
   success_file = supermarket_path / "_SUCCESS"         d
   return data_files and success_file.exists()          e

wait_for_supermarket_1 = PythonSensor(
   task_id="wait_for_supermarket_1",
   python_callable=_wait_for_supermarket,
   op_kwargs={"supermarket_id": "supermarket1"},
   dag=dag,
)

B Initialize Path object.

c Collect data-*.csv files.

d Collect _SUCCESS file.

e Return whether both data and success files exist.

Listing 6.2 Implementing a custom condition with the PythonSensor

https://en.wikipedia.org/wiki/Glob
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The callable supplied to the PythonSensor is executed and expected to return a Bool-
ean true or false. The callable shown in listing 6.2 now checks two conditions, namely
if both the data and the success file exist. Other than using a different color, the
PythonSensor tasks appear the same in the UI (figure 6.6).

6.1.2 Sensors outside the happy flow

Now that we’ve seen sensors running successfully, what happens if a supermarket one
day doesn’t deliver its data? By default, sensors will fail just like operators (figure 6.7).

Sensors accept a timeout argument, which holds the maximum number of seconds a
sensor is allowed to run. If, at the start of the next poke, the number of running sec-
onds turns out to be higher than the number set to timeout, the sensor will fail:

INFO - Poking callable: <function wait_for_supermarket at 0x7fb2aa1937a0>
INFO - Poking callable: <function wait_for_supermarket at 0x7fb2aa1937a0>
ERROR - Snap. Time is OUT.

Figure 6.6 Supermarket promotion DAG using PythonSensors for custom conditions

These sensors did not complete within the maximum timeframe.

Figure 6.7 Sensors exceeding the maximum timeframe will fail.
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Traceback (most recent call last):
  ➥ File "/usr/local/lib/python3.7/site-

packages/airflow/models/taskinstance.py", line 926, in _run_raw_task
    result = task_copy.execute(context=context)
  ➥ File "/usr/local/lib/python3.7/site-

packages/airflow/sensors/base_sensor_operator.py", line 116, in execute
    raise AirflowSensorTimeout('Snap. Time is OUT.')
airflow.exceptions.AirflowSensorTimeout: Snap. Time is OUT.
INFO - Marking task as FAILED.

By default, the sensor timeout is set to seven days. If the DAG schedule_interval is
set to once a day, this will lead to an undesired snowball effect—which is surprisingly
easy to encounter with many DAGs! The DAG runs once a day, and supermarkets 2, 3,
and 4 will fail after seven days, as shown in figure 6.7. However, new DAG runs are
added every day and the sensors for those respective days are started, and as a result
more and more tasks start running. Here’s the catch: there’s a limit to the number of
tasks Airflow can handle and will run (on various levels).

 It is important to understand there are limits to the maximum number of running
tasks on various levels in Airflow; the number of tasks per DAG, the number of tasks on a
global Airflow level, the number of DAG runs per DAG, and so on. In figure 6.8, we see
16 running tasks (which are all sensors). The DAG class has a concurrency argument,
which controls how many simultaneously running tasks are allowed within that DAG.

dag = DAG(
   dag_id="couponing_app",
   start_date=datetime(2019, 1, 1),
   schedule_interval="0 0 * * *",
   concurrency=50,                 B
)

B This DAG allows 50 concurrently running tasks.

Listing 6.3 Setting the maximum number of concurrent tasks in a DAG

These tasks could run but are not
because the sensors take up all slots.

These sensor tasks
occupy all slots.

Figure 6.8 Sensor deadlock: the running tasks are all sensors waiting for a condition to be true, 
which never happens and thus occupy all slots.
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In figure 6.8, we ran the DAG with all defaults, which is 16 concurrent tasks per DAG.
The following snowball effect happened:

 Day 1: Supermarket 1 succeeded; supermarkets 2, 3, and 4 are polling, occupy-
ing 3 tasks.

 Day 2: Supermarket 1 succeeded; supermarkets 2, 3, and 4 are polling, occupy-
ing 6 tasks.

 Day 3: Supermarket 1 succeeded; supermarkets 2, 3, and 4 are polling, occupy-
ing 9 tasks.

 Day 4: Supermarket 1 succeeded; supermarkets 2, 3, and 4 are polling, occupy-
ing 12 tasks.

 Day 5: Supermarket 1 succeeded; supermarkets 2, 3, and 4 are polling, occupy-
ing 15 tasks.

 Day 6: Supermarket 1 succeeded; supermarkets 2, 3, and 4 are polling, occupy-
ing 16 tasks; two new tasks cannot run, and any other task trying to run is blocked.

This behavior is often referred to as sensor deadlock. In this example, the maximum
number of running tasks in the supermarket couponing DAG is reached, and thus the
impact is limited to that DAG, while other DAGs can still run. However, once the global
Airflow limit of maximum tasks is reached, your entire system is stalled, which is obvi-
ously undesirable. This issue can be solved in various ways.

 The sensor class takes an argument mode, which can be set to either poke or
reschedule (available since Airflow 1.10.2). By default, it’s set to poke, leading to the
blocking behavior. This means the sensor task occupies a task slot as long as it’s run-
ning. Once in a while, it pokes the condition and then does nothing, but still occupies
a task slot. The sensor reschedule mode releases the slot after it has finished poking,
so it only occupies a slot while it’s doing actual work (figure 6.9).

 The number of concurrent tasks can also be controlled by several configuration
options on the global Airflow level, which are covered in section 12.6. In the next sec-
tion, let’s look at how to split up a single DAG into multiple smaller DAGs, which trig-
ger each other to separate concerns.

6.2 Triggering other DAGs
At some point in time, more supermarkets are added to our couponing service. More
and more people would like to gain insights in the supermarket’s promotions and the
create_metrics step at the end is executed only once a day, after all supermarkets’
data was delivered and processed. In the current setup, it depends on the successful
state of the process_supermarket_{1,2,3,4} tasks (figure 6.10).

 We received a question from the analyst team about if the metrics could also be
made available directly after processing instead of having to wait for other supermar-
kets to deliver their data and run it through the pipeline. We have several options
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These sensors now release
their slots after poking. . .

. . . allowing these tasks
to continue running.

wait_for_supermarket1 = PythonSensor(
task_id="wait_for_supermarket_1",
python_callable=_wait_for_supermarket,
op_kwargs={"supermarket_id": "supermarket1"},
mode="reschedule",
dag=dag,
)

mode="reschedule" applies a new state “up_for_reschedule”

Figure 6.9 Sensors with mode="reschedule" release their slot after poking, allowing other tasks 
to run.

Executed once data for specific
supermarket is available

Executed once all
data is available

Figure 6.10 Different execution logic between the supermarket-specific tasks and the 
create_metrics task indicates a potential split in separate DAGs.
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here (depending on the logic it performs). We could set the create_metrics task as a
downstream task after every process_supermarket_* task (figure 6.11).

Suppose the create_metrics task evolved into multiple tasks, making the DAG struc-
ture more complex and resulting in more repeated tasks (figure 6.12).

One option to circumvent repeated tasks with (almost) equal functionality is to split
your DAG into multiple smaller DAGs where each takes care of part of the total
workflow. One benefit is you can call DAG 2 multiple times from DAG 1, instead of
one single DAG holding multiple (duplicated) tasks from DAG 2. Whether this is
possible or desirable depends on many things, such as the complexity of the work-
flow. If, for example, you’d like to be able to create the metrics without having to
wait for the workflow to complete according to its schedule, but instead trigger it
manually whenever you’d like, then it could make sense to split it into two separate
DAGs.

Figure 6.11 Replicating tasks to avoid waiting for completion of all processes

Figure 6.12 More logic once again indicates a potential split in separate DAGs.
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 This scenario can be achieved with the TriggerDagRunOperator. This operator
allows triggering other DAGs, which you can apply to decouple parts of a workflow.

import airflow.utils.dates
from airflow import DAG
from airflow.operators.dummy import DummyOperator
from airflow.operators.trigger_dagrun import TriggerDagRunOperator

dag1 = DAG(
   dag_id="ingest_supermarket_data",
   start_date=airflow.utils.dates.days_ago(3),
   schedule_interval="0 16 * * *",
)

for supermarket_id in range(1, 5):
   # ...
   trigger_create_metrics_dag = TriggerDagRunOperator(
       task_id=f"trigger_create_metrics_dag_supermarket_{supermarket_id}",
       trigger_dag_id="create_metrics",        B
       dag=dag1,
   )

dag2 = DAG(
   dag_id="create_metrics",                    B
   start_date=airflow.utils.dates.days_ago(3),
   schedule_interval=None,                     c
)
# ...

B dag_id should align.

c No schedule_interval required if only triggered

The string provided to the trigger_dag_id argument of the TriggerDagRunOperator
must match the dag_id of the DAG to trigger. The end result is that we now have two
DAGs, one for ingesting data from the supermarkets and one for computing metrics
on the data (figure 6.13).

 Visually, in the Airflow UI there is almost no difference between a scheduled DAG,
manually triggered DAG, or an automatically triggered DAG. Two small details in the

Listing 6.4 Triggering other DAGs using the TriggerDagRunOperator

Figure 6.13 DAGs split in two, with DAG 1 triggering DAG 2 using the TriggerDagRunOperator. The logic in 
DAG 2 is now defined just once, simplifying the situation shown in figure 6.12.
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tree view tell you whether a DAG was triggered or started by a schedule. First, sched-
uled DAG runs and their task instances show a black border (figure 6.14).

Second, each DAG run holds a field run_id. The value of the run_id starts with one of
the following:

 scheduled__ to indicate the DAG run started because of its schedule
 backfill__ to indicate the DAG run started by a backfill job
 manual__ to indicate the DAG run started by a manual action (e.g., pressing the

Trigger Dag button, or triggered by a TriggerDagRunOperator)

Hovering over the DAG run circle displays a tooltip showing the run_id value, telling
us how the DAG started running (figure 6.15).

6.2.1 Backfilling with the TriggerDagRunOperator

What if you changed some logic in the process_* tasks and wanted to rerun the DAGs
from there on? In a single DAG you could clear the state of the process_* and corre-
sponding downstream tasks. However, clearing tasks only clears tasks within the same
DAG. Tasks downstream of a TriggerDagRunOperator in another DAG are not cleared,
so be well aware of this behavior.

Scheduled

Triggered

Figure 6.14 Black borders indicate a scheduled run; no borders are triggered.
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Clearing tasks in a DAG, including a TriggerDagRunOperator, will trigger a new
DAG run instead of clearing the corresponding previously triggered DAG runs (fig-
ure 6.16).

6.2.2 Polling the state of other DAGs

The example in figure 6.13 works as long as there is no dependency from the to be
triggered DAGs back to the triggering DAG. In other words, the first DAG can trigger
the downstream DAG whenever, without having to check any conditions.

 If the DAGs become very complex, for clarity the first DAG could be split across
multiple DAGs, and a corresponding TriggerDagRunOperator task could be made for
each corresponding DAG, as seen in figure 6.17 in the middle. Also, one DAG trigger-
ing multiple downstream DAGs is a possible scenario with the TriggerDagRunOperator,
as seen in figure 6.17 on the right.

 But what if multiple triggering DAGs must complete before another DAG can start
running? For example, what if DAGs 1, 2, and 3 each extract, transform, and load a
data set, and you’d like to run DAG 4 only once all three DAGs have completed, for
example to compute a set of aggregated metrics? Airflow manages dependencies

Figure 6.15 The run_id tells us the origin of the DAG run.
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between tasks within one single DAG; however, it does not provide a mechanism for
inter-DAG dependencies (figure 6.18).2

2 This Airflow plug-in visualizes inter-DAG dependencies by scanning all your DAGs for usage of the Trigger-
DagRunOperator and ExternalTaskSensor: https://github.com/ms32035/airflow-dag-dependencies.

Figure 6.16 Clearing TriggerDagRunOperators does not clear tasks in the triggered DAG; 
instead, new DAG runs are created.

Figure 6.17 Various inter-DAG dependencies possible with the TriggerDagRunOperator

DAG 1 DAG 2

DAG 1 DAGs 2, 3, and 4
DAGs 1, 2, and 3

DAG 4

https://github.com/ms32035/airflow-dag-dependencies
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For this situation we could apply the ExternalTaskSensor, which is a sensor poking
the state of tasks in other DAGs, as shown in figure 6.19. This way the wait_for_etl
_dag{1,2,3} tasks act as a proxy to ensure the completed state of all three DAGs
before finally executing the report task.

The way the ExternalTaskSensor works is by pointing it to a task in another DAG to
check its state (figure 6.20).

Figure 6.18 Illustration of inter-DAG dependency, which 
cannot be solved with the TriggerDagRunOperator

DAGs 1, 2, and 3

DAG 4

?

DAG 4
DAGs 1, 2, and 3

Figure 6.19 Instead of pushing execution with the 
TriggerDagRunOperator, in some situations 
such as ensuring completed state for DAGs 1, 2, 
and 3, we must pull execution toward DAG 4 with 
the ExternalTaskSensor.

import airflow.utils.dates
from airflow import DAG
from airflow.operators.dummy import DummyOperator
from airflow.sensors.external_task import ExternalTaskSensor

dag1 = DAG(dag_id="ingest_supermarket_data", schedule_interval="0 16 * * *", ...)
dag2 = DAG(schedule_interval="0 16 * * *", ...)

DummyOperator(task_id="copy_to_raw", dag=dag1) >> DummyOperator(task_id="process_supermarket", dag=dag1)

wait = ExternalTaskSensor(
task_id="wait_for_process_supermarket",
external_dag_id="ingest_supermarket_data",
external_task_id="process_supermarket",
dag=dag2,

)
report = DummyOperator(task_id="report", dag=dag2)
wait >> report

Figure 6.20 Example usage of the ExternalTaskSensor
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Since there is no event from DAG 1 to DAG 2, DAG 2 is polling for the state of a task
in DAG 1, but this comes with several downsides. In Airflow’s world, DAGs have no
notion of other DAGs. While it’s technically possible to query the underlying metas-
tore (which is what the ExternalTaskSensor does), or read DAG scripts from disk and
infer the execution details of other workflows, they are not coupled in Airflow in any
way. This requires a bit of alignment between DAGs in case the ExternalTaskSensor
is used. The default behavior is such that the ExternalTaskSensor simply checks for
a successful state of a task with the exact same execution date as itself. So, if an
ExternalTaskSensor runs with an execution date of 2019-10-12T18:00:00, it would
query the Airflow metastore for the given task, also with an execution date of 2019-10-
12T18:00:00. Now let’s say both DAGs have a different schedule interval; then these
would not align and thus the ExternalTaskSensor would never find the correspond-
ing task! (See figure 6.21.)

In case the schedule intervals do not align we can offset, by which the ExternalTask-
Sensor must search for the task in the other DAG. This offset is controlled by the
execution_delta argument on the ExternalTaskSensor. It expects a timedelta
object, and it’s important to know it operates counterintuitive from what you expect.
The given timedelta is subtracted from the execution_date, meaning that a positive
timedelta actually looks back in time (figure 6.22).

 Note that checking a task using the ExternalTaskSensor where the other DAG has
a different interval period, for example, DAG 1 runs once a day and DAG 2 runs every
five hours, complicates setting a good value for execution_delta. For this use case, it’s
possible to provide a function returning a list of timedeltas via the execution_date_fn
argument. Refer to the Airflow documentation for the details.

from airflow import DAG
from airflow.operators.dummy import DummyOperator
from airflow.sensors.external_task import ExternalTaskSensor

dag1 = DAG(dag_id="dag1", schedule_interval="0 16 * * *")
dag2 = DAG(dag_id="dag2", schedule_interval="0 20 * * *")

DummyOperator(task_id="etl", dag=dag1)
ExternalTaskSensor(task_id="wait_for_etl", external_dag_id="dag1", external_task_id="etl", dag=dag2)

schedule_intervals do not align,
thus ExternalTaskSensor will
never find corresponding task.

14:00 20:0015:00 16:00 17:00 18:00 19:00 21:00 22:00

dag1, task etl

dag2, task wait_for_etl

?

Figure 6.21 An ExternalTaskSensor checks for the completion of a task in another DAG, following its 
own schedule_interval, which will never be found if the intervals do not align.
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6.3 Starting workflows with REST/CLI
In addition to triggering DAGs from other DAGs, they can also be triggered via the
REST API and CLI. This can be useful if you want to start workflows from outside Air-
flow (e.g., as part of a CI/CD pipeline). Or, data arriving at random times in an AWS
S3 bucket can be processed by setting a Lambda function to call the REST API, trig-
gering a DAG, instead of having to run sensors polling all the time.

 Using the Airflow CLI, we can trigger a DAG as follows.

airflow dags trigger dag1

➥ [2019-10-06 14:48:54,297] {cli.py:238} INFO - Created <DagRun dag1 @ 2019-
10-06 14:48:54+00:00: manual__2019-10-06T14:48:54+00:00, externally 
triggered: True>

This triggers dag1 with the execution date set to the current date and time. The DAG
run id is prefixed with “manual__” to indicate it was triggered manually, or from out-
side Airflow. The CLI accepts additional configuration to the triggered DAG.

airflow dags trigger -c '{"supermarket_id": 1}' dag1
airflow dags trigger --conf '{"supermarket_id": 1}' dag1

This piece of configuration is then available in all tasks of the triggered DAG run via
the task context variables.

Listing 6.5 Triggering a DAG using the Airflow CLI

Listing 6.6 Triggering a DAG with additional configuration

from airflow import DAG
from airflow.operators.dummy import DummyOperator
from airflow.sensors.external_task import ExternalTaskSensor
dag1 = DAG(dag_id="dag1", schedule_interval="0 16 * * *")
dag2 = DAG(dag_id="dag2", schedule_interval="0 20 * * *")
DummyOperator(task_id="etl", dag=dag1)
ExternalTaskSensor(

task_id="wait_for_etl",
external_dag_id="dag1",
external_task_id="etl",
execution_delta=datetime.timedelta(hours=4),
dag=dag2,

)

14:00 20:0015:00 16:00 17:00 18:00 19:00 21:00 22:00

dag1, task etl

dag2, task wait_for_etl

execution_delta=datetime.timedelta(hours=4)

Figure 6.22 An ExternalTaskSensor can be offset with execution_delta to match with the 
intervals of other DAGs.
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import airflow.utils.dates
from airflow import DAG
from airflow.operators.python import PythonOperator

dag = DAG(
    dag_id="print_dag_run_conf",
    start_date=airflow.utils.dates.days_ago(3),
    schedule_interval=None,
)

def print_conf(**context):
   print(context["dag_run"].conf)   B

process = PythonOperator(
    task_id="process",
    python_callable=print_conf,
    dag=dag,
)

B Configuration supplied when triggering DAGs is accessible in the task context

These tasks print the conf provided to the DAG run, which can be applied as a vari-
able throughout the task:

{cli.py:516} INFO - Running <TaskInstance: print_dag_run_conf.process 2019-
10-15T20:01:57+00:00 [running]> on host ebd4ad13bf98

{logging_mixin.py:95} INFO - {'supermarket': 1}
{python_operator.py:114} INFO - Done. Returned value was: None
{logging_mixin.py:95} INFO - [2019-10-15 20:03:09,149] 

{local_task_job.py:105} INFO - Task exited with return code 0

As a result, if you have a DAG in which you run copies of tasks simply to support differ-
ent variables, this becomes a whole lot more concise with the DAG run conf, since it
allows you to insert variables into the pipeline (figure 6.23). However, note that the
DAG in listing 6.8 has no schedule interval (i.e., it only runs when triggered). If the
logic in your DAG relies on a DAG run conf, then it won’t be possible to run on a
schedule since that doesn’t provide any DAG run conf.

Listing 6.7 Applying configuration DAG run

With
DAG run conf

Figure 6.23 Simplifying DAGs by providing payload at runtime
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Similarly, it is also possible to use the REST API for the same result (e.g., in case you
have no access to the CLI but your Airflow instance can be reached over HTTP).

# URL is /api/v1

curl \
-u admin:admin \                         b
-X POST \
"http:/ /localhost:8080/api/v1/dags/print_dag_run_conf/dagRuns" \
-H  "Content-Type: application/json" \
-d '{"conf": {}}'                        c

{
  "conf": {},
  "dag_id": "print_dag_run_conf",
  "dag_run_id": "manual__2020-12-19T18:31:39.097040+00:00",
  "end_date": null,
  "execution_date": "2020-12-19T18:31:39.097040+00:00",
  "external_trigger": true,
  "start_date": "2020-12-19T18:31:39.102408+00:00",
  "state": "running"
}

curl \
-u admin:admin \
-X POST \
"http:/ /localhost:8080/api/v1/dags/print_dag_run_conf/dagRuns" \
-H  "Content-Type: application/json" \
-d '{"conf": {"supermarket": 1}}'

{
  "conf": {
    "supermarket": 1
  },
  "dag_id": "listing_6_08",
  "dag_run_id": "manual__2020-12-19T18:33:58.142200+00:00",
  "end_date": null,
  "execution_date": "2020-12-19T18:33:58.142200+00:00",
  "external_trigger": true,
  "start_date": "2020-12-19T18:33:58.153941+00:00",
  "state": "running"
}

b Sending a plaintext username/password is not desirable; consult the Airflow API authentication 
documentation for other authentication methods.

c The endpoint requires a piece of data, even if no additional configuration is given.

This could be convenient when triggering DAG from outside Airflow, for example from
your CI/CD system.

 

Listing 6.8 Triggering a DAG using the Airflow REST API
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Summary
 Sensors are a special type of operators that continuously poll for a given condi-

tion to be true.
 Airflow provides a collection of sensors for various systems/use cases; a custom

condition can also be made with the PythonSensor.
 The TriggerDagRunOperator can trigger a DAG from another DAG, while the

ExternalTaskSensor can poll the state in another DAG.
 Triggering DAGs is possible from outside Airflow with the REST API and/or CLI.



Communicating
with external systems
In all previous chapters, we’ve focused on various aspects of writing Airflow code,
mostly demonstrated with examples using generic operators such as the Bash-
Operator and PythonOperator. While these operators can run arbitrary code and
thus could run any workload, the Airflow project also holds other operators for
more specific use cases, for example, running a query on a Postgres database. These
operators have one and only one specific use case, such as running a query. As a
result, they are easy to use by simply providing the query to the operator, and the
operator internally handles the querying logic. With a PythonOperator, you would
have to write such querying logic yourself.

 For the record, with the phrase external system we mean any technology other
than Airflow and the machine Airflow is running on. This could be, for example,

This chapter covers
 Working with Airflow operators performing actions 

on systems outside Airflow

 Applying operators specific to external systems

 Implementing operators in Airflow doing A-to-B 
operations

 Testing tasks connecting to external systems
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Microsoft Azure Blob Storage, an Apache Spark cluster, or a Google BigQuery data
warehouse.

 To see when and how to use such operators, in this chapter we’ll develop two DAGs
connecting to external systems and moving and transforming data between these sys-
tems. We will inspect the various options Airflow holds (and does not hold)1 to deal
with this use case and the external systems.

 In section 7.1, we develop a machine learning model on AWS, working with AWS S3
buckets and AWS SageMaker, a solution for developing and deploying machine learn-
ing models. Next, in section 7.2, we demonstrate how to move data between various
systems with a Postgres database containing Airbnb places to stay in Amsterdam. The
data comes from Inside Airbnb (http://insideairbnb.com), a website and public data
managed by Airbnb, with records about listings, reviews, and more. Once a day we will
download the latest data from the Postgres database into our AWS S3 bucket. From
there, we will run a Pandas job inside a Docker container to determine the price fluc-
tuations, and the result is saved back to S3.

7.1 Connecting to cloud services
A large portion of software runs on cloud services nowadays. Such services can gener-
ally be controlled via an API—an interface to connect and send requests to your cloud
provider. The API typically comes with a client in the form of a Python package, for
example, AWS’s client is named boto3 (https://github.com/boto/boto3), GCP’s client
is named the Cloud SDK (https://cloud.google.com/sdk), and Azure’s client is appro-
priately named the Azure SDK for Python (https://docs.microsoft.com/azure/python).
Such clients provide convenient functions where, bluntly said, you enter the required
details for a request and the clients handle the technical internals of handling the
request and response.

 In the context of Airflow, to the programmer the interface is an operator. Opera-
tors are the convenience classes to which you can provide the required details to make
a request to a cloud service, and the operator internally handles the technical imple-
mentation. These operators internally make use of the Cloud SDK to send requests
and provide a small layer around the Cloud SDK, which provides certain functionality
to the programmer (figure 7.1).

1 Operators are always under development. This chapter was written in 2020; please note at the time of reading
there might be new operators that suit your use case that were not described in this chapter.

Airflow

Operator

Cloud SDK Figure 7.1 An Airflow operator translates given 
arguments to operations on the Cloud SDK.

http://insideairbnb.com
https://github.com/boto/boto3
https://cloud.google.com/sdk
https://docs.microsoft.com/azure/python
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7.1.1 Installing extra dependencies

The apache-airflow Python package includes a few essential operators but no com-
ponents to connect with any cloud. For the cloud services, you can install the provider
packages in table 7.1.

This goes not only for the cloud providers but also for other external services. For
example, to install operators and corresponding dependencies required for running
the PostgresOperator, install the apache-airflow-providers-postgres package.
For a full list of all available additional packages, refer to the Airflow documentation
(https://airflow.apache.org/docs).

 Let’s look at an operator to perform an action on AWS. Take, for example, the
S3CopyObjectOperator. This operator copies an object from one bucket to another. It
accepts several arguments (skipping the irrelevant arguments for this example).

➥ from airflow.providers.amazon.aws.operators.s3_copy_object import 
S3CopyObjectOperator

S3CopyObjectOperator(
   task_id="...",
   source_bucket_name="databucket",                B
   source_bucket_key="/data/{{ ds }}.json",        c
   dest_bucket_name="backupbucket",                d
   dest_bucket_key="/data/{{ ds }}-backup.json",   e
)

B The bucket to copy from

c The object name to copy

d The bucket to copy to

e The target object name

This operator makes copying an object on S3 to a different location on S3 a simple
exercise of filling in the blanks, without needing to dive into the details of AWS’s
boto3 client.2

Table 7.1 Extra packages to install for additional cloud provider Airflow components

Cloud Pip install command

AWS pip install apache-airflow-providers-amazon

GCP pip install apache-airflow-providers-google

Azure pip install apache-airflow-providers-microsoft-azure

Listing 7.1 The S3CopyObjectOperator only requires you to fill the necessary details

2 If you check the implementation of the operator, internally it calls copy_object() on boto3.

https://airflow.apache.org/docs
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7.1.2 Developing a machine learning model

Let’s look at a more complex example and work with a number of AWS operators by
developing a data pipeline building a handwritten numbers classifier. The model will
be trained on the MNIST (http://yann.lecun.com/exdb/mnist) data set, containing
approximately 70,000 handwritten digits 0–9 (figure 7.2).

After training the model, we should be able to feed it a new, previously unseen, hand-
written number, and the model should classify the handwritten number (figure 7.3).

There are two parts to the model: an offline and an online part. The offline part takes
a large set of handwritten digits, trains a model to classify these handwritten digits,
and the result (a set of model parameters) is stored. This process can be done period-
ically when new data is collected. The online part is responsible for loading the model
and classifying previously unseen digits. This should run instantaneously, as users
expect direct feedback.

 Airflow workflows are typically responsible for the offline part of a model. Train-
ing a model comprises data loading, preprocessing it into a format suitable for the

Figure 7.2 Example handwritten digits in the MNIST data set

Train model on

set of images

Previously unseen

handwritten digit

Classification: 4

Offline

Online

Figure 7.3 Rough outline of how a machine learning model is trained in one stage and classifies 
previously unseen samples in another

http://yann.lecun.com/exdb/mnist
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model, and training the model, which can become complex. Also, periodically retrain-
ing the model fits nicely with Airflow’s batch-processing paradigm. The online part is
typically an API, such as a REST API or HTML page with REST API calls under the
hood. Such an API is typically deployed only once or as part of a CI/CD pipeline.
There is no use case for redeploying an API every week, and therefore it’s typically not
part of an Airflow workflow.

 For training a handwritten digit classifier, we’ll develop an Airflow pipeline. The
pipeline will use AWS SageMaker, an AWS service facilitating the development and
deployment of machine learning models. In the pipeline, we first copy sample data
from a public location to our own S3 bucket. Next, we transform the data into a for-
mat usable for the model, train the model with AWS SageMaker, and finally, deploy
the model to classify a given handwritten digit. The pipeline will look figure 7.4.

The depicted pipeline could run just once and the SageMaker model could be deployed
just once. The strength of Airflow is the ability to schedule such a pipeline and rerun
(partial) pipelines if desired in case of new data or changes to the model. If the raw
data is continuously updated, the Airflow pipeline will periodically reload the raw data
and redeploy the model, trained on the new data. Also, a data scientist could tune the
model to their liking, and the Airflow pipeline could automatically redeploy the model
without having to manually trigger anything.

 Airflow holds several operators on various services of the AWS platform. While the
list is never complete because services are continuously added, changed, or removed,
most AWS services are supported by an Airflow operator. AWS operators are provided
by the apache-airflow-providers-amazon package.

 Let’s look at the pipeline (figure 7.5).

Raw data Raw data

in own account

Processed data

in own account

SageMaker

model

SageMaker

endpoint

Copy data to

own account

Transform data

to useful format Train model Deploy model

Figure 7.4 Logical steps to create a handwritten digit classifier

Figure 7.5 Logical steps implemented in Airflow DAG
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Even though there are just four tasks, there’s quite a lot to configure on AWS Sage-
Maker, and hence the DAG code is lengthy. No worries, though; we’ll break it down
afterward.

import gzip
import io
import pickle

import airflow.utils.dates
from airflow import DAG
from airflow.operators.python import PythonOperator
from airflow.providers.amazon.aws.hooks.s3 import S3Hook

➥ from airflow.providers.amazon.aws.operators.s3_copy_object import 
S3CopyObjectOperator

➥ from airflow.providers.amazon.aws.operators.sagemaker_endpoint import 
SageMakerEndpointOperator

➥ from airflow.providers.amazon.aws.operators.sagemaker_training import 
SageMakerTrainingOperator

from sagemaker.amazon.common import write_numpy_to_dense_tensor

dag = DAG(
   dag_id="chapter7_aws_handwritten_digits_classifier",
   schedule_interval=None,
   start_date=airflow.utils.dates.days_ago(3),
)

download_mnist_data = S3CopyObjectOperator(                     B
   task_id="download_mnist_data",
   source_bucket_name="sagemaker-sample-data-eu-west-1",
   source_bucket_key="algorithms/kmeans/mnist/mnist.pkl.gz",
   dest_bucket_name="[your-bucket]",
   dest_bucket_key="mnist.pkl.gz",
   dag=dag,
)

def _extract_mnist_data():                                      c
   s3hook = S3Hook()                                            d

   # Download S3 dataset into memory
   mnist_buffer = io.BytesIO()
   mnist_obj = s3hook.get_key(                                  e
       bucket_name="[your-bucket]",
       key="mnist.pkl.gz",
   )
   mnist_obj.download_fileobj(mnist_buffer)

   # Unpack gzip file, extract dataset, convert, upload back to S3
   mnist_buffer.seek(0)
   with gzip.GzipFile(fileobj=mnist_buffer, mode="rb") as f:
       train_set, _, _ = pickle.loads(f.read(), encoding="latin1")
       output_buffer = io.BytesIO()

Listing 7.2 DAG to train and deploy a handwritten digit classifier
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       write_numpy_to_dense_tensor(
           file=output_buffer,
           array=train_set[0],
           labels=train_set[1],
       )
       output_buffer.seek(0)  
       s3hook.load_file_obj(                                   f
           output_buffer,
           key="mnist_data",
           bucket_name="[your-bucket]",
           replace=True,
       )

extract_mnist_data = PythonOperator(                           g
   task_id="extract_mnist_data",
   python_callable=_extract_mnist_data,
   dag=dag,
)

sagemaker_train_model = SageMakerTrainingOperator(             h
   task_id="sagemaker_train_model",
   config={                                                    i
       ➥ "TrainingJobName": "mnistclassifier-{{ execution_date.strftime('%Y-

%m-%d-%H-%M-%S') }}",
       "AlgorithmSpecification": {
           ➥ "TrainingImage": "438346466558.dkr.ecr.eu-west-

1.amazonaws.com/kmeans:1",
           "TrainingInputMode": "File",
       },
       "HyperParameters": {"k": "10", "feature_dim": "784"},
       "InputDataConfig": [
           {
               "ChannelName": "train",
               "DataSource": {
                   "S3DataSource": {
                       "S3DataType": "S3Prefix",
                       "S3Uri": "s3://[your-bucket]/mnist_data",
                       "S3DataDistributionType": "FullyReplicated",
                   }
               },
           }
       ],
       ➥ "OutputDataConfig": {"S3OutputPath": "s3://[your-bucket]/

mnistclassifier-output"},
       "ResourceConfig": {
           "InstanceType": "ml.c4.xlarge",
           "InstanceCount": 1,
           "VolumeSizeInGB": 10,
       },
       ➥ "RoleArn": "arn:aws:iam::297623009465:role/service-role/

AmazonSageMaker-ExecutionRole-20180905T153196",
       "StoppingCondition": {"MaxRuntimeInSeconds": 24 * 60 * 60},
   },
   wait_for_completion=True,                                  j
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   print_log=True,                                            j
   check_interval=10,
   dag=dag,
)

sagemaker_deploy_model = SageMakerEndpointOperator(           1)
   task_id="sagemaker_deploy_model",
   wait_for_completion=True,
   config={
       "Model": {
           ➥ "ModelName": "mnistclassifier-{{ execution_date.strftime('%Y-

%m-%d-%H-%M-%S') }}",
           "PrimaryContainer": {
               ➥ "Image": "438346466558.dkr.ecr.eu-west-1.amazonaws.com/

kmeans:1",
               "ModelDataUrl": (
                   "s3://[your-bucket]/mnistclassifier-output/"
                   ➥ "mnistclassifier-{{ execution_date.strftime('%Y-%m-%d-

%H-%M-%S') }}/"
                   "output/model.tar.gz"
               ),  # this will link the model and the training job
           },
           ➥ "ExecutionRoleArn": "arn:aws:iam::297623009465:role/service-

role/AmazonSageMaker-ExecutionRole-20180905T153196",
       },
       "EndpointConfig": {
           ➥ "EndpointConfigName": "mnistclassifier-{{ 

execution_date.strftime('%Y-%m-%d-%H-%M-%S') }}",
           "ProductionVariants": [
               {
                   "InitialInstanceCount": 1,
                   "InstanceType": "ml.t2.medium",
                   "ModelName": "mnistclassifier",
                   "VariantName": "AllTraffic",
               }
           ],
       },
       "Endpoint": {
           ➥ "EndpointConfigName": "mnistclassifier-{{ 

execution_date.strftime('%Y-%m-%d-%H-%M-%S') }}",
           "EndpointName": "mnistclassifier",
       },
   },
   dag=dag,
)

➥ download_mnist_data >> extract_mnist_data >> sagemaker_train_model >> 
sagemaker_deploy_model

B The S3CopyObjectOperator copies objects between two S3 locations.

c Sometimes your desired functionality is not supported by any operator and you have to implement 
the logic yourself.

d We can use the S3Hook for operations on S3.

e Download the S3 object.

f Upload the extracted data back to S3.
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g Sometimes your desired functionality is not supported by any operator and you have to implement it 
yourself and call with the PythonOperator.

h The SageMakerTrainingOperator creates a SageMaker training job.

i The config is a JSON holding the training job configuration.

j The operator conveniently waits until the training job is completed and prints CloudWatch logs 
while training.

1) The SageMakerEndpointOperator deploys the trained model, which makes it available behind an 
HTTP endpoint.

With external services, the complexity often does not lie within Airflow but with
ensuring the correct integration of various components in your pipeline. There’s
quite a lot of configuration involved with SageMaker, so let’s break down the tasks
piece by piece.

download_mnist_data = S3CopyObjectOperator(
   task_id="download_mnist_data",
   source_bucket_name="sagemaker-sample-data-eu-west-1",
   source_bucket_key="algorithms/kmeans/mnist/mnist.pkl.gz",
   dest_bucket_name="[your-bucket]",
   dest_bucket_key="mnist.pkl.gz",
   dag=dag,
)

After initializing the DAG, the first task copies the MNIST data set from a public
bucket to our own bucket. We store it in our own bucket for further processing. The
S3CopyObjectOperator asks for both the bucket and object name on the source and
destination and will copy the selected object for you. So, while developing, how do we
verify this works correctly, without first coding the full pipeline and keeping fingers
crossed to see if it works in production?

7.1.3 Developing locally with external systems

Specifically for AWS, if you have access to the cloud resources from your development
machine with an access key, you can run Airflow tasks locally. With the help of the CLI
command airflow tasks test, we can run a single task for a given execution date.
Since the download_mnist_data task doesn’t use the execution date, it doesn’t matter
what value we provide. However, say the dest_bucket_key was given as mnist-{{ ds }}
.pkl.gz; then we’d have to think wisely about what execution date we test with. From
your command line, complete the steps in the following listing.

# Add secrets in ~/.aws/credentials:
  # [myaws]
  # aws_access_key_id=AKIAEXAMPLE123456789
  # aws_secret_access_key=supersecretaccesskeydonotshare!123456789

Listing 7.3 Copying data between two S3 buckets

Listing 7.4 Setting up for locally testing AWS operators
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export AWS_PROFILE=myaws
export AWS_DEFAULT_REGION=eu-west-1
export AIRFLOW_HOME=[your project dir]
airflow db init                                                B
airflow tasks test chapter7_aws_handwritten_digits_classifier 

download_mnist_data 2020-01-01                            c

B Initialize a local Airflow metastore.

c Run a single task.

This will run the task download_mnist_data and display logs.

➥ $ airflow tasks test chapter7_aws_handwritten_digits_classifier 
download_mnist_data 2019-01-01

INFO - Using executor SequentialExecutor
INFO - Filling up the DagBag from .../dags

➥ INFO - Dependencies all met for <TaskInstance: 
chapter7_aws_handwritten_digits_classifier.download_mnist_data 2019-01-
01T00:00:00+00:00 [None]>

---------------------------------------------------------------------------
INFO - Starting attempt 1 of 1
---------------------------------------------------------------------------

➥ INFO - Executing <Task(PythonOperator): download_mnist_data> on 2019-01-
01T00:00:00+00:00

INFO - Found credentials in shared credentials file: ~/.aws/credentials
INFO - Done. Returned value was: None

➥ INFO - Marking task as SUCCESS.dag_id=chapter7_aws_handwritten_digits
_classifier, task_id=download_mnist_data, execution_date=20190101T000000, 
start_date=20200208T110436, end_date=20200208T110541

After this, we can see the data was copied into our own bucket (figure 7.6).

What just happened? We configured the AWS credentials to allow us to access the
cloud resources from our local machine. While this is specific to AWS, similar authen-
tication methods apply to GCP and Azure. The AWS boto3 client used internally in
Airflow operators will search in various places for credentials on the machine where a

Listing 7.5 Verifying a task manually with airflow tasks test

Figure 7.6 After running the task locally with airflow tasks 
test, the data is copied to our own AWS S3 bucket.
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task is run. In listing 7.4, we set the AWS_PROFILE environment variable, which the
boto3 client picks up for authentication. After this, we set another environment
variable: AIRFLOW_HOME. This is the location where Airflow will store logs and such.
Inside this directory, Airflow will search for a /dags directory. If that happens to live
elsewhere, you can point Airflow there with another environment variable: AIRFLOW
__CORE__DAGS_FOLDER.

 Next, we run airflow db init. Before doing this, ensure you either have not set
AIRFLOW__CORE__SQL_ALCHEMY_CONN (a URI that points to a database for storing all
state), or set it to a database URI specifically for testing purposes. Without AIRFLOW
__CORE__SQL_ALCHEMY_CONN set, airflow db init initializes a local SQLite database (a
single file, no configuration required, database) inside AIRFLOW_HOME.3 airflow tasks
test exists for running and verifying a single task and does not record any state in the
database; however, it does require a database for storing logs, and therefore we must
initialize one with airflow db init.

 After all this, we can run the task from the command line with airflow tasks test
chapter7_aws_handwritten_digits_classifier extract_mnist_data 2020-01-01.
After we’ve copied the file to our own S3 bucket, we need to transform it into a format
the SageMaker KMeans model expects, which is the RecordIO format.4

import gzip
import io
import pickle

from airflow.operators.python import PythonOperator
from airflow.providers.amazon.aws.hooks.s3 import S3Hook
from sagemaker.amazon.common import write_numpy_to_dense_tensor

def _extract_mnist_data():
   s3hook = S3Hook()                                               B

   # Download S3 dataset into memory
   mnist_buffer = io.BytesIO()
   mnist_obj = s3hook.get_key(                                     c
       bucket_name="your-bucket",
       key="mnist.pkl.gz",
   )
   mnist_obj.download_fileobj(mnist_buffer)

   # Unpack gzip file, extract dataset, convert, upload back to S3
   mnist_buffer.seek(0)
   with gzip.GzipFile(fileobj=mnist_buffer, mode="rb") as f:       d

3 The database will be generated in a file name airflow.db in the directory set by AIRFLOW_HOME. You can open
and inspect it with, for example, DBeaver.

Listing 7.6 Transforming MNIST data to RecordIO format for SageMaker KMeans model

4 Mime type application/x-recordio-protobuf documentation: https://docs.aws.amazon.com/sagemaker/
latest/dg/cdf-inference.html.

https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-inference.html
https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-inference.html
https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-inference.html
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       train_set, _, _ = pickle.loads(f.read(), encoding="latin1")
       output_buffer = io.BytesIO()
       write_numpy_to_dense_tensor(                                e
           file=output_buffer,
           array=train_set[0],
           labels=train_set[1],
       ) 
       output_buffer.seek(0)
       s3hook.load_file_obj(                                       f
           output_buffer,
           key="mnist_data",
           bucket_name="your-bucket",
           replace=True,
       )

extract_mnist_data = PythonOperator(
   task_id="extract_mnist_data",
   python_callable=_extract_mnist_data,
   dag=dag,
)

B Initialize S3Hook to communicate with S3.

c Download data into in-memory binary stream.

d Unzip and unpickle

e Convert Numpy array to RecordIO records.

f Upload result to S3.

Airflow in itself is a general-purpose orchestration framework with a manageable set
of features to learn. However, working in the data field often takes time and experi-
ence to know about all technologies and to know which dots to connect in which way.
You never develop Airflow alone; oftentimes you’re connecting to other systems and
reading the documentation for that specific system. While Airflow will trigger the job
for such a task, the difficulty in developing a data pipeline often lies outside Airflow
and with the system that you’re communicating with. While this book focuses solely
on Airflow, due to the nature of working with other data-processing tools, we try to
demonstrate, via these examples, what it’s like to develop a data pipeline.

 For this task, there is no existing functionality in Airflow for downloading data and
extracting, transforming, and uploading the result back to S3. Therefore, we must
implement our own function. The function downloads the data into an in-memory
binary stream (io.BytesIO) so that the data is never stored in a file on the filesystem
and so that no remaining files are left after the task. The MNIST data set is small
(15 MB) and will therefore run on any machine. However, think wisely about the
implementation; for larger data it might be wise to opt for storing the data on disks
and processing in chunks.

 Similarly, this task can also be run/tested locally with

airflow tasks test chapter7_aws_handwritten_digits_classifier extract_mnist_data 
2020-01-01
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Once completed, the data will be visible in S3 (figure 7.7).

The next two tasks train and deploy the SageMaker model. The SageMaker operators
take a config argument, which entails configuration specific to SageMaker and is not
in the scope of this book. Let’s focus on the other arguments.

sagemaker_train_model = SageMakerTrainingOperator(
   task_id="sagemaker_train_model",
   config={
      ➥ "TrainingJobName": "mnistclassifier-{{ execution_date.strftime('%Y-

%m-%d-%H-%M-%S') }}",
      ...
   },
   wait_for_completion=True,
   print_log=True,
   check_interval=10,
   dag=dag,
)

Many of the details in config are specific to SageMaker and can be discovered by read-
ing the SageMaker documentation. Two lessons applicable to working with any exter-
nal system can be made, though.

 First, AWS restricts the TrainingJobName to be unique within an AWS account and
region. Running this operator with the same TrainingJobName twice will return an
error. Say we provided a fixed value, mnistclassifier, to the TrainingJobName; run-
ning it a second time would result in failure:

botocore.errorfactory.ResourceInUse: An error occurred (ResourceInUse) when 
calling the CreateTrainingJob operation: Training job names must be unique 
within an AWS account and region, and a training job with this name already 
exists (arn:aws:sagemaker:eu-west-1:[account]:training-job/mnistclassifier)

The config argument can be templated, and, hence, if you plan to retrain your model
periodically, you must provide it a unique TrainingJobName, which we can do by tem-
plating it with the execution_date. This way we ensure our task is idempotent and
existing training jobs do not result in conflicting names.

Listing 7.7 Training an AWS SageMaker model

Figure 7.7 Gzipped and pickled data was read and transformed into a usable format.
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 Second, note the arguments wait_for_completion and check_interval. If wait_
for_completion were set to false, the command would simply fire and forget (that’s
how the boto3 client works): AWS would start a training job, but we’d never know if
the training job completed successfully. Therefore, all SageMaker operators wait
(default wait_for_completion=True) for the given task to complete. Internally, the
operators poll every X seconds, checking to see if the job is still running. This
ensures our Airflow tasks only complete once finished (figure 7.8). If you have down-
stream tasks and want to ensure the correct behavior and order of your pipeline,
you’ll want to wait for completion.

Once the full pipeline is complete, we have successfully deployed a SageMaker model
and endpoint to expose it (figure 7.9).

However, in AWS, a SageMaker endpoint is not exposed to the outside world. It is
accessible via the AWS APIs, but not, for example, via a worldwide accessible HTTP
endpoint. Of course, to complete the data pipeline we’d like to have a nice interface
or API to feed handwritten digits and receive a result. In AWS, in order to make it acces-
sible to the internet, we could deploy a lambda (https://aws.amazon.com/lambda) to
trigger the SageMaker endpoint and an API gateway (https://aws.amazon.com/api-
gateway) to create an HTTP endpoint, forwarding requests to the Lambda,5 so why
not integrate them into our pipeline (figure 7.10)?

 The reason for not deploying infrastructure is the fact the Lambda and API Gate-
way will be deployed as one-offs, not periodically. They operate in the online stage of
the model and therefore are better deployed as part of a CI/CD pipeline. For the sake
of completeness, the API can be implemented with Chalice.

5 Chalice (https://github.com/aws/chalice) is a Python framework similar to Flask for developing an API and
automatically generating the underlying API gateway and lambda resources in AWS.

Figure 7.8 The SageMaker operators only succeed once the job is completed successfully in AWS.

Figure 7.9 In the SageMaker model menu, we can see the model was deployed and the endpoint is operational.

https://aws.amazon.com/lambda
https://aws.amazon.com/api-gateway
https://aws.amazon.com/api-gateway
https://github.com/aws/chalice
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import json
from io import BytesIO

import boto3
import numpy as np
from PIL import Image
from chalice import Chalice, Response
from sagemaker.amazon.common import numpy_to_record_serializer

app = Chalice(app_name="number-classifier")

@app.route("/", methods=["POST"], content_types=["image/jpeg"])
def predict():
   """
   Provide this endpoint an image in jpeg format.
   The image should be equal in size to the training images (28x28).
   """
   img = Image.open(BytesIO(app.current_request.raw_body)).convert("L")  B
   img_arr = np.array(img, dtype=np.float32)                             B
   runtime = boto3.Session().client(
       service_name="sagemaker-runtime",
       region_name="eu-west-1",
   )
   response = runtime.invoke_endpoint(                                   c
       EndpointName="mnistclassifier",
       ContentType="application/x-recordio-protobuf",
       Body=numpy_to_record_serializer()(img_arr.flatten()),
   )
   result = json.loads(response["Body"].read().decode("utf-8"))          d
   return Response(
       result,
       status_code=200,
       headers={“Content-Type”: “application/json”},
)

B Convert input image to grayscale numpy array.

c Invoke the SageMaker endpoint deployed by the Airflow DAG.

d The SageMaker response is returned as bytes.

The API holds one single endpoint, which accepts a JPEG image.

Listing 7.8 An example user-facing API using AWS Chalice

AWS

Lambda

AWS API

Gateway

Periodic Airflow pipeline One-off deployment

Figure 7.10 The handwritten digit classifier exists of more components than just the Airflow pipeline.
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curl --request POST \
  --url http:/ /localhost:8000/ \
  --header 'content-type: image/jpeg' \
  --data-binary @'/path/to/image.jpeg'

The result, if trained correctly, looks like figure 7.11.

The API transforms the given image into RecordIO format, just like the SageMaker model
was trained on. The RecordIO object is then forwarded to the SageMaker endpoint
deployed by the Airflow pipeline, and finally returns a prediction for the given image.

7.2 Moving data from between systems
A classic use case for Airflow is a periodic ETL job, where data is downloaded daily and
transformed elsewhere. Such a job is often for analytical purposes, where data is
exported from a production database and stored elsewhere for processing later. The pro-
duction database is most often (depending on the data model) not capable of returning
historical data (e.g., the state of the database as it was one month ago). Therefore, a peri-
odic export is often created and stored for later processing. Historic data dumps will
grow your storage requirements quickly and require distributed processing to crunch all
data. In this section, we’ll explore how to orchestrate such a task with Airflow.

 We developed a GitHub repository with code examples to go along with this book.
It contains a Docker Compose file for deploying and running the next use case, where
we extract Airbnb listings data and process it in a Docker container with Pandas. In a
large-scale data processing job, the Docker container could be replaced by a Spark
job, which distributes the work over multiple machines. The Docker Compose file
contains the following:

 One Postgres container holding the Airbnb Amsterdam listings.
 One AWS S3-API-compatible container. Since there is no AWS S3-in-Docker, we

created a MinIO container (AWS S3 API compatible object storage) for reading/
writing data.

 One Airflow container.

Listing 7.9 Classifying a handwritten image by submitting it to the API

{
"predictions": [

{
"distance_to_cluster": 2284.0478515625,
"closest_cluster": 2.0

}
]

}

Figure 7.11 Example API input and output. A real product could display a nice 
UI for uploading images and displaying the predicted number.
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Visually, the flow will look like figure 7.12.

Airflow acts as the “spider in the web,” starting and managing jobs and ensuring all
finish successfully in the correct order, failing the pipeline if not.

 The Postgres container is a custom-built Postgres
image holding a database filled with Inside Airbnb
data, available on Docker Hub as airflowbook/
insideairbnb. The database holds one single table
named “listings,” which contains records of places
in Amsterdam listed on Airbnb between April 2015
and December 2019 (figure 7.13).

 Let's first query the database and export data to
S3. From there we will read and process the data
with Pandas.

 A common task in Airflow is a data transfer
between two systems, possibly with a transformation
in between. Querying a MySQL database and stor-
ing the result on Google Cloud Storage, copying
data from an SFTP server to your data lake on AWS
S3, or calling an HTTP REST API and storing the
output have one thing in common, namely that they
deal with two systems: one for the input and one for
the output. 

 In the Airflow ecosystem, this has led to the
development of many such A-to-B operators. For these examples, we have the MySql-
ToGoogleCloudStorageOperator, SFTPToS3Operator, and the SimpleHttpOperator.
While there are many use cases to cover with the operators in the Airflow ecosystem,

Download data

Load data and

determine price fluctuations

Write results

+

Figure 7.12 Airflow managing jobs moving data between various systems

Figure 7.13 Table structure of 
example Inside Airbnb database
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there is no Postgres-query-to-AWS-S3 operator (at the time of writing this book).
So, what to do?

7.2.1 Implementing a PostgresToS3Operator

First, we could take note of how other similar operators work and develop our own
PostgresToS3Operator. Let’s look at an operator closely related to our use case, the
MongoToS3Operator in airflow.providers.amazon.aws.transfers.mongo_to_s3

(after installing apache-airflow-providers-amazon). This operator runs a query on
a MongoDB database and stores the result in an AWS S3 bucket. Let’s inspect it and
figure out how to replace MongoDB with Postgres. The execute() method is imple-
mented as follows (some code was obfuscated).

def execute(self, context):
   s3_conn = S3Hook(self.s3_conn_id)                      B

   results = MongoHook(self.mongo_conn_id).find(          c
       mongo_collection=self.mongo_collection,
       query=self.mongo_query,
       mongo_db=self.mongo_db
   )

   docs_str = self._stringify(self.transform(results))    d

   # Load Into S3
   s3_conn.load_string(                                   e
       string_data=docs_str,
       key=self.s3_key,
       bucket_name=self.s3_bucket,
       replace=self.replace
   )

B An S3Hook is instantiated.

c A MongoHook is instantiated and used to query for data.

d Results are transformed.

e load_string() is called on the S3Hook to write the transformed results.

It’s important to note that this operator does not use any of the filesystems on the Air-
flow machine but keeps all results in memory. The flow is basically

MongoDB  Airflow in operator memory  AWS S3.

Since this operator keeps the intermediate results in memory, think wisely about the
memory implications when running very large queries, because a very large result
could potentially drain the available memory on the Airflow machine. For now, let’s
keep the MongoToS3Operator implementation in mind and look at one other A-to-B
operator, the S3ToSFTPOperator.
def execute(self, context):

Listing 7.10 Implementation of the MongoToS3Operator



153Moving data from between systems
   ssh_hook = SSHHook(ssh_conn_id=self.sftp_conn_id)
   s3_hook = S3Hook(self.s3_conn_id)

   s3_client = s3_hook.get_conn()
   sftp_client = ssh_hook.get_conn().open_sftp()

   with NamedTemporaryFile("w") as f:                                B
       s3_client.download_file(self.s3_bucket, self.s3_key, f.name)
       sftp_client.put(f.name, self.sftp_path)

B NamedTemporaryFile is used for temporarily downloading a file, which is removed after the context 
exits.

This operator, again, instantiates two hooks: SSHHook (SFTP is FTP over SSH) and
S3Hook. However, in this operator, the intermediate result is written to a Named-
TemporaryFile, which is a temporary place on the local filesystem of the Airflow
instance. In this situation, we do not keep the entire result in memory, but we must
ensure enough disk space is available.

 Both operators have two hooks in common: one for communicating with system A
and one for communicating with system B. However, how data is retrieved and trans-
ferred between systems A and B is different and up to the person implementing the
specific operator. In the specific case of Postgres, database cursors can iterate to fetch
and upload chunks of results. However, this implementation detail is not in the scope
of this book. Keep it simple and assume the intermediate result fits within the resource
boundaries of the Airflow instance.

 A very minimal implementation of a PostgresToS3Operator could look as follows.

def execute(self, context):
   postgres_hook = PostgresHook(postgres_conn_id=self._postgres_conn_id)
   s3_hook = S3Hook(aws_conn_id=self._s3_conn_id)

   results = postgres_hook.get_records(self._query)    B
   s3_hook.load_string(                                c
      string_data=str(results),
      bucket_name=self._s3_bucket,
      key=self._s3_key,
   )

B Fetch records from the PostgreSQL database.

c Upload records to S3 object.

Let’s inspect this code. The initialization of both hooks is straightforward; we initialize
them, providing the name of the connection ID the user provides. While it is not nec-
essary to use keyword arguments, you might notice the S3Hook takes the argument
aws_conn_id (and not s3_conn_id as you might expect). During the development of
such an operator, and the usage of such hooks, it is inevitable to sometimes dive into

Listing 7.11 Implementation of the S3ToSFTPOperator

Listing 7.12 Example implementation of a PostgresToS3Operator
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the source code or carefully read the documentation to view all available arguments
and understand how things are propagated into classes. In the case of the S3Hook, it
subclasses the AwsHook and inherits several methods and attributes, such as the aws_
conn_id.

 The PostgresHook is also a subclass, namely of the DbApiHook. By doing so, it
inherits several methods, such as get_records(), which executes a given query and
returns the results. The return type is a sequence of sequences (more precisely a list of
tuples6). We then stringify the results and call load_string(), which writes encoded
data to the given bucket/key on AWS S3. You might think this is not very practical, and
you are correct. Although this is a minimal flow to run a query on Postgres and write the
result to AWS S3, the list of tuples is stringified, which no data processing framework is
able to interpret as an ordinary file format such as CSV or JSON (figure 7.14).

The tricky part of developing data pipelines is often not the orchestration of jobs
with Airflow, but ensuring all bits and pieces of various jobs are configured correctly
and fit together like puzzle pieces. So, let’s write the results to CSV; this will allow
data-processing frameworks such as Apache Pandas and Spark to easily interpret the
output data.

 For uploading data to S3, the S3Hook provides various convenience methods. For
file-like objects,7 we can apply load_file_obj().

def execute(self, context):
   postgres_hook = PostgresHook(postgres_conn_id=self._postgres_conn_id)
   s3_hook = S3Hook(aws_conn_id=self._s3_conn_id)

   results = postgres_hook.get_records(self.query)

   data_buffer = io.StringIO()                                      B
   csv_writer = csv.writer(data_buffer, lineterminator=os.linesep)
   csv_writer.writerows(results)
   data_buffer_binary = io.BytesIO(data_buffer.getvalue().encode())
   s3_hook.load_file_obj(
       file_obj=data_buffer_binary,                                 c

6 As specified in PEP 249, the Python Database API Specification.

Listing 7.13 In-memory conversion of Postgres query results to CSV and upload to S3

7 In-memory objects with file-operation methods for reading/writing.

Postgres

"[(2818, 'Quiet Garden View Room & Super Fast WiFi' ),
(20168, 'Studio with private bathroom in the centre 1'),
(25428, 'Lovely apt in City Centre (w.lift) near Jo rdaan')]"

AWS S3

Figure 7.14 Exporting data from a Postgres database to stringified tuples
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       bucket_name=self._s3_bucket,
       key=self._s3_key,
       replace=True,                                                d
   )

B For convenience, we first create a string buffer, which is like a file in memory to which we can write 
strings. After writing, we convert it to binary.

c It requires a file-like object in binary mode.

d Ensure idempotency by replacing files if they already exist.

Buffers live in memory, which can be convenient because memory leaves no remain-
ing files on the filesystem after processing. However, we have to realize that the output
of the Postgres query must fit into memory. The key to idempotency is setting replace
=True. This ensures existing files are overwritten. We can rerun our pipeline after, for
example, a code change, and then the pipeline will fail without replace=True because
of the existing file.

 With these few extra lines, we can now store CSV files on S3. Let’s see it in practice.

download_from_postgres = PostgresToS3Operator(
   task_id="download_from_postgres",
   postgres_conn_id="inside_airbnb",
   query="SELECT * FROM listings WHERE download_date={{ ds }}",
   s3_conn_id="s3",
   s3_bucket="inside_airbnb",
   s3_key="listing-{{ ds }}.csv",
   dag=dag,
)

With this code, we now have a convenient operator that makes querying Postgres and
writing the result to CSV on S3 an exercise of filling in the blanks.

7.2.2 Outsourcing the heavy work

A common discussion in the Airflow community is whether to view Airflow as not only
a task orchestration system but also a task execution system since many DAGs are writ-
ten with the BashOperator and PythonOperator, which execute work within the same
Python runtime as Airflow. Opponents of this mindset argue for viewing Airflow
only as a task-triggering system and suggest no actual work should be done inside Air-
flow itself. Instead, all work should be offloaded to a system intended for dealing with
data, such as Apache Spark.

 Let’s imagine we have a very large job that would take all resources on the machine
Airflow is running on. In this case, it’s better to run the job elsewhere; Airflow will
start the job and wait for it to complete. The idea is that there should be a strong sep-
aration between orchestration and execution, which we can achieve by Airflow start-
ing the job and waiting for completion and a data-processing framework such as Spark
performing the actual work.

Listing 7.14 Running the PostgresToS3Operator
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 In Spark, there are various ways to start a job:

 Using the SparkSubmitOperator—This requires a spark-submit binary and YARN
client config on the Airflow machine to find the Spark instance.

 Using the SSHOperator—This requires SSH access to a Spark instance but does
not require Spark client config on the Airflow instance.

 Using the SimpleHTTPOperator—This requires running Livy, a REST API for
Apache Spark, to access Spark.

The key to working with any operator in Airflow is reading the documentation and
figuring out which arguments to provide. Let’s look at the DockerOperator, which
starts the Docker container for processing the Inside Airbnb data using Pandas.

crunch_numbers = DockerOperator(
   task_id="crunch_numbers",
   image="airflowbook/numbercruncher",
   api_version="auto",
   auto_remove=True,                             b
   docker_url="unix://var/run/docker.sock",
   network_mode="host",                          c
   environment={
       "S3_ENDPOINT": "localhost:9000",          c
       "S3_ACCESS_KEY": "[insert access key]",
       "S3_SECRET_KEY": "[insert secret key]",
   },
   dag=dag,
)

b Remove the container after completion.

c To connect to other services on the host machine via http:/ / localhost, we must share the host 
network namespace by using host network mode.

The DockerOperator wraps around the Python Docker client and, given a list of argu-
ments, enables starting Docker containers. In listing 7.15, the docker_url is set to a
Unix socket, which requires Docker running on the local machine. It starts the Docker
image airflowbook/numbercruncher, which includes a Pandas script loading the Inside
Airbnb data from S3, processing it, and writing back the results to S3.

[
  {
    "id": 5530273,
    "download_date_min": 1428192000000,
    "download_date_max": 1441238400000,
    "oldest_price": 48,
    "latest_price": 350,
    "price_diff_per_day": 2
  },

Listing 7.15 Running a Docker container with the DockerOperator

Listing 7.16 Sample results from the numbercruncher script
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  {
    "id": 5411434,
    "download_date_min": 1428192000000,
    "download_date_max": 1441238400000,
    "oldest_price": 48,
    "latest_price": 250,
    "price_diff_per_day": 1.3377483444
  },
  ...
]

Airflow manages the starting of the container, fetching logs, and eventually removing
the container if required. The key is to ensure no state is left behind such that your
tasks can run idempotently and no remainders are left.

Summary
 Operators for external systems expose functionality by calling the client for a

given system.
 Sometimes these operators are merely passing through arguments to the Python

client.
 Other times they provide additional functionality, such as the SageMaker-

TrainingOperator, which continuously polls AWS and blocks until completion.
 If access to external services from the local machine is possible, we can test tasks

using the CLI command airflow tasks test.



Building custom
components
One strong feature of Airflow is that it can be easily extended to coordinate jobs
across many different types of systems. We have already seen some of this function-
ality in earlier chapters, where we were able to execute a job on for training a
machine learning model on Amazon’s SageMaker service using the S3CopyObject-
Operator, but you can (for example) also use Airflow to run jobs on an ECS (Elastic
Container Service) cluster in AWS using the ECSOperator to perform queries on a
Postgres database with the PostgresOperator, and much more.

 However, at some point, you may want to execute a task on a system that is not
supported by Airflow, or you may have a task that you can implement using the

This chapter covers
 Making your DAGs more modular and succinct 

with custom components 

 Designing and implementing a custom hook 

 Designing and implementing a custom operator

 Designing and implementing a custom sensor

 Distributing your custom components as a basic 
Python library
157
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PythonOperator but that requires a lot of boilerplate code, which prevents others
from easily reusing your code across different DAGs. How should you go about this?

 Fortunately, Airflow allows you to easily create new operators for implementing
your custom operations. This enables you to run jobs on otherwise unsupported sys-
tems or simply to make common operations easy to apply across DAGs. In fact, this is
exactly how many of the operators in Airflow were implemented: someone needed to
run a job on a certain system and built an operator for it. 

 In this chapter, we will show you how you can build your own operators and use them
in your DAGs. We will also explore how you can package your custom components into
a Python package, making them easy to install and reuse across environments. 

8.1 Starting with a PythonOperator
Before building any custom components, let’s try solving our problem using the (by
now familiar) PythonOperator. In this case, we’re interested in building a recom-
mender system, which will recommend new movie(s) to watch depending on our view
history. However, as an initial pilot project, we decide to focus on simply getting in our
data, which concerns past ratings of users for a given set of movies and recommending
the movies that seem most popular overall based on their ratings.

 The movie ratings data will be supplied via an API, which we can use to obtain user
ratings in a certain time period. This allows us, for example, to fetch new ratings daily
and to use this for training our recommender. For our pilot, we want to set up this
daily import process and create a ranking of the most popular movies. This ranking
will be used downstream to start recommending popular movies (figure 8.1). 

8.1.1 Simulating a movie rating API

To simulate data for this use case, we use data from the 25M MovieLens data set
(https://grouplens.org/datasets/movielens/), which is freely available and contains
25 million ratings for 62,000 movies by 162,000 users. As the data set itself is provided
as a flat file, we built a small REST API using Flask,1 which serves parts of the data set
at different endpoints.

1 The code for the API is available in the code repository accompanying this book.

Ratings

API

Rank movies

by popularity (daily)

Fetch new

ratings (daily)

Recommender

app (downstream)

Figure 8.1 Building a simple pilot MVP for movie recommender project

https://grouplens.org/datasets/movielens/
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 To start serving the API, we’ve provided a smaller Docker Compose file that creates
multiple containers: one for our REST API and a couple for running Airflow itself.
You can start both containers using the following commands:

$ cd chapter08
$ docker-compose up

After both containers have finished starting up, you should be able to access our
movie rating API at port 5000 on localhost (http:/ /localhost:5000). Visiting this URL
should show you a hello from our movie rating API (figure 8.2).

For this use case, we are mainly interested in obtaining movie ratings, which are pro-
vided by the /ratings endpoint of the API. To access this endpoint, visit http:/ /local-
host:5000/ratings. This should result in an authentication prompt (figure 8.3), as this
part of the API returns data that could contain (potentially) sensitive user informa-
tion. By default, we use airflow/airflow as a username and password combination.

Figure 8.2 Hello from the movie rating API

Figure 8.3 Authenticating to the ratings endpoint
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After you enter the credentials, you should get an initial list of ratings (figure 8.4). As
you can see, the ratings are returned in a JSON format. In this JSON, the actual rat-
ings are contained in the result key, while two additional fields, limit and offset,
indicate that we are only looking at a single page of the results (the first 100 ratings)
and that there are potentially more ratings available (indicated by the total field,
which describes the total number of records available for a query).

 To step through the paginated result of a query, you can use the offset parameter
of the API. For example, to fetch the next set of 100 records, we can add the offset
parameter with a value of 100:

 http:/ /localhost:5000/ratings?offset=100

We can also increase the number of records retrieved in a single query using the
limit parameter:

 http:/ /localhost:5000/ratings?limit=1000

By default, the ratings endpoint returns all ratings available in the API. To fetch rat-
ings for a specific time period, we can select ratings between a given start/end date
using the start_date and end_date parameters:2 

 http:/ /localhost:5000/ratings?start_date=2019-01-01&end_date=2019-01-02

2 The API only goes back 30 days, so make sure to update the start/end date parameters to more recent dates
than this example to get results.

Figure 8.4 Ratings returned by the ratings endpoint of the API

http://localhost:5000/ratings?offset=100
http://localhost:5000/ratings?limit=1000
http://localhost:5000/ratings?start_date=2019-01-01&end_date=2019-01-02
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This API filtering functionality will allow us to load data from the API on an incremen-
tal (daily) basis, without having to load the full data set. 

8.1.2 Fetching ratings from the API

Now that we’ve seen the basics of the MovieLens API, we want to start fetching ratings
programmatically so that we can (later) automate this fetching using Airflow. 

 For accessing our API from Python, we can use requests (https://requests.readthe
docs.io/en/master/), which is a popular and easy-to-use library for performing HTTP
requests in Python. To start firing requests at our API, we first need to create a
requests session using the Session class:

import requests
session = requests.Session()

This session will then allow us to fetch ratings from our API by using its get method,
which performs a GET HTTP request on our API:

response = session.get("http:/ /localhost:5000/ratings")

The get method also allows us to pass extra arguments, such as parameters (e.g.,
start/end date), to include in the query:

response = session.get(
   "http:/ /localhost:5000/ratings",
   params={
       "start_date": "2019-01-01",
       "end_date": "2019-01-02",
   },
)

Our call to get will return a response object, representing the result of the request. This
response object can be used to check whether the query was successful using the
raise_for_status method, which raises an exception if the query returned an unex-
pected status code. We can access the result of the query using the content attribute
or, in this case, using the json method (as we know that our API returns JSON):

response.raise_for_status()
response.json()

If we perform this query, we should see that our requests fail, as we forgot to include
any authentication in our request. Because our API is using basic HTTP authentica-
tion, we can configure our session to include our authentication details as follows:

movielens_user = "airflow"
movielens_password = "airflow"

session.auth = (movielens_user, movielens_password)

https://requests.readthedocs.io/en/master/
https://requests.readthedocs.io/en/master/
https://requests.readthedocs.io/en/master/
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This will make sure that the requests session includes our username/password authen-
tication with its requests.

 Let’s encapsulate this functionality in a _get_session function, which will handle
setting up the session with authentication so that we don’t have to worry about this in
other parts of our code. We’ll also let this function return the base URL of the API so
that this is also defined in a single place.

def _get_session():
   """Builds a requests Session for the Movielens API."""

      session = requests.Session()            B
      session.auth = ("airflow", "airflow")   c

   base_url = "http:/ /localhost:5000"

   return session, base_url                   d

B Create a requests session.

c Configure the session for basic HTTP authentication with this username and password.

d Return the session together with the API’s base URL, so we also know where to reach the API.

To make this a bit more configurable, we can also specify our username/password and
the different parts of our URL using environment variables.

MOVIELENS_HOST = os.environ.get("MOVIELENS_HOST", "movielens")           B
MOVIELENS_SCHEMA = os.environ.get("MOVIELENS_SCHEMA", "http")
MOVIELENS_PORT = os.environ.get("MOVIELENS_PORT", "5000")

MOVIELENS_USER = os.environ["MOVIELENS_USER"]                            c
MOVIELENS_PASSWORD = os.environ["MOVIELENS_PASSWORD"]

def _get_session():
   """Builds a requests Session for the Movielens API."""

   session = requests.Session()
   session.auth = (MOVIELENS_USER, MOVIELENS_PASSWORD)                   d

   base_url = f"{MOVIELENS_SCHEMA}://{MOVIELENS_HOST}:{MOVIELENS_PORT}"  d

   return session, base_url

session, base_url = _get_session()

B Retrieve the API configuration details from optional environment variables.

c Fetch the username/password from two required environment variables.

d Use the retrieved configuration to build our session and base URL.

Listing 8.1 Function that builds the API HTTP session

Listing 8.2 Making _get_session configurable (dags/01_python.py)
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This will later allow us to easily change these parameters when running our script by
defining values for these environment variables.

 Now that we have a rudimentary setup for our requests session, we need to imple-
ment some functionality that will transparently handle the pagination of the API.
One way to do this is to wrap our call to session.get with some code that inspects
the API response and keeps requesting new pages until we reach the total number
of rating records.

def _get_with_pagination(session, url, params, batch_size=100):
   """
   Fetches records using a GET request with given URL/params,
   taking pagination into account.
   """

   offset = 0                                 B
   total = None                               B
   while total is None or offset < total:     c
       response = session.get(
           url, 
           params={
               **params, 
               **{"offset": offset, "limit": batch_size}
           }
       )                                      d
       response.raise_for_status() 
       response_json = response.json()        e

       yield from response_json["result"]     f

       offset += batch_size                   g
       total = response_json["total"]         g

B Keep track of how many records we’ve retrieved and how many we should expect.

c Keep looping until we’ve retrieved all records. Note that the None check is for the first loop, as the 
total number of records is unknown until after the first loop.

d Fetch a new page, starting from the given offset. 

e Check the result status and parse the result JSON.

f Yield any retrieved records to the caller.

g Update our current offset and the total number of records.

By using yield from to return our results, this function effectively returns a generator
of individual rating records, meaning that we don’t have to worry about pages of
results anymore.3

Listing 8.3 Helper function for handling pagination (dags/01_python.py)

3 An additional advantage of this implementation is that it is lazy: it will only fetch a new page when the records
from the current page have been exhausted.
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 The only thing missing is a function that ties this all together and allows us to
perform queries to the ratings endpoint while specifying start and end dates for the
desired date range.

def _get_ratings(start_date, end_date, batch_size=100):
   session, base_url = _get_session()                            B

   yield from _get_with_pagination(                              c
       session=session,
       url=base_url + "/ratings",                                d
       params="start_date": start_date, "end_date": end_date},   e
       batch_size=batch_size,                                    f
   )

ratings = _get_ratings(session, base_url + "/ratings")           g
next(ratings)                                                    h
list(ratings)                                                    i

B Get the requests session (with authentication) plus base URL for the API.

c Use our pagination function to transparently fetch a collection of records.

d Make sure we’re using the ratings endpoint.

e Fetch records between the given start/end dates.

f Limit pages to a specific batch size.

g Example usage of the _get_ratings function

h Fetch a single record... 

i ... or fetch the entire batch.

This provides us with a nice, concise function for fetching ratings, which we can start
using in our DAG.

8.1.3 Building the actual DAG

Now that we have our _get_ratings function, we can call it using the PythonOperator
to fetch ratings for each schedule interval. Once we have the ratings, we can dump the
results into a JSON output file, partitioned by date so that we can easily rerun fetches
if needed.

 We can implement this functionality by writing a small wrapper function that takes
care of supplying the start/end dates and writing the ratings to an output function.

def _fetch_ratings(templates_dict, batch_size=1000, **_):
   logger = logging.getLogger(__name__)                            B

   start_date = templates_dict["start_date"]                       c
   end_date = templates_dict["end_date"]
   output_path = templates_dict["output_path"]

Listing 8.4 Tying things together in _get_ratings (dags/01_python.py)

Listing 8.5 Using the _get_ratings function (dags/01_python.py) 
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   logger.info(f"Fetching ratings for {start_date} to {end_date}")
   ratings = list(                                                 d
       _get_ratings(
           start_date=start_date,
           end_date=end_date,
           batch_size=batch_size,
       )
   )
   logger.info(f"Fetched {len(ratings)} ratings")

   logger.info(f"Writing ratings to {output_path}")

   output_dir = os.path.dirname(output_path)                       e
   os.makedirs(output_dir, exist_ok=True)

   with open(output_path, "w") as file_:                           f
       json.dump(ratings, fp=file_)

fetch_ratings = PythonOperator(                                    g
   task_id="fetch_ratings",
   python_callable=_fetch_ratings,
   templates_dict={
       "start_date": "{{ds}}",
       "end_date": "{{next_ds}}",
       "output_path": "/data/python/ratings/{{ds}}.json",
   },
)

B Use logging to provide some useful feedback about what the function is doing.

c Extract the templated start/end dates and output path.

d Use the _get_ratings function to fetch rating records.

e Create the output directory if it doesn’t exist.

f Write the output data as JSON.

g Create the task using the PythonOperator. 

Note that the start_date/end_date/output_path parameters are passed using
templates_dict, which allows us to reference context variables, such as the execution
date, in their values.

 After fetching our ratings, we include another step, rank_movies, to produce our
rankings. This step uses the PythonOperator to apply our rank_movies_by_rating
function, which ranks movies by their average rating, optionally filtering for a mini-
mum number of ratings.

import pandas as pd

def rank_movies_by_rating(ratings, min_ratings=2):
   ranking = (
       ratings.groupby("movieId")
       .agg(                                                           B
           avg_rating=pd.NamedAgg(column="rating", aggfunc="mean"),

Listing 8.6 Helper function for ranking movies (dags/custom/ranking.py)
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           num_ratings=pd.NamedAgg(column="userId", aggfunc="nunique"),
       )
       .loc[lambda df: df["num_ratings"] > min_ratings]                c
       .sort_values(["avg_rating", "num_ratings"], ascending=False)    d
   )
   return ranking

B Calculate the average rating and the total number of ratings.

c Filter for the minimum number required ratings.

d Sort by average rating.

def _rank_movies(templates_dict, min_ratings=2, **_):
   input_path = templates_dict["input_path"]
   output_path = templates_dict["output_path"]
   
   ratings = pd.read_json(input_path)                                 B
   ranking = rank_movies_by_rating(ratings, min_ratings=min_ratings)  c

   output_dir = os.path.dirname(output_path)                          d
   os.makedirs(output_dir, exist_ok=True)

   ranking.to_csv(output_path, index=True)                            e

rank_movies = PythonOperator(                                         f
   task_id="rank_movies",
   python_callable=_rank_movies,
   templates_dict={
       "input_path": "/data/python/ratings/{{ds}}.json",
       "output_path": "/data/python/rankings/{{ds}}.csv",
   },
)

fetch_ratings >> rank_movies                                          g

B Read ratings from the given (templated) input path.

c Use the helper function to rank movies.

d Create the output directory if it doesn’t exist.

e Write ranked movies to CSV.

f Use the _rank_movies function within a PythonOperator.

g Connect the fetch and rank tasks.

This results in a DAG comprising two steps: one for fetching ratings and one for rank-
ing movies. As such, by scheduling this DAG to run daily, it provides a ranking of the
most popular movies for that day. (Of course, a smarter algorithm might take some
history into account, but we have to start somewhere, right?)

Listing 8.7 Adding the rank_movies task (dags/01_python.py)
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8.2 Building a custom hook
As you can see, it takes some effort (and code) to actually start fetching ratings from
our API and to use them for our ranking. Interestingly, the majority of our code
concerns the interaction with the API, in which we have to get our API address and
authentication details, set up a session for interacting with the API, and include extra
functionality for handling details of the API, such as pagination.

 One way of dealing with the complexity of interacting with the API is encapsulat-
ing all this code into a reusable Airflow hook. By doing so, we can keep all the API-
specific code in one place and simply use this hook in different places in our DAGs,
which allows us to reduce the effort of fetching ratings to something like this.

hook = MovielensHook(conn_id="movielens")           B
ratings = hook.get_ratings(start_date, end_date)    c
hook.close()                                        d

B Create the hook.

c Use the hook to do some work.

d Close the hook, freeing any used resources. 

Hooks also allow us to leverage Airflow’s functionality for managing connection cre-
dentials via the database and UI, meaning that we don’t have to manually supply our
API credentials to our DAG. In the next few sections, we’ll explore how to write a cus-
tom hook and set about building a hook for our movie API. 

8.2.1 Designing a custom hook

In Airflow, all hooks are created as subclasses of the abstract BaseHook class.

from airflow.hooks.base_hook import BaseHook

class MovielensHook(BaseHook):
   …

To start building a hook, we need to define an __init__ method that specifies which
connection the hook uses (if applicable) and any other extra arguments our hook
might need. In this case, we want our hook to get its connection details from a specific
connection but don’t need any extra arguments.

from airflow.hooks.base_hook import BaseHook

class MovielensHook(BaseHook):
   def __init__(self, conn_id):     B

Listing 8.8 Using a MovielensHook for fetching ratings

Listing 8.9 Skeleton for a custom hook

Listing 8.10 Start of the MovielensHook class (dags/custom/hooks.py)
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     super().__init__()             c
     self._conn_id = conn_id        d

B The parameter conn_id tells the hook which connection to use.

c Call the constructor of the BaseHook class.4

d Don’t forget to store our connection ID. 

Most Airflow hooks are expected to define a get_conn method, which is responsible
for setting up a connection to an external system. In our case, this means that we can
reuse most of our previously defined _get_session function, which already provides
us with a preconfigured session for the movie API. That means a naive implementa-
tion of get_conn could look something like this.

class MovielensHook(BaseHook):
   
    ...

    def get_conn(self):
       session = requests.Session()
       session.auth = (MOVIELENS_USER, MOVIELENS_PASSWORD)

       schema = MOVIELENS_SCHEMA
       host = MOVIELENS_HOST
       port = MOVIELENS_PORT

       base_url = f"{schema}://{host}:{port}"

       return session, base_url

However, instead of hardcoding our credentials, we prefer to fetch them from the Air-
flow credentials store, which is more secure and easier to manage. To do so, we first
need to add our connection to the Airflow metastore, which we can do by opening the
“Admin > Connections” section using the Airflow web UI and clicking Create to add a
new connection.

 In the connection create screen (figure 8.5), we need to fill in the connection
details of our API. In this case, we’ll call the connection “movielens.” We’ll use this ID
later in our code to refer to the connection. Under connection type, we select HTTP
for our rest API. Under host, we need to refer to the hostname of the API in our
Docker Compose setup, which is “movielens.” Next, we can (optionally) indicate what
schema we’ll use for the connection (HTTP) and add the required login credentials
(user: “airflow”, password: “airflow”). Finally, we need to say under which port our API
will be available, which is port 5000 in our Docker Compose setup (as we saw earlier
when manually accessing the API). 

4 In Airflow 1, the constructor of the BaseHook class requires a source argument to be passed. Typically you
can just pass source=None, as you won’t be using it anywhere.

Listing 8.11 Initial implementation of the get_conn method
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Now that we have our connection, we need to modify our get_conn to fetch the con-
nection details from the metastore. To do so, the BaseHook class provides a conve-
nience method called get_connection, which can retrieve the connection details for
a given connection ID from the metastore:

config = self.get_connection(self._conn_id)

This connection configuration object has fields that map to the different details we
just filled in when creating our connection. As such, we can use the config object to
start determining the host/port and user/password for our API. First, we use the schema,
host, and port fields to determine our API URL as before: 

schema = config.schema or self.DEFAULT_SCHEMA
host = config.host or self.DEFAULT_HOST
port = config.port or self.DEFAULT_PORT

base_url = f"{schema}://{host}:{port}/"

Note that we define default values in our class (similar to the constants we defined
before) in case these fields are not specified in the connection. If we want to require
them to be specified in the connection itself, we can raise an error instead of supply-
ing defaults.

Address of the API host

Username and password for the API

Port the API is listening on

Connection name and type

Protocol to use (http or https)

Figure 8.5 Adding our movie API connection in the Airflow web UI
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 Now that we have obtained our base URL from the metastore, we only need to con-
figure authentication details on our session:

if config.login:
   session.auth = (config.login, config.password)

This gives us the following new implementation for get_conn.

class MovielensHook(BaseHook):
   DEFAULT_HOST = "movielens"                              B
   DEFAULT_SCHEMA = "http"
   DEFAULT_PORT = 5000

   def __init__(self, conn_id):
       super().__init__()
       self._conn_id = conn_id

   def get_conn(self):
       config = self.get_connection(self._conn_id)         c

       schema = config.schema or self.DEFAULT_SCHEMA       d
       host = config.host or self.DEFAULT_HOST
       port = config.port or self.DEFAULT_PORT

       base_url = f"{schema}://{host}:{port}"

       session = requests.Session()                        e

       if config.login:
           session.auth = (config.login, config.password)  e
          
       return session, base_url                            f

B Default connection values, as stored class variables for convenience

c Fetching the connection configuration using the given ID

d Building the base URL using the connection config and defaults

e Creating the requests session using login/password from the connection config

f Returning the requests session and base URL

One drawback of this implementation is that each call to get_conn will result in a call
to the Airflow metastore, as get_conn needs to fetch the credentials from the data-
base. We can avoid this limitation by also caching session and base_url on our
instance as protected variables.

class MovielensHook(BaseHook):

   def __init__(self, conn_id, retry=3):
       ...
       self._session = None              B

Listing 8.12 Making get_conn configurable (dags/custom/hooks.py

Listing 8.13 Adding caching for the API session (dags/custom/hooks.py)
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       self._base_url = None             B

   def get_conn(self):
       """
       Returns the connection used by the hook for querying data.
       Should in principle not be used directly.
       """

       if self._session is None:         c
           config = self.get_connection(self._conn_id)
             ...
           self._base_url = f"{schema}://{config.host}:{port}"

           self._session = requests.Session()
             ...

       return self._session, self._base_url

B Two extra instance variables, used for caching the session and base URL

c Check if we already have an active session before creating one.

This way, the first time get_conn gets called, self._session is None, so we end up
fetching our connection details from the metastore and setting up our base URL and
session. By storing these objects in the _session and _base_url instance variables, we
make sure that these objects are cached for later calls. As such, a second call to get_
conn will see that self._session no longer is None and will return the cached session
and base URL.

NOTE Personally, we’re not fans of using the get_conn method directly out-
side of the hook, even though it is publicly exposed, because this method
exposes the internal details of how your hook accesses the external system,
breaking encapsulation. This will give you substantial headaches if you ever
want to change this internal detail, as your code will be strongly coupled to
the internal connection type. This has been an issue in the Airflow codebase
as well, for example, in the case of the HdfsHook, where the implementation
of the hook was tightly coupled to a Python 2.7–only library (snakebite).

Now that we have completed our implementation of get_conn, we are able to build an
authenticated connection to our API. This means we can finally start building some
useful methods into our hook, which we can then use to do something useful with
our API.

 For fetching ratings, we can reuse the code from our previous implementation, which
retrieved ratings from the /ratings endpoint of the API and used our get_with_
pagination function to handle pagination. The main difference from the previous ver-
sion is that we now use get_conn within the pagination function to get our API session.

class MovielensHook(BaseHook):
    ...

Listing 8.14 Adding a get_ratings method (dags/custom/hooks.py)
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  def get_ratings(self, start_date=None, end_date=None, batch_size=100):  B
       """
       Fetches ratings between the given start/end date.

       Parameters
       —————
       start_date : str
           Start date to start fetching ratings from (inclusive). Expected
           format is YYYY-MM-DD (equal to Airflow"s ds formats).
       end_date : str
           End date to fetching ratings up to (exclusive). Expected
           format is YYYY-MM-DD (equal to Airflow"s ds formats).
       batch_size : int
           Size of the batches (pages) to fetch from the API. Larger values
           mean less requests, but more data transferred per request.
       """

       yield from self._get_with_pagination(
           endpoint="/ratings",
           params={"start_date": start_date, "end_date": end_date},
           batch_size=batch_size,
       )

   def _get_with_pagination(self, endpoint, params, batch_size=100):      c
       """
       Fetches records using a get request with given url/params,
       taking pagination into account.
       """

       session, base_url = self.get_conn()

       offset = 0
       total = None
       while total is None or offset < total:
           response = session.get(
               url, params={
                  **params, 
                  **{"offset": offset, "limit": batch_size}
               }
           )
           response.raise_for_status()
           response_json = response.json()

           yield from response_json["result"]

           offset += batch_size
           total = response_json["total"]

B Public method that will be called by users of the hook

c Our internal helper method that handles pagination (same implementation as before)

Altogether, this gives us a basic Airflow hook that handles connections to the Movie-
Lens API. Adding extra functionality (other than just fetching ratings) can be easily
done by adding extra methods to the hook.
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 Although it may seem like a lot of effort to build a hook, most of the work was shift-
ing around the functions we wrote before into a single, consolidated hook class. An
advantage of our new hook is that it provides nice encapsulation of the MovieLens
API logic in a single class, which is easy to use across different DAGs.

8.2.2 Building our DAG with the MovielensHook

Now that we have our hook, we can start using it to a fetch ratings in our DAG. How-
ever, first we need to save our hook class somewhere so that we can import it into our
DAG. One way is by creating a package in the same directory as our DAGs folder5 and
save our hook in a hooks.py module inside this package.

chapter08
├── dags
│   ├── custom             B
│   │   ├── __init__.py
│   │   └── hooks.py       c
│   ├── 01_python.py
│   └── 02_hook.py
├── docker-compose.yml
└── ...

B Example package named “custom”

c Module containing the custom hook code

Once we have this package, we can import our hook from the new custom package,
which contains our custom hook code:

from custom.hooks import MovielensHook

After importing the hook, fetching ratings becomes quite simple. We only need to instan-
tiate the hook with the proper connection ID and then call the hook’s get_ratings
method with the desired start/end dates.

hook = MovielensHook(conn_id=conn_id)
ratings = hook.get_ratings(
   start_date=start_date,
   end_date=end_date,
   batch_size=batch_size
)

This gives back a generator of rating records, which we then write to an output
(JSON) file.

5 We’ll show another package-based approach later in this chapter.

Listing 8.15 Structure for a DAG directory with a custom package

Listing 8.16 Using our MovielensHook to fetch ratings
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 To use the hook in our DAG, we still need to wrap this code in a PythonOperator
that takes care of supplying the correct start/end dates for the given DAG run, as well
as actually writing the ratings to the desired output file. For this, we can essentially use
the same _fetch_ratings function we defined for our initial DAG, changing the call
to _get_ratings with the call to our new hook.

def _fetch_ratings(conn_id, templates_dict, batch_size=1000, **_):
   logger = logging.getLogger(__name__)

   start_date = templates_dict["start_date"]
   end_date = templates_dict["end_date"]
   output_path = templates_dict["output_path"]

   logger.info(f"Fetching ratings for {start_date} to {end_date}")
   hook = MovielensHook(conn_id=conn_id)                                   B
   ratings = list(                                                         c
       hook.get_ratings(                                                   c
           start_date=start_date, end_date=end_date, batch_size=batch_size c
       )                                                                   c
   )                                                                       c
   logger.info(f"Fetched {len(ratings)} ratings")

   logger.info(f"Writing ratings to {output_path}")

   output_dir = os.path.dirname(output_path)                               d
   os.makedirs(output_dir, exist_ok=True)                                  d

   with open(output_path, "w") as file_:                                   d
       json.dump(ratings, fp=file_)                                        d

PythonOperator(
   task_id="fetch_ratings",
   python_callable=_fetch_ratings,
   op_kwargs={"conn_id": "movielens"},                                     e
   templates_dict={
       "start_date": "{{ds}}",
       "end_date": "{{next_ds}}",
       "output_path": "/data/custom_hook/{{ds}}.json",
   },
)

B Create an instance of the MovielensHook with the appropriate connection ID.

c Use the hook to fetch ratings from the API. 

d Write the fetched ratings like before.

e Specify which connection to use.

Note that we added the parameter conn_id to fetch_ratings, which specifies the
connection to use for the hook. As such, we also need to include this parameter when
calling _fetch_ratings from the PythonOperator.

Listing 8.17 Using the MovielensHook in the DAG (dags/02_hook.py) 
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 This gives us the same behavior as before, but with a much simpler and smaller
DAG file, as most of the complexity surrounding the MovieLens API is now out-
sourced to the MovielensHook.

8.3 Building a custom operator
Although building a MovielensHook has allowed us to move a lot of complexity from
our DAG into the hook, we still have to write a considerable amount of boilerplate
code for defining start/end dates and writing the ratings to an output file. This means
that, if we want to reuse this functionality in multiple DAGs, we will still have some
considerable code duplication and extra effort involved.

 Fortunately, Airflow also allows us to build custom operators, which can be used to
perform repetitive tasks with a minimal amount of boilerplate code. In this case, we
could, for example, use this functionality to build a MovielensFetchRatingsOperator,
which would allow us to fetch movie ratings using a specialized operator class.

8.3.1 Defining a custom operator

In Airflow, all operators are built as subclasses of the BaseOperator class.

from airflow.models import BaseOperator
from airflow.utils.decorators import apply_defaults

class MyCustomOperator(BaseOperator):          B
   @apply_defaults                             c
   def __init__(self, conn_id, **kwargs):      d
       super.__init__(self, **kwargs)
       self._conn_id = conn_id
       ...

B Inherit from the BaseOperator class.

c Decorator that makes sure default DAG arguments are passed to our operator

d Pass any extra keyword arguments to the BaseOperator constructor.

Any arguments specific to your operator (such as conn_id in this example) can be spec-
ified explicitly in the __init__ constructor method. How you use these arguments is, of
course, up to you. Operator-specific arguments vary between different operators, but
typically include connection IDs (for operators involving remote systems) and any
details required for the operation (such as start/end dates, queries, etc.).

 The BaseOperator class also takes a large number of (mostly optional) generic
arguments that define the basic behavior of the operator. Examples of generic argu-
ments include the task_id the operator created for the task, but also many arguments
such as retries and retry_delay that affect the scheduling of the resulting task. To
avoid having to list all these generic tasks explicitly, we use Python’s **kwargs syntax
to forward these generic arguments to the __init__ of the BaseOperator class.

Listing 8.18 Skeleton for a custom operator
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 Thinking back to earlier DAGs in this book, you may remember that Airflow also
provides the option of defining certain arguments as default arguments for the entire
DAG. This is done using the default_args parameter to the DAG object itself.

default_args = {
   "retries": 1,
   "retry_delay": timedelta(minutes=5),
}

with DAG(
   ...
   default_args=default_args
) as dag:
   MyCustomOperator(
       ...
   )

To ensure that these default arguments are applied to your custom operator, Airflow
supplies the apply_defaults decorator, which is applied to the __init__ method of
your operator (as shown in our initial example). In practice, this means that you
should always include the apply_defaults decorator when defining custom opera-
tors; otherwise, you will inadvertently break this Airflow behavior for your operator.

 Now that we have our basic custom operator class, we still need to define what our
operator actually does by implementing the execute method, the main method Air-
flow calls when the operator is actually being executed as part of a DAG run.

class MyCustomOperator(BaseOperator):
   ...

   def execute(self, context):    B
       ...

B Main method called when executing our operator 

As you can see, the execute method takes a single parameter, context, which is a dict
containing all the Airflow context variables. The method can then continue to per-
form whatever function the operator was designed to do, taking variables from the
Airflow context (such as execution dates, etc.) into account.

8.3.2 Building an operator for fetching ratings

Now that we know the basics of building an operator, let’s see how we can start building
a custom one for fetching ratings. The idea is that this operator fetches ratings from the
MovieLens API between a given start/end date and writes these ratings to a JSON file,
similar to what our _fetch_ratings function was doing in our previous DAG.

Listing 8.19 Applying default arguments to operators

Listing 8.20 The operator’s execute method
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 We can start by filling in the required parameters for the operator in its __init__
method, which include the start/end dates, which connection to use, and an output
path to write to.

class MovielensFetchRatingsOperator(BaseOperator):
   """
   Operator that fetches ratings from the Movielens API.

   Parameters
   —————
   conn_id : str
       ID of the connection to use to connect to the Movielens 
       API. Connection is expected to include authentication 
       details (login/password) and the host that is serving the API.
   output_path : str
       Path to write the fetched ratings to.
   start_date : str
       (Templated) start date to start fetching ratings from (inclusive).
       Expected format is YYYY-MM-DD (equal to Airflow"s ds formats).
   end_date : str
       (Templated) end date to fetching ratings up to (exclusive).
       Expected format is YYYY-MM-DD (equal to Airflow"s ds formats).
   """

   @apply_defaults
   def __init__(
       self, conn_id, output_path, start_date, end_date, **kwargs,
   ):
       super(MovielensFetchRatingsOperator, self).__init__(**kwargs)

       self._conn_id = conn_id
       self._output_path = output_path
       self._start_date = start_date
       self._end_date = end_date

Next, we have to implement the body of the operator, which actually fetches the rat-
ings and writes them to an output file. To do this, we can essentially fill in the execute
method of the operator with a modified version of our implementation for _fetch
_ratings.

class MovielensFetchRatingsOperator(BaseOperator):
   ...

   def execute(self, context):
       hook = MovielensHook(self._conn_id)                   B

       try:
           self.log.info(

Listing 8.21 Start of the custom operator (dags/custom/operators.py)

Listing 8.22 Adding the execute method (dags/custom/operators.py)



178 CHAPTER 8 Building custom components
               f"Fetching ratings for {self._start_date} to {self._end_date}"
           )
           ratings = list(                                   C
               hook.get_ratings(                             C
                   start_date=self._start_date,              C
                   end_date=self._end_date,                  C
               )                                             C
           )                                                 C
           self.log.info(f"Fetched {len(ratings)} ratings")
       finally:
           hook.close()                                      D

       self.log.info(f"Writing ratings to {self._output_path}")
       
       output_dir = os.path.dirname(self._output_path)       E
       os.makedirs(output_dir, exist_ok=True)
       
       with open(self._output_path, "w") as file_:           F
           json.dump(ratings, fp=file_)

B Create an instance of the MovielensHook.

c Use the hook to fetch ratings.

d Close the hook to release any resources.

e Create the output directory if it doesn’t exist. 

f Write out the results.

As you can see, porting our code to a custom operator required relatively few changes
to our code. Similar to the _fetch_ratings function, this execute method starts by
creating an instance of our MovielensHook and using this hook to fetch ratings
between the given start/end dates. One difference is that the code now takes its
parameters from self, making sure to use the values passed when instantiating the
operator. We also switched our logging calls to use the logger provided by the Base-
Operator class, which is available in the self.log property. Finally, we added some
exception handling to make sure our hook is always closed properly, even if the call to
get_ratings fails. This way, we don’t waste any resources by forgetting to close our
API sessions , which is good practice when implementing code that uses hooks.

 Using this operator is relatively straightforward, as we can simply instantiate the
operator and include it in our DAG.

fetch_ratings = MovielensFetchRatingsOperator(
   task_id="fetch_ratings",
   conn_id="movielens",
   start_date="2020-01-01",
   end_date="2020-01-02",
   output_path="/data/2020-01-01.json"
)

Listing 8.23 Using the MovielensFetchRatingsOperator
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A drawback of this implementation is that it takes predefined dates for which the
operator will fetch ratings. As such, the operator will only fetch ratings for a single
hardcoded time period, without taking the execution date into account.

 Fortunately, Airflow also allows us to make certain operator variables template-
able, meaning that they can refer to context variables such as the execution date. To
allow specific instance variables to be templated, we need to tell Airflow to template
them using the templates_field class variable.

class MovielensFetchRatingsOperator(BaseOperator):
   ...
   template_fields = ("_start_date", "_end_date", "_output_path")     B
   ...

   @apply_defaults
   def __init__(
       self,
       conn_id,
       output_path,
       start_date="{{ds}}",
       end_date="{{next_ds}}",
       **kwargs,
   ):
       super(MovielensFetchRatingsOperator, self).__init__(**kwargs)

       self._conn_id = conn_id
       self._output_path = output_path
       self._start_date = start_date
       self._end_date = end_date

B Tell Airflow to template these instance variables on our operator.

This effectively tells Airflow that the variables _start_date, _end_date, and _output
_path (which are created in __init__) are available for templating. This means that if
we use any Jinja templating in these string parameters, Airflow will make sure that these
values are templated before our execute method is called. As a result, we can now use
our operator with templated arguments as follows.

from custom.operators import MovielensFetchRatingsOperator

fetch_ratings = MovielensFetchRatingsOperator(
   task_id="fetch_ratings",
   conn_id="movielens",
   start_date="{{ds}}",
   end_date="{{next_ds}}",
   output_path="/data/custom_operator/{{ds}}.json"
)

Listing 8.24 Adding template fields (dags/custom/operators.py)

Listing 8.25 Using templating in the operator (dags/03_operator.py)
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This way, Airflow will fill in the values of the start of the execution window (ds) for
the start date and the end of the execution window (next_ds) for the end date. It
will also make sure the output is written to a file tagged with the start of the execu-
tion window (ds).

8.4 Building custom sensors
With all this talk about operators, you may be wondering how much effort it takes to
build a custom sensor. In case you skipped over them in previous chapters, a sensor is
a special type of operator that can be used to wait for a certain condition to be ful-
filled before executing any downstream tasks in the DAG. For example, you may want
to use a sensor for checking if certain files or data are available in a source system
before trying to use the data in any downstream analysis.

 Regarding their implementation, sensors are very similar to operators, except that
they inherit from the BaseSensorOperator class instead of the BaseOperator.

from airflow.sensors.base import BaseSensorOperator

class MyCustomSensor(BaseSensorOperator):
    ...

As the name suggests, this shows that sensors are in fact a special type of operator. The
BaseSensorOperator class provides the basic functionality for a sensor and requires
sensors to implement a special poke method rather than the execute method.

class MyCustomSensor(BaseSensorOperator):

   def poke(self, context):
       ...

The signature of the poke method is similar to execute in that it takes a single argu-
ment containing the Airflow context. However, in contrast to the execute method,
poke is expected to return a Boolean value that indicates if the sensor condition is
true. If it is, the sensor finishes its execution, allowing downstream tasks to start exe-
cuting. If the condition is false, the sensor sleeps for several seconds before checking
the condition again. This process repeats until the condition becomes true or the sen-
sor hits its timeout.

 Although Airflow has many built-in sensors, you can essentially build your own to
check any type of condition. For example, in our use case, we may want to implement
a sensor that first checks if rating data is available for a given date before continuing
with the execution of our DAG.

 To start building our MovielensRatingsSensor, we first need to define the
__init__ of our custom sensor class, which should take a connection ID (that species

Listing 8.26 Skeleton for a custom sensor

Listing 8.27 The sensor’s poke method
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which connection details to use for the API) and a range of start/end dates, which
specifies for which date range we want to check if there are ratings. This would look
something like the following.

from airflow.sensors.base import BaseSensorOperator
from airflow.utils.decorators import apply_defaults

class MovielensRatingsSensor(BaseSensorOperator):
   """
   Sensor that waits for the Movielens API to have 
   ratings for a time period.

   start_date : str
       (Templated) start date of the time period to check for (inclusive).
       Expected format is YYYY-MM-DD (equal to Airflow"s ds formats).
   end_date : str
       (Templated) end date of the time period to check for (exclusive).
       Expected format is YYYY-MM-DD (equal to Airflow"s ds formats).
   """

   template_fields = ("_start_date", "_end_date")      B

   @apply_defaults                                     B
   def __init__(self, conn_id, start_date="{{ds}}", 
                end_date="{{next_ds}}", **kwargs):
       super().__init__(**kwargs)                      B
       self._conn_id = conn_id
       self._start_date = start_date
       self._end_date = end_date

B Since sensors are a special type of operator, we can use the same basic setup as we used for 
implementing an operator.

After specifying the constructor, the only thing we need to implement is our poke
method. In this method, we can check if there are ratings for a specific date range by
simply requesting ratings between the given start/end dates that return true if there
are any records. Note that this does not require fetching all rating records; we only
need to demonstrate that there is at least one record in the range.

 Using our MovielensHook, implementing this algorithm is pretty straightforward.
First, we instantiate the hook and then call get_ratings to start fetching records. As we
are only interested in seeing if there is at least one record, we can try calling next on the
generator returned by get_ratings, which will raise a StopIteration if the generator is
empty. As such, we can test for the exception using try/except, returning True if no
exception is raised and False if it is (indicating that there were no records).

class MovielensRatingsSensor(BaseSensorOperator):
   def poke(self, context):

Listing 8.28 Start of the sensor class (dags/custom/sensors.py)

Listing 8.29 Implementing the poke method (dags/custom/sensors.py)
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       hook = MovielensHook(self._conn_id)

       try:
           next(                                  B
               hook.get_ratings(
                   start_date=self._start_date, 
                   end_date=self._end_date, 
                   batch_size=1
               )
           )
           self.log.info(
               f"Found ratings for {self._start_date} to {self._end_date}"
           )
           return True                            c
       except StopIteration:                      d
           self.log.info(
               f"Didn't find any ratings for {self._start_date} "
               f"to {self._end_date}, waiting..."
           )
           return False                           d
       finally:
           hook.close()                           e

B Try to fetch one record from the hook (using next to fetch the first record).

c If this succeeds, we have at least one record, so return true.

d If this fails with a StopIteration, the collection of records is empty, so return false.

e Makes sure to close the hook to free resources 

Note that the reuse of our MovielensHook makes this code relatively short and succinct,
demonstrating the power of containing the details of interacting with the MovieLens
API within the hook class.

 This sensor class can now be used to make the DAG check and wait for new ratings
to come in before continuing with the execution of the rest of the DAG.

... 

from custom.operators import MovielensFetchRatingsOperator
from custom.sensors import MovielensRatingsSensor

with DAG(
   dag_id="04_sensor",
   description="Fetches ratings with a custom sensor.",
   start_date=airflow_utils.dates.days_ago(7),
   schedule_interval="@daily",
) as dag:
   wait_for_ratings = MovielensRatingsSensor(         B
       task_id="wait_for_ratings",
       conn_id="movielens",
       start_date="{{ds}}",
       end_date="{{next_ds}}",
   )

Listing 8.30 Using the sensor to wait for ratings (dags/04_sensor.py)
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   fetch_ratings = MovielensFetchRatingsOperator(     c
       task_id="fetch_ratings",
       conn_id="movielens",
       start_date="{{ds}}",
       end_date="{{next_ds}}",
       output_path="/data/custom_sensor/{{ds}}.json"
   )

   ... 
   
   wait_for_ratings >> fetch_ratings >> rank_movies

B Sensor that waits for records to be available

c Operator that fetches records once the sensor has completed

8.5 Packaging your components
Up to now, we’ve relied on including our custom components in a subpackage within the
DAGs directory to make them importable by our DAGs. However, this approach is not
necessarily ideal if you want to be able to use these components in other projects, want to
share them with other people, or want to perform more rigorous testing on them.

 A better approach for distributing your components is to put your code into a
Python package. Although this requires a bit of extra overhead in terms of setup, it
gives you the benefit of being able to install your components into your Airflow envi-
ronment, as with any other package. Moreover, keeping the code separate from your
DAGs allows you to set up a proper CI/CD process for your custom code and makes it
easier to share/collaborate on the code with others.

8.5.1 Bootstrapping a Python package

Unfortunately, packaging can be a complicated topic in Python. In this case, we’ll focus
on the most basic example of Python packaging, which involves using setuptools to
create a simple Python package.6 Using this approach, we aim to create a small pack-
age called airflow_movielens, which will contain the hook, operator, and sensor
classes written in the previous sections. 

 To start building our package, lets first create a directory for our package:

$ mkdir -p airflow-movielens
$ cd airflow-movielens

Next, let’s start including our code by creating the base of our package. To do this,
we’ll contain a src subdirectory in our airflow-movielens directory and create a
directory, airflow_movielens (the name of our package), inside this src directory.
To make airflow_movielens into a package, we also create an __init__.py file inside
the directory:7

6 More in-depth discussions of Python packaging and different packaging approaches are outside the scope of
this book and explained more elaborately in many Python books and/or online articles.
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$ mkdir -p src/airflow_movielens
$ touch src/airflow_movielens/__init__.py

Next, we can start including our code by creating the files hooks.py, sensors.py, and
operators.py in the airflow_movielens directory and copying the implementations
of our custom hook, sensor, and operator classes into their respective files. Once
done, you should end up with a result that looks something like this:

$ tree airflow-movielens/
airflow-movielens/
└── src
   └── airflow_movielens
      ├── __init__.py
      ├── hooks.py
      ├── operators.py
      └── sensors.py

Now that we have the basic structure of our package, all we need to do to turn this into
a package is to include a setup.py file, which tells setuptools how to install it. A basic
setup.py file typically looks something like the following listing.

#!/usr/bin/env python
import setuptools

requirements = ["apache-airflow", "requests"]                         b

setuptools.setup(
   name="airflow_movielens",                                          c
   version="0.1.0",                                                   c
   description="Hooks, sensors and operators for the Movielens API.", c
   author="Anonymous",                                                d
   author_email="anonymous@example.com",                              d
   install_requires=requirements,                                     e
   packages=setuptools.find_packages("src"),                          f
   package_dir={"": "src"},                                           f
   url="https://github.com/example-repo/airflow_movielens",           g
   license="MIT license",                                             h
)

b List of Python packages that our package depends on

c Name, version, and description of our package

d Author details (metadata)

e Informs setuptools about our dependencies

f Tells setuptools where to look for our package’s Python files

g Package home page

h License of the code

7 Technically the __init__.py file is no longer necessary with PEP420, but we like to be explicit.

Listing 8.31 Example setup.py file (package/airflow-movielens/setup.py)
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The most important part of this file is the call to setuptools.setup, which gives set-
uptools detailed metadata about our package. The most important fields in this call
are as follows:

 name—Defines the name of your package (what it will be called when installed).
 version—The version number of your package.
 install_requires—A list of dependencies required by your package.
 packages/package_dir—Tells setuptools which packages to include when install-

ing and where to look for these packages. In this case, we use a src directory lay-
out for our Python package.8 

Additionally, setuptools allows you to include many optional fields9 for describing
your package, including the following:

 author—The name of the package author (you).
 author_email—Contact details for the author.
 description—A short, readable description of your package (typically one line).

A longer description can be given using the long_description argument.
 url —Where to find your package online.
 license—The license under which your package code is released (if any).

Looking at the setup.py implementation, this means that we tell setuptools that our
dependencies include apache-airflow and requests, that our package should be
called airflow_movielens with a version of 0.1, and that it should include files from
the airflow_movielens package situated in the src directory, while including some
extra details about ourselves and the package description license.

 Once we have finished writing our setup.py, our package should look like this:

$ tree airflow-movielens
airflow-movielens
├── setup.py
└── src
   └── airflow_movielens
      ├── __init__.py
      ├── hooks.py
      ├── operators.py
      └── sensors.py

This means we now have a setup for our basic airflow_movielens Python package,
which we can try installing in the next section. 

 Of course, more elaborate packages will typically include tests, documentation,
and so on, which we don’t describe here. If you want to see extensive setups for

8 See this blog for more details on src- versus non-src-based layouts: https://blog.ionelmc.ro/2014/05/25/
python-packaging/#the-structure.

9 For a full reference of parameters that you can pass to setuptools.setup, please refer to the setuptools
documentation.

https://blog.ionelmc.ro/2014/05/25/python-packaging/#the-structure
https://blog.ionelmc.ro/2014/05/25/python-packaging/#the-structure
https://blog.ionelmc.ro/2014/05/25/python-packaging/#the-structure
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Python packaging, we recommend checking out the many templates available online
(e.g., https://github.com/audreyr/cookiecutter-pypackage), which provide excellent
starting points for bootstrapping Python package development.

8.5.2 Installing your package

Now that we have our basic package, we should be able to install airflow_movielens
into our Python environment. You can try this by running pip to install the package in
your active environment: 

$ python -m pip install ./airflow-movielens
Looking in indexes: https://pypi.org/simple
Processing ./airflow-movielens
Collecting apache-airflow
...
Successfully installed ... airflow-movielens-0.1.0 ...

Once pip is done installing your package and dependencies, you can check whether
your package was installed by starting Python and trying to import one of the classes
from your package:

$ python
Python 3.7.3 | packaged by conda-forge | (default, Jul  1 2019, 14:38:56)
[Clang 4.0.1 (tags/RELEASE_401/final)] :: Anaconda, Inc. on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> from airflow_movielens.hooks import MovielensHook
>>> MovielensHook
<class 'airflow_movielens.hooks.MovielensHook'>

Deploying your package to your Airflow environment shouldn’t require much more
effort than installing your package in Airflow’s Python environment. However, depend-
ing on your setup, you should make sure that your package and all its dependencies
are installed in all of the environments Airflow uses (that is, the scheduler, webserver,
and worker environments). 

 Distribution of your package can be handled by either installing directly from a
GitHub repository,

$ python -m pip install git+https://github.com/...

or by using a pip package feed such as PyPI (or a private feed),

$ python -m pip install airflow_movielens

or by installing from a file-based location (as we initially did here). In the latter case,
you do need to make sure that the Airflow environment can access the directory from
which you want to install the package.

https://github.com/audreyr/cookiecutter-pypackage
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Summary
 You can extend Airflow’s built-in functionality by building custom components

that fit your specific use cases. In our experience, two use cases in which custom
operators are particularly powerful are as follows:
– Running tasks on systems that are not natively supported by Airflow (e.g.,

new cloud services, databases, etc.)
– Providing operators/sensors/hooks for commonly performed operations,

such that these are easy to implement by people in your team across DAGs
Of course, this is by no means an exhaustive list, and there may be many other
situations in which you would want to build your own components.

 Custom hooks allow you to interact with systems that do not have support built
into Airflow.

 Custom operators can be created to perform tasks that are specific to your
workflows and are not covered by built-in operators.

 Custom sensors allow you to build components for waiting on (external) events.
 Code containing custom operators, hooks, sensors, and so on can be structured

by implementing them in a (distributable) Python library.
 Custom hooks/operators/sensors require you to install them with their depen-

dencies on your Airflow cluster before they can be used. This can be tricky if
you do not have permission to install software on the cluster or if you have soft-
ware with conflicting dependencies.

 Some people prefer to rely on generic operators such as the built-in Docker-
Operator and the KubernetesPodOperator to execute their tasks. An advantage
of this approach is that you can keep your Airflow installation lean, as Airflow is
only coordinating containerized jobs; you can keep all dependencies of specific
tasks with the container. We’ll focus on this approach further in a future chapter.



Testing
In all previous chapters, we focused on various parts of developing Airflow. So how
do you ensure the code you’ve written is valid before deploying it into a produc-
tion system? Testing is an integral part of software development, and nobody wants
to write code, take it through a deployment process, and keep their fingers
crossed for all to be okay. Such a way of development is obviously inefficient and
provides no guarantees on the correct functioning of the software, both in valid
and invalid situations. 

 This chapter will dive into the gray area of testing Airflow, which is often regarded
as a tricky subject. This is because of Airflow’s nature of communicating with many
external systems and the fact that it’s an orchestration system, which starts and stops
tasks performing logic, while Airflow itself (often) does not perform any logic.

This chapter covers
 Testing Airflow tasks in a CI/CD pipeline

 Structuring a project for testing with pytest

 Mimicking a DAG run to test tasks that apply 
templating

 Faking external system events with mocking

 Testing behavior in external systems with 
containers
186



187Getting started with testing
9.1 Getting started with testing
Tests can be applied on various levels. Small individual units of work (i.e., single func-
tions) can be tested with unit tests. While such tests might validate the correct behav-
ior, they do not validate the behavior of a system composed of multiple such units
altogether. For this purpose, we write integration tests, which validate the behavior of
multiple components together. In testing literature, the next used level of testing is
acceptance testing (evaluating fit with business requirements), which does not apply
to this chapter. Here, we will dive into unit and integration testing.

 Throughout this chapter, we demonstrate various code snippets written with pytest
(https://pytest.org). While Python has a built-in framework for testing named unittest,
pytest is one of the most popular third-party testing frameworks for various features
such as fixtures, which we’ll take advantage of in this chapter. No prior knowledge of
pytest is assumed.

 Since the supporting code with this book lives in GitHub, we’ll demonstrate a
CI/CD pipeline running tests with GitHub Actions (https://github.com/features/
actions), the CI/CD system that integrates with GitHub. With the ideas and code from
the GitHub Actions examples, you should be able to get your CI/CD pipeline running
in any system. All popular CI/CD systems, such as GitLab, Bitbucket, CircleCI, Travis
CI, and so on, work by defining the pipeline in YAML format in the root of the project
directory, which we’ll also do in the GitHub Actions examples.

9.1.1 Integrity testing all DAGs

In the context of Airflow, the first step for testing is generally a DAG integrity test, a term
made known by a blog post titled “Data’s Inferno: 7 Circles of Data Testing Hell with
Airflow” (http://mng.bz/1rOn). Such a test verifies all your DAGs for their integrity (i.e.,
the correctness of the DAG, for example, validating if the DAGs do not contain cycles;
if the task IDs in the DAG are unique, etc.). The DAG integrity test often filters simple
mistakes. For example, a mistake is often made when generating tasks in a for loop
with a fixed task ID instead of a dynamically set task ID, resulting in each generated
task having the same ID. Upon loading DAGs, Airflow also performs such checks itself
and will display an error if found (figure 9.1). To avoid going through a deployment
cycle to discover in the end your DAG contains a simple mistake, it is wise to perform
DAG integrity tests in your test suite.

 The following DAG in listing 9.1 would display an error in the UI because there is
a cycle between t1 > t2 > t3 > back to t1. This violates the property that a DAG should
have finite start and end nodes.

Figure 9.1 DAG cycle error displayed by Airflow

https://pytest.org
https://github.com/features/actions
https://github.com/features/actions
https://github.com/features/actions
http://mng.bz/1rOn
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t1 = DummyOperator(task_id="t1", dag=dag)
t2 = DummyOperator(task_id="t2", dag=dag)
t3 = DummyOperator(task_id="t3", dag=dag)

t1 >> t2 >> t3 >> t1

Now let’s catch this error in a DAG integrity test. First, let’s install pytest.

pip install pytest

Collecting pytest
................
Installing collected packages: pytest
Successfully installed pytest-5.2.2

This gives us a pytest CLI utility. To see all available options, run pytest --help. For
now, there’s no need to know all the options; knowing you can run tests with pytest
[file/directory] (where the directory contains test files) is enough. Let’s create
such a file. A convention is to create a tests/ folder at the root of the project that holds
all the tests and mirrors the same directory structure as in the rest of the project.1 So,
if your project structure is like the one shown in figure 9.2,

.
├── dags
│   ├── dag1.py
│   ├── dag2.py
│   └── dag3.py
└── mypackage
    ├── airflow
    │   ├── hooks
    │   │   ├── __init__.py
    │   │   └── movielens_hook.py
    │   ├── operators
    │   │   ├── __init__.py
    │   │   └── movielens_operator.py
    │   └── sensors
    │       ├── __init__.py
    │       └── movielens_sensors.py
    └── movielens
        ├── __init__.py
        └── utils.py

Listing 9.1 Example cycle in DAG, resulting in an error

Listing 9.2 Installing pytest

1 Pytest calls this structure “Tests outside application code.” The other supported structure by pytest is to store
test files directly next to your application code, which it calls “tests as part of your application code.”

Figure 9.2 Example Python package structure
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then the tests/ directory structure would look like the one shown in figure 9.3:

.
├── dags
├── mypackage
└── tests
    ├── dags
    │   └── test_dag_integrity.py
    └── mypackage
        ├── airflow
        │   ├── hooks
        │   │   └── test_movielens_hook.py
        │   ├── operators
        │   │   └── test_movielens_operator.py
        │   └── sensors
        │       └── test_movielens_sensor.py
        └── movielens
            └── test_utils.py

Note all test files mirror the filenames that are (presumably) being tested, prefixed
with test_. Again, while mirroring the name of the file to test is not required, is it an
evident convention to tell something about the contents of the file. Tests that overlap
multiple files or provide other sorts of tests (such as the DAG integrity test) are con-
ventionally placed in files named according to whatever they’re testing. However, the
test_ prefix here is required; pytest scans through given directories and searches for
files prefixed with test_ or suffixed with _test.2 Also, note there are no __init__.py
files in the tests/ directory; the directories are not modules, and tests should be able
to run independently of each other without importing each other. Pytest scans direc-
tories and files and auto-discovers tests; there’s no need to create modules with
__init__.py files.

 Let’s create a file named tests/dags/test_dag_integrity.py.

import glob
import importlib.util
import os

import pytest
from airflow.models import DAG

DAG_PATH = os.path.join(
   os.path.dirname(__file__), "..", "..", "dags/**/*.py"
)
DAG_FILES = glob.glob(DAG_PATH, recursive=True)

2 Test discovery settings are configurable in pytest if you want to support, for example, test files named check_*.

Listing 9.3 DAG integrity test

Figure 9.3 Test directory structure following the structure in figure 9.2
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@pytest.mark.parametrize("dag_file", DAG_FILES)
def test_dag_integrity(dag_file):
   module_name, _ = os.path.splitext(dag_file)
   module_path = os.path.join(DAG_PATH, dag_file)
   ➥ mod_spec = importlib.util.spec_from_file_location(module_name, 

module_path)
   module = importlib.util.module_from_spec(mod_spec)
   mod_spec.loader.exec_module(module)

   ➥ dag_objects = [var for var in vars(module).values() if isinstance(var, 
DAG)]

   assert dag_objects

   for dag in dag_objects:
       dag.test_cycle()

Here, we see one function named test_dag_integrity, which performs the test. The
code might look a little obscure at first sight, so let’s break it down. Remember the
folder structure previously explained? There’s a dags/ folder that holds all DAG files,
and the file test_dag_integrity.py, which lives in tests/dags/test_dag_integrity.py. This
DAG integrity test is pointed to a folder holding all DAG files, in which it then
searches recursively for *.py files (figure 9.4).

The dirname() returns the directory of test_dag_integrity.py, and then we browse
two directories up, first to tests/, second to the root, and from there we search for any-
thing matching the pattern dags/**/*.py. "**" will search recursively, so DAG files
in, for example, dags/dir1/dir2/dir3/mydag.py, will also be found. Finally, the vari-
able DAG_FILES holds a list of files found in dags/ ending in .py. Next, the decorator
@pytest.mark.parametrize runs the test for every found Python file (figure 9.5).

DAG_PATH = os.path.join(os.path.dirname(__file__), "..", "..", "dags/**/*.py")
DAG_FILES = glob.glob(DAG_PATH, recursive=True)

.
dags

dag1.py
dag2.py
dag3.py

tests
dags

test_dag_integrity.py

Figure 9.4 DAG_PATH points to the directory holding all DAG files.

@pytest.mark.parametrize("dag_file", DAG_FILES)
def test_dag_integrity(dag_file):

Run test for every
element in DAG_FILES.

Figure 9.5 A parameterized 
test runs a test for every 
dag_file.
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The first part of the test is a little obscure. We won’t go into details, but it boils down
to loading and executing the file, just like Python itself would do, and extracting the
DAG objects from it.

module_name, _ = os.path.splitext(dag_file)                                 B
module_path = os.path.join(DAG_PATH, dag_file)                              B
mod_spec = importlib.util.spec_from_file_location(module_name, module_path) B
module = importlib.util.module_from_spec(mod_spec)                          B
mod_spec.loader.exec_module(module)                                         B

dag_objects = [var for var in vars(module).values() if isinstance(var, DAG)]c

B Load file.

c All objects of class DAG found in file

Now that the DAG objects are extracted from the file, we can apply certain checks on
it. In the code, we applied two checks. First was an assertion: assert dag_objects,
checking if DAG objects were found in the file (making it successful). Adding this
assertion validates all Python files found in /dags if they contain at least one DAG
object. For example, Scripts utility functions stored in /dags, in which no DAG
objects are instantiated, therefore fail. Whether this is desirable is up to you, but
having one directory holding only DAG files and nothing else does provide a clear
separation of duties.

 The second check (for dag in dag_objects: dag.test_cycle()) validates
whether there are no cycles in the DAG objects. This is called explicitly for a reason.
Before Airflow 1.10.0, DAGs were checked for cycles with every change to their struc-
ture. This check becomes computationally heavier as more and more tasks are added.
For DAGs with a large number of tasks, this became a burden, because for every new
task a DAG cycle check was performed, causing long reading times. Therefore, the
DAG cycle check was moved to the point where DAGs are parsed and cached by Air-
flow (into a structure called the DagBag) such that the cycle check is performed only
once after parsing the complete DAG, reducing reading time. As a result, it’s perfectly
fine to declare t1 >> t2 >> t1 and evaluate it. Only once a live running Airflow
instance will read your script will it complain about the cycle. So, to avoid going
through a deployment cycle, we call test_cycle() explicitly on each DAG found in
the test.

 These are two example checks, but you can add your own, of course. If, say, you
want each DAG name to start with “import” or “export,” you can check the dag_ids:

assert dag.dag_id.startswith(("import", "export"))

Now let’s run the DAG integrity test. On the command line, run pytest (optionally hint-
ing pytest where to search with pytest tests/ to avoid scanning other directories).

 

Listing 9.4 The DAG integrity test trying to instantiate every DAG object found
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$ pytest tests/
========================= test session starts =========================
....
collected 1 item

tests/dags/test_dag_integrity.py F
[100%]

============================== FAILURES ==============================
________________ test_dag_integrity[..../dag_cycle.py] ________________

dag_file = '..../dag_cycle.py'

    @pytest.mark.parametrize("dag_file", DAG_FILES)
    def test_dag_integrity(dag_file):
        """Import DAG files and check for DAG."""
        module_name, _ = os.path.splitext(dag_file)
        module_path = os.path.join(DAG_PATH, dag_file)
        ➥ mod_spec = importlib.util.spec_from_file_location(module_name, 

module_path)
        module = importlib.util.module_from_spec(mod_spec)
        mod_spec.loader.exec_module(module)

        ➥ dag_objects = [
            var for var in vars(module).values() if isinstance(var, DAG)
        ]

        assert dag_objects

        for dag in dag_objects:
            # Test cycles
>           dag.test_cycle()

tests/dags/test_dag_integrity.py:29:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
.../site-packages/airflow/models/dag.py:1427: in test_cycle
    self._test_cycle_helper(visit_map, task_id)
.../site-packages/airflow/models/dag.py:1449: in _test_cycle_helper
    self._test_cycle_helper(visit_map, descendant_id)
.../site-packages/airflow/models/dag.py:1449: in _test_cycle_helper
    self._test_cycle_helper(visit_map, descendant_id)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

➥ self = <DAG: chapter8_dag_cycle>, visit_map = defaultdict(<class 'int'>, 
{'t1': 1, 't2': 1, 't3': 1}), task_id = 't3'

    def _test_cycle_helper(self, visit_map, task_id):
        """
        Checks if a cycle exists from the input task using DFS traversal
        ...

        task = self.task_dict[task_id]
        for descendant_id in task.get_direct_relative_ids():

Listing 9.5 Output of running pytest
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            if visit_map[descendant_id] == DagBag.CYCLE_IN_PROGRESS:
                ➥ msg = "Cycle detected in DAG. Faulty task: {0} to 

{1}".format(
                    task_id, descendant_id)
>               raise AirflowDagCycleException(msg)

➥ E               airflow.exceptions.AirflowDagCycleException: Cycle 
detected in DAG. Faulty task: t3 to t1

..../airflow/models/dag.py:1447: AirflowDagCycleException
========================== 1 failed in 0.21s ==========================

The result of the test is quite lengthy, but typically you search for answers at the top
and bottom. Near the top you find which test failed, and at the bottom, answers why
the test failed.

airflow.exceptions.AirflowDagCycleException: Cycle detected in DAG.
Faulty task: t3 to t1

This example shows us (as expected) a cycle was detected from t3 to t1. Upon instanti-
ation of DAGs and operators, several other checks are performed out of the box. Say
you are using a BashOperator but forgot to add the (required) bash_command argu-
ment. The DAG integrity test will evaluate all statements in the script and fail when
evaluating the BashOperator.

BashOperator(task_id="this_should_fail", dag=dag)

The DAG integrity test will encounter an exception and fail.

airflow.exceptions.AirflowException: Argument ['bash_command'] is required

With the DAG integrity test in place, let’s run it automatically in a CI/CD pipeline.

9.1.2 Setting up a CI/CD pipeline

In a one-liner, a CI/CD pipeline is a system that runs predefined scripts when you
make a change to your code repository. The continuous integration (CI) denotes check-
ing and validating the changed code to ensure it complies with coding standards and
a test suite. For example, upon pushing code, you could check for Flake8 (http://
flake8.pycqa.org), Pylint (https://www.pylint.org), and Black (https://github.com/
psf/black), and run a series of tests. The continuous deployment (CD) indicates automat-
ically deploying the code into production systems, completely automated and without
human interference. The goal is to maximize coding productivity without having to
deal with manually validating and deploying it.

Listing 9.6 Exception reason found in listing 9.5

Listing 9.7 Faulty instantiation of a BashOperator

Listing 9.8 Exception raised by the faulty instantiation in listing 9.7

http://flake8.pycqa.org
http://flake8.pycqa.org
http://flake8.pycqa.org
https://www.pylint.org
https://github.com/psf/black
https://github.com/psf/black
https://github.com/psf/black
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 There is a wide range of CI/CD systems. In this chapter we will cover GitHub
Actions (https://github.com/features/actions); the general ideas should apply to any
CI/CD system. Most CI/CD systems start with a YAML configuration file in which a
pipeline is defined: a series of steps to execute upon changing code. Each step should
complete successfully to make the pipeline successful. In the Git repository, we can
then enforce rules such as “only merge to master with a successful pipeline.”

 The pipeline definitions typically live in the root of your project; GitHub Actions
requires YAML files stored in a directory: .github/workflows. With GitHub Actions,
the name of the YAML doesn’t matter, so we could create a file named airflow-tests
.yaml with the following content.

name: Python static checks and tests

on: [push]

jobs:
 testing:
   runs-on: ubuntu-18.04
   steps:
     - uses: actions/checkout@v1
     - name: Setup Python
       uses: actions/setup-python@v1
       with:
         python-version: 3.6.9
         architecture: x64

     - name: Install Flake8
       run: pip install flake8
     - name: Run Flake8
       run: flake8

     - name: Install Pylint
       run: pip install pylint
     - name: Run Pylint
       run: find . -name "*.py" | xargs pylint --output-format=colorized

     - name: Install Black
       run: pip install black
     - name: Run Black
       run: find . -name "*.py" | xargs black --check

     - name: Install dependencies
       run: pip install apache-airflow pytest

     - name: Test DAG integrity
       run: pytest tests/

The keywords shown in this YAML file are unique to GitHub Actions, although the
general ideas apply to other CI/CD systems too. Important things to note are the tasks

Listing 9.9 Example GitHub Actions pipeline for Airflow project

https://github.com/features/actions
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in GitHub Actions defined under “steps.” Each step runs a piece of code. For exam-
ple, Flake8 performs static code analysis and will fail if any issues are encountered,
such as an unused import. On row 3, we state on: [push], which tells GitHub to run
the complete CI/CD pipeline every time it receives a push. In a completely automated
CD system, it would contain filters for steps on specific branches, such as master, to
only run steps and deploy code if the pipeline succeeds on that branch.

9.1.3 Writing unit tests

Now that we have a CI/CD pipeline up and running, which initially checks the validity
of all DAGs in the project, it’s time to dive a bit deeper into the Airflow code and start
unit testing individual bits and pieces.

 Looking at the custom components demonstrated in chapter 8; there are several
things we could test to validate correct behavior. The saying goes, “Never trust user
input,” so we’d like to be certain our code works correctly in both valid and invalid
situations. Take, for example, the MovielensHook from chapter 8, which holds a
method, get_ratings(). The method accepts several arguments; one of them is
batch_size, which controls the size of batches requested from the API. You can imag-
ine valid input would be any positive number (maybe with some upper limit). But
what if the user provides a negative number (e.g., –3)? Maybe the API handles the
invalid batch size correctly and returns an HTTP error, such as 400 or 422, but how
does the MovielensHook respond to that? Sensible options might be input value han-
dling before even sending the request, or proper error handling if the API returns an
error. This behavior is what we want to check.

 Let’s continue with the work of chapter 8 and implement a MovielensPopularity-
Operator, which is an operator returning the top N popular movies between two
given dates.

class MovielensPopularityOperator(BaseOperator):
   def __init__(
       self,
       conn_id,
       start_date,
       end_date,
       min_ratings=4,
       top_n=5,
       **kwargs,
   ):
       super().__init__(**kwargs)
       self._conn_id = conn_id
       self._start_date = start_date
       self._end_date = end_date
       self._min_ratings = min_ratings
       self._top_n = top_n

   def execute(self, context):

Listing 9.10 Example operator MovielensPopularityOperator
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       with MovielensHook(self._conn_id) as hook:
           ratings = hook.get_ratings(                             B
               start_date=self._start_date,
               end_date=self._end_date,
           )

           rating_sums = defaultdict(Counter)
           for rating in ratings:                                  c
               ➥ rating_sums[rating[“movieId”]].update(count=1, 

rating=rating[“rating”])

           averages = {
               ➥ movie_id: (rating_counter["rating"] / 

rating_counter["count"], rating_counter["count"])
               for movie_id, rating_counter in rating_sums.items()
               if rating_counter["count"] >= self._min_ratings     d
           }
           ➥ return sorted(averages.items(), key=lambda x: x[1], 

reverse=True)[: self._top_n]                                  e

B Get raw ratings.

c Sum up ratings per movie_id.

d Filter min_ratings and calculate mean rating per movie_id.

e Return top_n ratings sorted by mean ratings and number of ratings.

How do we test the correctness of this MovielensPopularityOperator? First, we could
test it as a whole by simply running the operator with given values and check if the result
is as expected. To do this, we require a couple of pytest components to run the operator
by itself, outside a live Airflow system and inside a unit test. This allows us to run the
operator under different circumstances and validate whether it behaves correctly.

9.1.4 Pytest project structure

With pytest, a test script requires to be prefixed with test_. Just like the directory
structure, we also mimic the filenames, so a test for code in movielens_operator.py
would be stored in a file named test_movielens_operator.py. Inside this file, we create
a function to be called as a test. 

def test_example():
   task = BashOperator(
      task_id="test",
      bash_command="echo 'hello!'",
      xcom_push=True,
   )
   result = task.execute(context={})
   assert result == "hello!"

In this example, we instantiate the BashOperator and call the execute() function,
given an empty context (empty dict). When Airflow runs your operator in a live setting,

Listing 9.11 Example test function testing the BashOperator
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several things happen before and after, such as rendering templated variables and set-
ting up the task instance context and providing it to the operator. In this test, we are
not running in a live setting but calling the execute() method directly. This is the
lowest level function you can call to run an operator and it’s the method every opera-
tor implements to perform its functionality. We don’t need any task instance context
to run the BashOperator; therefore, we provide it an empty context. In the case the
test depends on processing something from the task instance context, we could fill it
with the required keys and values.3

 Let’s run this test.

$ pytest tests/dags/chapter9/custom/test_operators.py::test_example
========================= test session starts =========================
platform darwin -- Python 3.6.7, pytest-5.2.2, py-1.8.0, pluggy-0.13.0
rootdir: .../data-pipelines-with-apache-airflow
collected 1 item                                                                                                                                                                                                                                                               

tests/dags/chapter9/custom/test_operators.py .

Now let’s apply this to the MovielensPopularityOperator.

def test_movielenspopularityoperator():
   task = MovielensPopularityOperator(
       task_id="test_id",
       start_date="2015-01-01",
       end_date="2015-01-03",
       top_n=5,
   )
   result = task.execute(context={})
   assert len(result) == 5

The first thing that appears is red text telling us the operator is missing a required
argument.

➥ $ pytest tests/dags/chapter9/custom/test_operators.py::test
_movielenspopularityoperator

========================= test session starts =========================
platform darwin -- Python 3.6.7, pytest-5.2.2, py-1.8.0, pluggy-0.13.0
rootdir: /.../data-pipelines-with-apache-airflow
collected 1 item                                                                                                                                                                                                      

tests/dags/chapter9/custom/test_operators.py F
[100%]

3 The xcom_push=True argument returns stdout in the Bash_command as string, which we use in this test to
fetch and validate the Bash_command. In a live Airflow setup, any object returned by an operator is automati-
cally pushed to XCom.

Listing 9.12 Output of running the test in listing 9.11

Listing 9.13 Example test function testing the MovielensPopularityOperator

Listing 9.14 Output of running the test in listing 9.13
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=============================== FAILURES ===============================
___________________ test_movielenspopularityoperator ___________________

mocker = <pytest_mock.plugin.MockFixture object at 0x10fb2ea90>

    def test_movielenspopularityoperator(mocker: MockFixture):
        task = MovielensPopularityOperator(

➥ >           task_id="test_id", start_date="2015-01-01", end_date="2015-01-
03", top_n=5

        )

➥ E       TypeError: __init__() missing 1 required positional argument: 
'conn_id'

tests/dags/chapter9/custom/test_operators.py:30: TypeError
========================== 1 failed in 0.10s ==========================

Now we see the test failed because we’re missing the required argument conn_id,
which points to the connection ID in the metastore. But how do you provide this in a
test? Tests should be isolated from each other; they should not be able to influence
the results of other tests, so a database shared between tests is not an ideal situation.
In this case, mocking comes to the rescue.

 Mocking is “faking” certain operations or objects. For example, the call to a data-
base that is expected to exist in a production setting but not while testing could be
faked, or mocked, by telling Python to return a certain value instead of making the
actual call to the (nonexistent during testing) database. This allows you to develop
and run tests without requiring a connection to external systems. It requires insight
into the internals of whatever it is you’re testing, and thus sometimes requires you to
dive into third-party code.

 Pytest has a set of supporting plug-ins (not officially by pytest), which ease the
usage of concepts such as mocking. For this, we can install the pytest-mock Python
package:

pip install pytest-mock

pytest-mock is a Python package that provides a tiny convenience wrapper around
the built-in mock package. To use it, pass an argument named “mocker”4 to your test
function, which is the entry point for using anything in the pytest-mock package.

def test_movielenspopularityoperator(mocker):
   mocker.patch.object(
       MovielensHook,
       "get_connection",
       return_value=Connection(
           conn_id="test",
           login="airflow",

4 If you want to type your arguments, mocker is of type pytest_mock.MockFixture.

Listing 9.15 Mocking an object in a test
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           password="airflow",
       ),
   )
   task = MovielensPopularityOperator(
       task_id="test_id",
       conn_id="test",
       start_date="2015-01-01",
       end_date="2015-01-03",
       top_n=5,
   )
   result = task.execute(context=None)
   assert len(result) == 5

With this code, the get_connection() call on the MovielensHook is monkey-patched
(substituting its functionality at runtime to return the given object instead of querying
the Airflow metastore), and executing MovielensHook.get_connection() won’t fail
when running the test since no call to the nonexistent database is made during test-
ing, but instead, the predefined, expected connection object is returned.

def test_movielenspopularityoperator(mocker):                        B
   mock_get = mocker.patch.object(                                   c
       MovielensHook,                                                d 
       “get_connection”,                                             e
➥        return_value=Connection(conn_id="test", login="airflow",   f

password="airflow"),                                            f
   )
   task = MovielensPopularityOperator(...)

B The mocker object magically exists at runtime; no import required.

c Patch an attribute on an object with a mock object.

d The object to patch

e The function to patch

f The value to return

This example shows how to substitute a call to an external system (the Airflow metas-
tore) at test time by returning a predefined Connection object. What if you want to
validate the call is actually made in your test? We can assign the patched object to a
variable that holds several properties collected when calling the patched object. Say
we would like to ensure the get_connection() method is called once and only once,
and the conn_id argument provided to get_connection() holds the same value as
provided to the MovielensPopularityOperator.

mock_get = mocker.patch.object(                B
    MovielensHook,
    "get_connection",
    return_value=Connection(...),
)

Listing 9.16 Substituting a call to an external system in a test

Listing 9.17 Validating the behavior of a mocked function
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task = MovielensPopularityOperator(..., conn_id="testconn")
task.execute(...)

assert mock_get.call_count == 1             c
mock_get.assert_called_with("testconn")     d

B Assign mock to variable to capture behavior.

c Assert it was called only once.

d Assert it was called with the expected conn_id.

Assigning the return value of mocker.patch.object to a variable named mock_get will
capture all calls made to the mocked object and gives us the possibility of verifying the
given input, number of calls, and more. In this example, we assert if call_count can ver-
ify that the MovielensPopularityOperator doesn’t accidentally make multiple calls to
the Airflow metastore in a live setting. Also, since we provide the conn_id “testconn”
to the MovielensPopularityOperator, we expect this conn_id to be requested from
the Airflow metastore, which we validate with assert_called_with().5 The mock_get
object holds more properties to verify (e.g., a called property to simply assert whether
the object was called [any number of times]) (figure 9.6).

One of the biggest pitfalls with mocking in Python is mocking the incorrect object. In
the example code, we are mocking the get_connection() method. This method is
called on the MovielensHook, which inherits from the BaseHook (airflow.hooks
.base package). The get_connection() method is defined on the BaseHook. Intui-
tively, you would therefore probably mock BaseHook.get_connection(). However,
this is incorrect.

 The correct way to mock in Python is to mock the location where it is being called
and not where it is defined.6 Let’s illustrate this in code.

5 A convenience method exists for these two asserts named assert_called_once_with().
6 This is explained in the Python documentation: https://docs.python.org/3/library/unittest.mock.html#where-

to-patch. It is also demonstrated in http://alexmarandon.com/articles/python_mock_gotchas.

Figure 9.6 mock_get contains several properties that can be used to validate the 
behavior. (Screenshot was taken using the Python debugger in PyCharm.)

https://docs.python.org/3/library/unittest.mock.html#where-to-patch
https://docs.python.org/3/library/unittest.mock.html#where-to-patch
http://alexmarandon.com/articles/python_mock_gotchas
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from airflowbook.operators.movielens_operator import (   B
   MovielensPopularityOperator,                          B
   MovielensHook,                                        B
)                                                        B

def test_movielenspopularityoperator(mocker):
   mock_get = mocker.patch.object(
       MovielensHook,
       "get_connection",
       return_value=Connection(...),
   )
   task = MovielensPopularityOperator(...)               c

B We must import the method to mock from where it’s called.

c Inside the MovielensPopularityOperator code, MovielensHook.get_connection() is called.

9.1.5 Testing with files on disk

Consider an operator that reads one file holding a list of JSONs and writes these to
CSV format (figure 9.7).

The operator for this operation could look as follows.

class JsonToCsvOperator(BaseOperator):
   def __init__(self, input_path, output_path, **kwargs):
       super().__init__(**kwargs)
       self._input_path = input_path
       self._output_path = output_path

   def execute(self, context):
       with open(self._input_path, "r") as json_file:
           data = json.load(json_file)

       columns = {key for row in data for key in row.keys()}

       with open(self._output_path, mode="w") as csv_file:
           writer = csv.DictWriter(csv_file, fieldnames=columns)
           writer.writeheader()
           writer.writerows(data)

Listing 9.18 Paying attention to the correct import location when mocking in Python

Listing 9.19 Example operator using local disk

name,age,sex
bob,41,M
alice,24,F
carol,60,F

[
{"name": "bob", "age": 41, "sex": "M"},
{"name": "alice", "age": 24, "sex": "F"},
{"name": "carol", "age": 60, "sex": "F"}

]

Figure 9.7 Converting JSON to CSV format
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This JsonToCsvOperator takes two input arguments: the input (JSON) path and the
output (CSV) path. To test this operator, we could store a static file in our test direc-
tory to use as input for the test, but where do we store the output file?

 In Python, we have the tempfile module for tasks involving temporary storage. It
leaves no remainders on your file system since the directory and its contents are wiped
after usage. Once again, pytest provides a convenient access point to this module named
tmp_dir (gives os.path object) and tmp_path (gives pathlib object). Let’s view an
example using tmp_path.

import csv
import json
from pathlib import Path

from airflowbook.operators.json_to_csv_operator import JsonToCsvOperator

def test_json_to_csv_operator(tmp_path: Path):      B
   input_path = tmp_path / "input.json"             c
   output_path = tmp_path / "output.csv"            c

   input_data = [                                   d
       {"name": "bob", "age": "41", "sex": "M"},    d
       {"name": "alice", "age": "24", "sex": "F"},  d
       {"name": "carol", "age": "60", "sex": "F"},  d
   ]                                                d
   with open(input_path, "w") as f:                 d
       f.write(json.dumps(input_data))              d

   operator = JsonToCsvOperator(
       task_id="test",
       input_path=input_path,
       output_path=output_path,
   )
   operator.execute(context={})                     e

   with open(output_path, "r") as f:                f
       reader = csv.DictReader(f)                   f
       result = [dict(row) for row in reader]       f

   assert result == input_data                      g
                                                    h

B Use tmp_path fixture.

c Define paths.

d Save input file.

e Execute JsonToCsvOperator.

f Read output file.

g Assert content.

h After the test, the tmp_path and its contents are removed.

Listing 9.20 Testing using temporary paths
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Upon starting the test, a temporary directory is created. The tmp_path argument actu-
ally refers to a function, which is executed for each test it is called in. In pytest, these
are called fixtures (https://docs.pytest.org/en/stable/fixture.html). While fixtures
bear some resemblance with unittest’s setUp() and tearDown() methods, they allow
for greater flexibility because fixtures can be mixed and matched (e.g., one fixture
could initialize a temporary directory for all tests in a class, while another fixture only
initializes for a single test).7 The default scope of fixtures is every test function. We can
see this by printing the path and running different tests, or even the same test twice:

print(tmp_path.as_posix())

This will print, respectively,

 /private/var/folders/n3/g5l6d1j10gxfsdkphhgkgn4w0000gn/T/pytest-of-
basharenslak/pytest-19/test_json_to_csv_operator0

 /private/var/folders/n3/g5l6d1j10gxfsdkphhgkgn4w0000gn/T/pytest-of-
basharenslak/pytest-20/test_json_to_csv_operator0

There are other fixtures to use, and pytest fixtures have many features that are not
demonstrated this book. If you’re serious about all pytest features, it helps to go over
the documentation.

9.2 Working with DAGs and task context in tests
Some operators require more context (e.g., templating of variables) or usage of the
task instance context for execution. We cannot simply run operator.execute(con-
text={}) like we did in the previous examples, because we provide no task context to
the operator, which it needs to perform its code.

 In these cases, we would like to run the operator in a more realistic scenario, as if Air-
flow were to actually run a task in a live system, and thus create a task instance context,
template all variables, and so on. Figure 9.8 shows the steps that are performed when a
task is executed in Airflow.8

 As you can see, step 5 is the only one we’ve run in the examples so far (listings 9.15,
9.17, and 9.20). If running a live Airflow system, many more steps are performed when
executing an operator, some of which we need to execute to test, for example, cor-
rect templating.

 Say we implemented an operator that pulls movie ratings between two given dates,
which the user can provide via templated variables.

 
 
 

7 Look up “pytest scope” if you’re interested in learning how to share fixtures across tests.
8 In TaskInstance, _run_raw_task().

https://docs.pytest.org/en/stable/fixture.html
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class MovielensDownloadOperator(BaseOperator):
   template_fields = ("_start_date", "_end_date", "_output_path")

   def __init__(
       self,
       conn_id,
       start_date,
       end_date,
       output_path,
       **kwargs,
   ):
       super().__init__(**kwargs)
       self._conn_id = conn_id

Listing 9.21 Example operator using templated variables

Build task instance context

(i.e., collect all variables)

Clear XCom data for current

task instance

(dag ID, task ID, execution date)

Render templated variables

Run operator.pre_execute()

Run operator.execute()

Push return value to XCom

Run operator.post_execute()

{
"execution_date": Pendulum(...),
"ds": "2020-01-01",
"ds_nodash": "20200101",
...

}

(1)

(2)

(3)

(4)

(5)

(6)

(7)

Airflow

metastore

"today is {{ ds }}" -> "today is 2020-01-01"

Airflow

metastore

Figure 9.8 Running an operator involves several steps. In section 9.1, we test only step 5 and 
manually provide runtime task context to operator.execute() if needed.
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       self._start_date = start_date
       self._end_date = end_date
       self._output_path = output_path

   def execute(self, context):
       with MovielensHook(self._conn_id) as hook:
           ratings = hook.get_ratings(
               start_date=self._start_date,
               end_date=self._end_date,
           )

       with open(self._output_path, "w") as f:
           f.write(json.dumps(ratings))

This operator is not testable, as in the previous examples, since it (potentially) requires
the task instance context to execute. For example, the output_path argument could
be provided as /output/{{ ds }}.json, and the ds variable is not available when test-
ing with operator.execute(context={}).

 So, for this, we’ll call the actual method Airflow itself also uses to start a task, which
is operator.run() (a method on the BaseOperator class). To use it, the operator
must be assigned to a DAG. While the previous example could be run as-is, without
creating a DAG for testing purposes, in order to use run() we need to provide a DAG
to the operator, because when Airflow runs a task, it refers to the DAG object on sev-
eral occasions (e.g., when building up the task instance context).

 We could define a DAG in our tests as follows.

dag = DAG(
   "test_dag",
   default_args={
       "owner": "airflow",
       "start_date": datetime.datetime(2019, 1, 1),
   },
   schedule_interval="@daily",
)

The values we provide to the test DAG don’t matter, but we’ll refer to these while
asserting the results of the operator. Next, we can define our task and run it.

def test_movielens_operator(tmp_path, mocker):
   mocker.patch.object(
       MovielensHook,
       "get_connection",
       return_value=Connection(
           conn_id="test", login="airflow", password="airflow"
       ),
   )

Listing 9.22 DAG with default arguments for testing purposes

Listing 9.23 Testing with a DAG to render templated variables
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   dag = DAG(
       "test_dag",
       default_args={
           "owner": "airflow",
           "start_date": datetime.datetime(2019, 1, 1),
       },
       schedule_interval="@daily",
   )

   task = MovielensDownloadOperator(
       task_id="test",
       conn_id="testconn",
       start_date="{{ prev_ds }}",
       end_date="{{ ds }}",
       output_path=str(tmp_path / "{{ ds }}.json"),
       dag=dag,
   )

   task.run(
       start_date=dag.default_args["start_date"],
       end_date=dag.default_args["start_date"],
   )

If you run the test as we’ve defined it now, you will probably encounter an error simi-
lar to the following listing.

.../site-packages/sqlalchemy/engine/default.py:580: OperationalError

The above exception was the direct cause of the following exception:

➥ > task.run(start_date=dag.default_args["start_date"], 
end_date=dag.default_args["start_date"])

...
cursor = <sqlite3.Cursor object at 0x1110fae30>

➥ statement = 'SELECT task_instance.try_number AS task_instance_try_number, 
task_instance.task_id AS task_instance_task_id, task_ins...\nWHERE 
task_instance.dag_id = ? AND task_instance.task_id = ? AND 
task_instance.execution_date = ?\n LIMIT ? OFFSET ?'

parameters = ('test_dag', 'test', '2015-01-01 00:00:00.000000', 1, 0)
...

    def do_execute(self, cursor, statement, parameters, context=None):
>       cursor.execute(statement, parameters)

➥ E       sqlalchemy.exc.OperationalError: (sqlite3.OperationalError) no such 
column: task_instance.max_tries

➥ E       [SQL: SELECT task_instance.try_number AS task_instance_try_number, 
task_instance.task_id AS task_instance_task_id, task_instance.dag_id AS 
task_instance_dag_id, task_instance.execution_date AS 
task_instance_execution_date, task_instance.start_date AS 
task_instance_start_date, task_instance.end_date AS task_instance_end_date, 
task_instance.duration AS task_instance_duration, task_instance.state AS 
task_instance_state, task_instance.max_tries AS task_instance_max_tries, 

Listing 9.24 First time running a test including a DAG
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task_instance.hostname AS task_instance_hostname, task_instance.unixname AS 
task_instance_unixname, task_instance.job_id AS task_instance_job_id, 
task_instance.pool AS task_instance_pool, task_instance.queue AS 
task_instance_queue, task_instance.priority_weight AS 
task_instance_priority_weight, task_instance.operator AS 
task_instance_operator, task_instance.queued_dttm AS 
task_instance_queued_dttm, task_instance.pid AS task_instance_pid, 
task_instance.executor_config AS task_instance_executor_config 

E       FROM task_instance 

➥ E       WHERE task_instance.dag_id = ? AND task_instance.task_id = ? AND 
task_instance.execution_date = ?

E        LIMIT ? OFFSET ?]

➥ E       [parameters: ('test_dag', 'test', '2015-01-01 00:00:00.000000', 1, 0)]
E       (Background on this error at: http://sqlalche.me/e/e3q8)

As you can tell from the error message, there’s something wrong in the Airflow metas-
tore. To run a task, Airflow queries the database for several pieces of information,
such as previous task instances with the same execution date. But, if you haven’t ini-
tialized the Airflow database (airflow db init) in the path AIRFLOW_HOME is set to
(~/airflow if not set), or configured Airflow to a running database, then it will
have no database to read or write. So also when testing, we will need a metastore.
There are several approaches to deal with the metastore during testing.

 First, hypothetically, we could mock every single database call, as shown before,
when querying for connection credentials. While this is possible, it is very cumber-
some. A more practical approach is to run a real metastore that Airflow can query
while running the tests.

 To do this, you run airflow db init, which initializes the database. Without any
configuration, the database will be a SQLite database, stored in ~/airflow/airflow
.db. If you set the AIRFLOW_HOME environment variable, Airflow will store the database
in that given directory. Ensure that while running tests you provide the same AIR-
FLOW_HOME value so that Airflow can find your metastore.9

 Now, once you’ve set up a metastore for Airflow to query, we can run the test and
see it succeed. Also, we can now see a row was written to the Airflow metastore during
the test (figure 9.9).10

There are two things to point out in this test. If you have multiple tests using a DAG,
there is a neat way to reuse it with pytest. We’ve covered pytest fixtures, and these can

9 To ensure your tests run isolated from anything else, a Docker container with an empty initialized Airflow
database can be convenient.

10 DBeaver is a free SQLite database browser.

Figure 9.9 Calling task.run() results in task run details stored in the database.
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be reused over multiple files in (sub)directories using a file named conftest.py. This
file can hold a fixture for instantiating a DAG.

import datetime

import pytest
from airflow.models import DAG

@pytest.fixture
def test_dag():
   return DAG(
       "test_dag",
       default_args={
           "owner": "airflow",
           "start_date": datetime.datetime(2019, 1, 1),
       },
       schedule_interval="@daily",
   )

Now every test requiring a DAG object can simply instantiate it by adding test_dag as
an argument to the test, which executes the test_dag() function at the start of the test.

def test_movielens_operator(tmp_path, mocker, test_dag):
   mocker.patch.object(
       MovielensHook,
       "get_connection",
       return_value=Connection(
           conn_id="test",
           login="airflow",
           password="airflow",
       ),
   )

   task = MovielensDownloadOperator(
       task_id="test",
       conn_id="testconn",
       start_date="{{ prev_ds }}",
       end_date="{{ ds }}",
       output_path=str(tmp_path / "{{ ds }}.json"),
       dag=test_dag,
   )

   task.run(
       start_date=dag.default_args["start_date"],
       end_date=dag.default_args[“start_date”],
   )

Listing 9.25 Example pytest fixture to reuse DAG throughout tests

Listing 9.26 Creating required objects by including fixtures with a test
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task.run() is a method on the BaseOperator class. run() takes two dates and, given
the DAG’s schedule_interval, computes instances of the task to run between the two
given dates. Since we provide the same two dates (the DAGs’ starting date), there will
be only one single task instance to execute.

9.2.1 Working with external systems

Assume we’re working with an operator that connects to a database, say a Movielens-
ToPostgresOperator, which reads MovieLens ratings and writes the results to a Post-
gres database. This is an often-seen use case, when a source only provides data as it is
at the time of requesting but cannot provide historical data, and people would like to
build up history of the source. For example, if you queried the MovieLens API today,
where John rated The Avengers with four stars yesterday but today changed his rating to
five, the API would only return his five-star rating. An Airflow job could, once a day,
fetch all data and store the daily export together with the time of the writing. 

 The operator for such an operation could look like this.

from airflow.hooks.postgres_hook import PostgresHook
from airflow.models import BaseOperator

from airflowbook.hooks.movielens_hook import MovielensHook

class MovielensToPostgresOperator(BaseOperator):
   template_fields = ("_start_date", "_end_date", "_insert_query")

   def __init__(
       self,
       movielens_conn_id,
       start_date,
       end_date,
       postgres_conn_id,
       insert_query,
       **kwargs,
   ):
       super().__init__(**kwargs)
       self._movielens_conn_id = movielens_conn_id
       self._start_date = start_date
       self._end_date = end_date
       self._postgres_conn_id = postgres_conn_id
       self._insert_query = insert_query

   def execute(self, context):
       with MovielensHook(self._movielens_conn_id) as movielens_hook:
           ratings = list(movielens_hook.get_ratings(
               start_date=self._start_date,
               end_date=self._end_date),
           )

Listing 9.27 Example operator connecting with a PostgreSQL database
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       postgres_hook = PostgresHook(
           postgres_conn_id=self._postgres_conn_id
       )
       insert_queries = [
           ➥ self._insert_query.format(",".join([str(_[1]) for _ in 

sorted(rating.items())]))
           for rating in ratings
       ]
       postgres_hook.run(insert_queries)

Let’s break down the execute() method. It connects the MovieLens API and Postgres
database by fetching data and transforming the results into queries for Postgres (fig-
ure 9.10).

How do we test this, assuming we cannot access our production Postgres database
from our laptops? Luckily, it’s easy to spin a local Postgres database for testing with
Docker. Several Python packages exist that provide convenient functions for con-
trolling Docker containers within the scope of pytest tests. For the following example,
we’ll use pytest-docker-tools (https://github.com/Jc2k/pytest-docker-tools). This pack-
age provides a set of convenient helper functions with which we can create a Docker
container for testing.

Get all ratings between given start_date and end_date using MovielensHook.

Create PostgresHook for communicating with Postgres.
def execute(self, context):

with MovielensHook(self._movielens_conn_id) as movielens_hook:
ratings = list(movielens_hook.get_ratings(start_date=self._start_date, end_date=self._end_date))

postgres_hook = PostgresHook(postgres_conn_id=self._postgres_conn_id)
insert_queries = [

self._insert_query.format(",".join([str(_[1]) for _ in sorted(rating.items())]))
for rating in ratings

]
postgres_hook.run(insert_queries)

Create list of insert queries. Ratings return as a list of dicts:
{'movieId': 51935, 'userId': 21127, 'rating': 4.5, 'timestamp': 1419984001}

For each rating, we:

1. sort by key for deterministic results:
sorted(ratings[0].items())
[('movieId', 51935), ('rating', 4.5), ('timestamp', 1419984001), ('userId', 21127)]

2. create list of values, casted to string for .join()
[str(_[1]) for _ in sorted(ratings[0].items())]
['51935', '4.5', '1419984001', '21127']

3. join all values to string with comma
",".join([str(_[1]) for _ in sorted(rating.items())])
'51935,4.5,1419984001,21127'

4. provide result to insert_query.format(…)
self._insert_query.format(",".join([str(_[1]) for _ in sorted(rating.items())]))
'INSERT INTO movielens (movieId,rating,ratingTimest amp,userId,...) VALUES (51935,4.5,1419984001,21127, ...)'

Figure 9.10 Breakdown of converting JSON data to Postgres queries

https://github.com/Jc2k/pytest-docker-tools
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 We won’t go into all the details of the package but will demonstrate how to create a
sample Postgres container for writing MovieLens results. If the operator works cor-
rectly, we should have results written to the Postgres database in the container at the
end of the test. Testing with Docker containers allows us to use the real methods of
hooks, without having to mock calls, with the aim of testing as realistic as possible.

 First, install pytest-docker-tools in your environment with pip install pytest_
docker_tools. This provides us a few helper functions, such as fetch and container. First,
we will fetch the container.

from pytest_docker_tools import fetch

postgres_image = fetch(repository="postgres:11.1-alpine")

The fetch function triggers docker pull on the machine it’s running on (and there-
fore requires Docker to be installed) and returns the pulled image. Note the fetch
function itself is a pytest fixture, which means we cannot call it directly but must pro-
vide it as a parameter to a test.

from pytest_docker_tools import fetch

postgres_image = fetch(repository="postgres:11.1-alpine")

def test_call_fixture(postgres_image):
   print(postgres_image.id)

Running this test will print

Fetching postgres:11.1-alpine
PASSED                     [100%]
sha256:b43856647ab572f271decd1f8de88b590e157bfd816599362fe162e8f37fb1ec

We can now use this image ID to configure and start a Postgres container.

from pytest_docker_tools import container

postgres_container = container(
   image="{postgres_image.id}",
   ports={"5432/tcp": None},
)

def test_call_fixture(postgres_container):
   print(
       f"Running Postgres container named {postgres_container.name} "
       f"on port {postgres_container.ports['5432/tcp'][0]}."
   )

Listing 9.28 Fetching a Docker image for testing with pytest_docker_tools

Listing 9.29 Using a Docker image in a test with pytest_docker_tools fixtures

Listing 9.30 Starting a Docker container for a test with pytest_docker_tools fixtures
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The container function in pytest_docker_tools is also a fixture, so that too can only
be called by providing it as an argument to a test. It takes several arguments that con-
figure the container to start, in this case the image ID, which was returned from the
fetch() fixture and the ports to expose. Just like running Docker containers on the com-
mand line, we could also configure environment variables, volumes, and more.

 The ports configuration requires a bit of explanation. You typically map a con-
tainer port to the same port on the host system (i.e., docker run -p 5432:5432 post-
gres). A container for tests is not meant to be a container running until infinity, and
we also don’t want to conflict with any other ports in use on the host system.

 Providing a dict to the ports keyword argument, where keys are container ports
and values map to the host system, and leaving the values to None, will map the host
port to a random open port on the host (just like running docker run -P). Providing
the fixture to a test will execute the fixture (i.e., run the container), and pytest-docker-
tools then internally maps the assigned ports on the host system to a ports attribute on
the fixture itself. postgres_container.ports['5432/tcp'][0] gives us the assigned
port number on the host, which we can then use in the test to connect to.

 In order to mimic a real database as much as possible, we’d like to set a username
and password and initialize it with a schema and data to query. We can provide both to
the container fixture.

postgres_image = fetch(repository="postgres:11.1-alpine")
postgres = container(
   image="{postgres_image.id}",
   environment={
       "POSTGRES_USER": "testuser",
       "POSTGRES_PASSWORD": "testpass",
   },
   ports={"5432/tcp": None},
   volumes={
       os.path.join(os.path.dirname(__file__), "postgres-init.sql"): {
           "bind": "/docker-entrypoint-initdb.d/postgres-init.sql"
       }
   },
)

Database structure and data can be initialized in postgres-init.sql.

SET SCHEMA 'public';
CREATE TABLE movielens (
   movieId integer,
   rating float,
   ratingTimestamp integer,
   userId integer,
   scrapeTime timestamp
);

Listing 9.31 Initializing a Postgres container for testing against a real database

Listing 9.32 Initializing a schema for the test database
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In the container fixture, we provide a Postgres username and password via environ-
ment variables. This is a feature of the Postgres Docker image; it allows us to configure
several settings via environment variables. Read the Postgres Docker image documen-
tation for all environment variables. Another feature of the Docker image is the ability
to initialize a container with a startup script by placing a file with extension *.sql,
*.sql.gz or *.sh in the directory /docker-entrypoint-initdb.d. These are executed
while booting the container, before starting the actual Postgres service, and we can
use these to initialize our test container with a table to query.

 In listing 9.31, we mount a file named postgres-init.sql to the container with
the volumes keyword to the container fixture:

volumes={
       os.path.join(os.path.dirname(__file__), "postgres-init.sql"): {
           "bind": "/docker-entrypoint-initdb.d/postgres-init.sql"
       }
   }

We provide it a dict where the keys show the (absolute) location on the host system. In
this case, we saved a file named postgres-init.sql in the same directory as our
test script, so os.path.join(os.path.dirname(__file__), "postgres-init.sql")
will give us the absolute path to it. The values are also a dict where the key indicates
the mount type (bind) and the value of the location inside the container, which
should be in /docker-entrypoint-initdb.d in order to run the *.sql script at boot-
time of the container.

 Put all this together in a script and we can finally test against a real Postgres
database.

import os

import pytest
from airflow.models import Connection
from pytest_docker_tools import fetch, container

➥ from airflowbook.operators.movielens_operator import MovielensHook, 
MovielensToPostgresOperator, PostgresHook

postgres_image = fetch(repository="postgres:11.1-alpine")
postgres = container(
   image="{postgres_image.id}",
   environment={
       "POSTGRES_USER": "testuser",
       “POSTGRES_PASSWORD”: “testpass”,
   },
   ports={"5432/tcp": None},
   volumes={
       os.path.join(os.path.dirname(__file__), "postgres-init.sql"): {
           "bind": "/docker-entrypoint-initdb.d/postgres-init.sql"

Listing 9.33 Completing the test using a Docker container for testing external systems
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       }
   },
)

def test_movielens_to_postgres_operator(mocker, test_dag, postgres):
   mocker.patch.object(
       MovielensHook,
       "get_connection",
       return_value=Connection(
          conn_id="test",
          login="airflow",
          password="airflow",
      ),
   )
   mocker.patch.object(
       PostgresHook,
       "get_connection",
       return_value=Connection(
           conn_id="postgres",
           conn_type="postgres",
           host="localhost",
           login="testuser",
           password="testpass",
           port=postgres.ports["5432/tcp"][0],
       ),
   )

   task = MovielensToPostgresOperator(
       task_id="test",
       movielens_conn_id="movielens_id",
       start_date="{{ prev_ds }}",
       end_date="{{ ds }}",
       postgres_conn_id="postgres_id",
       insert_query=(
           "INSERT INTO movielens 

(movieId,rating,ratingTimestamp,userId,scrapeTime) "
           "VALUES ({0}, '{{ macros.datetime.now() }}')"
       ),
       dag=test_dag,
   )

   pg_hook = PostgresHook()

   row_count = pg_hook.get_first("SELECT COUNT(*) FROM movielens")[0]
   assert row_count == 0

   task.run(
       start_date=test_dag.default_args["start_date"],
       end_date=test_dag.default_args[“start_date”],
   )

   row_count = pg_hook.get_first("SELECT COUNT(*) FROM movielens")[0]
   assert row_count > 0
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The full test turns out a bit lengthy because of the container initialization and the con-
nection mocking we have to do. After this, we instantiate a PostgresHook (which uses
the same mocked get_connection() as in the MovielensToPostgresOperator and
thus connects to the Docker Postgres container). We first assert if the number of rows
is zero, run the operator, and finally test if any data was inserted.

 Outside the test logic itself, what happens? During test startup, pytest figures out
which tests use a fixture, and will execute only if the given fixture is used (figure 9.11).

At the time pytest decides to start the container fixture, it will fetch, run, and initialize
the container. This takes a couple of seconds, so there will be a small delay of a few
seconds in the test suite. After the tests finish, the fixtures are terminated. Pytest-
docker-tools puts a small wrapper around the Python Docker client, providing a cou-
ple of convenient constructs and fixtures to use in tests.

9.3 Using tests for development
Tests not only help for verifying the correctness of your code. They are also helpful
during development because they allow you to run a small snippet of code without
having to use a live system. Let’s see how they can help us while developing workflows.
We will show a couple of screenshots of PyCharm, but any modern IDE will allow us to
set breakpoints and debug.

 Let’s go back to the MovielensPopularityOperator shown in section 9.1.3. In the
execute() method, it runs a series of statements, and we would like to know the state
halfway through. With PyCharm, we can do this by placing a breakpoint and running
a test that hits the line of code the breakpoint is set to (figure 9.12).

 Now run the test_movielenspopularityoperator test and start it in debug mode
(figure 9.13).

 
 

Pytest collects fixtures and

determines which to use in test
Run testStart test Finish test

Pytest fetches and

creates PostgreSQL

Docker container

Pytest tears down

PostgreSQL Docker

container

Figure 9.11 Process of running a test with pytest-docker-tools. Running Docker containers during 
tests enables testing against real systems. The life cycle of the Docker container is managed by 
pytest-docker-tools, and the user must implement the test.
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Once the test reaches the line of code on which you’ve set a breakpoint, you can
inspect the current state of variables but also execute code at that moment. Here, we
can, for example, inspect the task instance context halfway through the execute()
method (figure. 9.14).

 Sometimes your code works locally but returns an error on a production machine.
How would we debug on a production machine? There is a way to debug remotely, but
that’s beyond the scope of this book. It allows you to connect your local PyCharm (or
other IDE) debugger to a remote running Python process. (Search for “PyCharm
remote debugging” for more information.)

 Another alternative, if for whatever reason you cannot use a real debugger, is to
resort to a command line debugger (for this, you need access to the command line on

Click in the border to set a breakpoint.
The debugger will pause once it reaches this statement.

Figure 9.12 Setting a breakpoint in an IDE. This screenshot was taken in PyCharm, but any IDE 
allows you to set breakpoints and debug.

Start in Debug mode to stop at breakpoints.

Figure 9.13 Starting a test in debug mode so that it stops at 
breakpoints
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the remote machine). Python has a built-in debugger named pdb (Python Debugger).
It works by adding this line of code on the location you want to debug.11

import pdb; pdb.set_trace()

Now you can start your code from the command line, either by running a test with
pytest or by starting an Airflow task in a DAG with the CLI, by running

airflow tasks test [dagid] [taskid] [execution date]

Here’s an example:

airflow tasks test movielens_download fetch_data 2019-01-01T12:00:00

Listing 9.34 Setting a breakpoint in code

11 With Python 3.7 and PEP553, a new way to set breakpoints was introduced, simply by calling breakpoint().

Figure 9.14 Debugging allows us to inspect the state of the program at the set breakpoint. Here we 
inspect the values of the context.
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airflow tasks test runs the task without registering any records in the metastore. It’s
useful for running and testing individual tasks in a production setting. Once the pdb
breakpoint is reached, you can execute code and control the debugger with certain
keys such as n for executing the statement and going to the next line, and l for dis-
playing the surrounding lines (figure 9.15). (See the full list of commands by search-
ing for “pdb cheat sheet” on the internet.)

9.3.1 Testing complete DAGs

So far, we’ve focused on various aspects of testing individual operators: testing with
and without task instance context, operators using the local filesystem, and operators
using external systems with the help of Docker. But all these focused on testing a sin-
gle operator. A large and important aspect of the development of workflows is ensur-
ing all building blocks fit together nicely. While one operator might run correctly
from a logical point of view, it could, for example, transform data in an unexpected
way, which makes the subsequent operator fail. How do we ensure all operators in a
DAG work together as expected?

 Unfortunately, this is not an easy question to answer. Mimicking a real environment
is not always possible, for various reasons. For example, with a DTAP (development, test,

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> PDB set_trace >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> >>>>>

> /src/airflowbook/operators/movielens_operator.py( 70)execute()

-> postgres_hook = PostgresHook(postgres_conn_id=se lf._postgres_conn_id)

(Pdb) l
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Figure 9.15 Debugging on the command line with PDB
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acceptance, production) separated system, we often cannot create a perfect replica of
production in the development environment because of privacy regulations or the
size of the data. Say the production environment holds a petabyte of data; then it
would be impractical (to say the least) to keep the data in sync on all four environ-
ments. Therefore, people have been creating production environments that are as
real as possible, which we can use for developing and validating the software. With Air-
flow, this is no different, and we’ve seen several approaches to this problem. We briefly
describe two approaches in sections 9.4 and 9.5.

9.4 Emulate production environments with Whirl
One approach to recreating a production environment is a project named Whirl
(https://github.com/godatadriven/whirl). Its idea is to simulate all components of
your production environment in Docker containers and manage all these with Docker
Compose. Whirl comes with a CLI utility to easily control these environments. While
Docker is a great tool for development, one downside is that not everything is avail-
able as a Docker image. For example, there is no Google Cloud Storage available as a
Docker image.

9.5 Create DTAP environments
Simulating your production environment locally with Docker, or working with a tool
such as Whirl, is not always possible. One reason for that is security (e.g., it’s some-
times not possible to connect your local Docker setup with an FTP server used in your
production DAGs because the FTP server is IP allowlisted).

 One approach that is often more negotiable with a security officer is to set up iso-
lated DTAP environments. Four fully-fledged environments are sometimes cumber-
some to set up and manage, so in smaller projects with few people, sometimes just two
(development and production) are used. Each environment can have specific require-
ments, such as dummy data in the development and test environments. The implemen-
tation of such a DTAP street is often very specific to the project and infrastructure,
and is not in the scope of this book.

 In the context of an Airflow project, it is wise to create one dedicated branch in
your GitHub repository per environment: development environment > development
branch, production environment > production/main, and so on. This way you can
develop locally in branches. Then, first merge into the development branch and run
DAGs on the development environment. Once satisfied with the results, you would
then merge your changes into the next branch, say main, and run the workflows in the
corresponding environment.

Summary
 A DAG integrity test filters basic errors in your DAGs.
 Unit testing verifies the correctness of individual operators.

https://github.com/godatadriven/whirl
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 Pytest and plug-ins provide several useful constructs for testing, such as tempo-
rary directories and plug-ins for managing Docker containers during tests.

 Operators that don’t use task instance context can simply run with execute().
 Operators that do use task instance context must run together with a DAG.
 For integration testing, you must simulate your production environment as closely

as possible.



Running tasks
in containers
In previous chapters, we implemented several DAGs using different Airflow oper-
ators, each specialized to perform a specific type of task. In this chapter, we touch
on some of the drawbacks of using many different operators, especially with an
eye on creating Airflow DAGs that are easy to build, deploy, and maintain. In
light of these issues, we look at how we can use Airflow to run tasks in containers
using Docker and Kubernetes and some of the benefits this containerized approach
can bring. 

This chapter covers
 Identifying some challenges involved in managing 

Airflow deployments

 Examining how containerized approaches can 
help simplify Airflow deployments

 Running containerized tasks in Airflow on Docker

 Establishing a high-level overview of workflows in 
developing containerized DAGs
220
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10.1 Challenges of many different operators
Operators are arguably one of the strong features of Airflow, as they provide great
flexibility to coordinate jobs across many different types of systems. However, creating
and managing DAGs with many different operators can be quite challenging due to
the complexity involved. 

 To see why, consider the DAG in figure 10.1, which is based on our recommender
use case from chapter 8. The DAG consists of three different tasks: fetching movie rec-
ommendations from our movie API, ranking movies based on the fetched recommen-
dations, and pushing these movies to a MySQL database for further use downstream.
Note that this relatively simple DAG already uses three different operators: an
HttpOperator (or some other API operator) for accessing the API, a PythonOperator
for executing the Python recommender function, and a MySQLOperator for storing
the results.

10.1.1 Operator interfaces and implementations

A drawback of using different operators for each of these tasks is that we need to
familiarize ourselves with the interfaces and inner workings of each operator to use
them effectively. Additionally, if we were to encounter bugs in any of the operators1 we
would need to spend valuable time and resources on tracking down the underlying
issues and fixing them. While these efforts may seem tractable for this small example,
imagine maintaining an Airflow deployment with many different DAGs, which together
use a multitude of different operators. In such a scenario, working with all these oper-
ators may seem a bit more daunting.

1 This is unfortunately not unheard of, especially for more esoteric and less frequently used Airflow operators.

DAG

HttpOperator

PythonOperator

MysqlOperator

1. Fetch data from API.

2. Aggregate data to calculate stats.

3. Load into MySQL for analytics.

Figure 10.1 Illustration of our movie recommender DAG. The DAG 
fetches movie recommendations, uses them to rank movies, and 
stores the result in a database. Each of these steps involves a 
different operator, thus adding complexity to the development and 
maintenance of the DAG.



222 CHAPTER 10 Running tasks in containers
10.1.2 Complex and conflicting dependencies

Another challenge in using many different operators is that each generally requires its
own set of dependencies (Python or otherwise). For example, the HttpOperator
depends on the Python library requests for doing HTTP requests, while the MySQL-
Operator depends on Python- and/or system-level dependencies for talking to MySQL.
Similarly, the recommender code being called by the PythonOperator is likely to have
its own slew of dependencies (such as pandas, scikit-learn, etc., if machine learning
were involved).

 Because of the way that Airflow is set up, all of these dependencies need to be
installed in the environment that runs the Airflow scheduler, as well as the Airflow work-
ers themselves. When using many different operators, this requires many dependencies
to be installed,2 leading to potential conflicts (figure 10.2) and a great deal of complex-
ity in setting up and maintaining these environments (not to mention the potential
security risks with installing so many different software packages). Conflicts are particu-
larly a problem in Python environments, as Python does not provide any mechanism for
installing multiple versions of the same package in the same environment.

2 Just look at Airflow’s setup.py file for an idea of the sheer number of dependencies involved in supporting all
of Airflow’s operators. 
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Conflict
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Airflow running multiple DAGs

Figure 10.2 Complex and conflicting dependencies between Airflow tasks or DAGs. Running 
many DAGs in a single environment can lead to conflicts when DAGs depend on different versions 
of the same (or related) packages. Python in particular does not support installing different 
versions of the same package in the same environment. This means that any conflicts in packages 
(right) would need to be resolved by rewriting the DAGs (or their dependencies) to use the same 
package versions.
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10.1.3 Moving toward a generic operator

Because of these challenges in using and maintaining many different operators and
their dependencies, some have argued it would be better to focus on using a single
generic operator for running Airflow tasks. An upside of this approach is that we only
have to be familiar with one kind of operator, which means that our many different
Airflow DAGs suddenly become much easier to understand, as they only consist of
one type of task. Moreover, if everyone uses the same operator to run their tasks, we
are less likely to run into bugs in this heavily used operator. Finally, having only one
operator means we only have to worry about one set of Airflow dependencies—those
required for this single operator. 

 But where would we find such a generic operator capable of running many differ-
ent tasks that at the same time doesn’t require us to install and manage dependencies
for each? That’s where containers come in.

10.2 Introducing containers
Containers have been touted as one of the major recent developments that allow
applications to be easily packed with the required dependencies and to be easily
deployed in different environments uniformly. Before going into how we can use con-
tainers within Airflow, we’ll first give a short3 introduction to containers to make sure
we’re all on the same page. If you’re already familiar with Docker and the concepts
behind containers, feel free to skip ahead to section 10.3. 

10.2.1 What are containers?

Historically, one of the biggest challenges in developing software applications has
been their deployment (i.e., ensuring that your application[s] can run correctly and
stably on the target machine[s]). This typically involves juggling and accounting for
many different factors, including differences between operating systems, variation in
installed dependencies and libraries, differing hardware, and so on. 

 One approach to managing this complexity is to use virtualization, in which appli-
cations are installed into a virtual machine (VM) that is running on top of the client’s
operating host operating system (figure 10.3). Using this type of approach, applica-
tions see just the VM’s operating system (OS), meaning that we only have to ensure
the virtual OS meets the requirements of our application rather than modifying the
host OS. As such, to deploy our application we can simply install our application with
any required dependencies into the virtual OS, which we can then ship to our clients.

 A drawback of VMs is that they are quite heavy because they require running an
entire operating system (the virtual or guest OS) on top of the host operating system.
Moreover, every new VM will be running its own guest operating system, meaning

3 For a full introduction, we happily refer you to the many, many books written about container-based virtual-
ization and related technologies, such as Docker/Kubernetes.
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that considerable resources are required to run multiple applications in VMs on a
single machine.

 This limitation led to the development of container-based virtualization, which is a
much more lightweight approach than VMs (figure 10.3). In contrast to VMs, container-
based virtualization approaches use kernel-level functionality in the host operating
system to virtualize applications. This means containers can segregate applications
and their dependencies in the same fashion as VMs, but without requiring each appli-
cation to run its own operating system; they can simply leverage this functionality
from the host OS.

Interaction between containers and the host operating system is often managed by a
service called the container engine, which provides an API for managing and running
the different application containers and their images. This service often also provides
command-line tooling that helps users build and interact with their containers. The
most well-known container engine is Docker, which has gained a lot of popularity over
the years due to its being relatively easy to use and its large community.

10.2.2 Running our first Docker container

To explore the lifecycle of building and running a container, let’s try to build a small
container using Docker. This will hopefully give you a feel for working with containers
and the involved development workflow. Before getting started, make sure you have
Docker installed. You can find instructions for installing Docker Desktop at https://
www.docker.com/get-started. Once you have Docker installed and running, we can
run our first container using the following command in your terminal.
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Figure 10.3 Comparison 
between virtual machines 
(VMs) and containers. Note 
that containers are much 
more lightweight as they 
don’t require running a full 
guest OS for each application.
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$ docker run debian:buster-slim echo Hello, world!

Running this command should give you something like the following output:

Unable to find image 'debian:buster-slim' locally
latest: Pulling from library/debian
...
Digest: sha256:76c15066d7db315b42dc247b6d439779d2c6466f

➥ 7dc2a47c2728220e288fc680
Status: Downloaded newer image for debian:buster-slim
Hello, world!

What happened when we ran this command? In short, Docker performed the follow-
ing steps for us:

1 The docker client contacted the Docker daemon (the container service run-
ning on our local machine).

2 The Docker daemon pulled a Debian Docker image, which contains the base
Debian binaries and libraries, from the Docker hub registry (an online service
for storing Docker images). 

3 The Docker daemon created a new container using that image. 
4 The container executed our command echo Hello, world inside the container.
5 The Docker daemon streamed the output from the command to the Docker cli-

ent, showing it on our terminal.

This means that we were able to execute our command echo Hello, world inside an
Ubuntu container on our local machine, independent of our host operating system.
Pretty cool!

 Similarly, we can run commands in Python using the following command.

$ docker run python:3.8 python -c 'import sys; print(sys.version)'

This effectively runs our Python command inside the Python container. Note that
here we specify a tag for the image (3.8), which in this case makes sure we use a ver-
sion of the Python image that contains Python 3.8. 

10.2.3 Creating a Docker image 

Although running an existing image is pretty straightforward, what if we want to
include our own application in an image so that we can run it using Docker? Let’s
illustrate the process with a small example.

 In this example, we have a small script (fetch_weather.py) that fetches weather
predictions from the wttr.in API (http://wttr.in) and writes the output of this API to
an output file. This script has a couple of dependencies (Python and the Python

Listing 10.1 Running a Docker container

Listing 10.2 Running a command inside a Python container

http://wttr.in
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packages’ clicks and requests), and we want to package the whole thing as a Docker
image so that it is easy for end users to run.

 We can start building a Docker image by creating a Dockerfile, which is essentially
a text-based file that describes to Docker how to build the image. The basic structure
of a Dockerfile is something like this.

FROM python:3.8-slim                                         B

COPY requirements.txt /tmp/requirements.txt                  c
RUN pip install -r /tmp/requirements.txt

COPY scripts/fetch_weather.py /usr/local/bin/fetch-weather   d
RUN chmod +x /usr/local/bin/fetch-weather

ENTRYPOINT [ "/usr/local/bin/fetch-weather" ]                e
CMD [ "--help" ]                                             f

B Tell Docker which image to use as a base for building our image.

c Copy requirements file and run pip to install the requirements.

d Copy our script and make sure it’s executable.

e Tell Docker which command to run when starting the container.

f Tell Docker which default arguments to include with the command.

Each line of the Dockerfile is essentially an instruction that tells Docker to perform a
specific task when building the image. Most Dockerfiles start with a FROM instruction
that tells Docker which base image to use as a starting point. The remaining instruc-
tions (COPY, ADD, ENV, etc.) then tell Docker how to add extra layers to the base image
that contains your application and its dependencies. 

 To actually build an image using this Dockerfile, we can use the following docker
build command.

$ docker build --tag manning-airflow/wttr-example . 

This effectively tells Docker to build a Docker image using the current directory (.) as
a build context. Docker will then look inside this directory for the Dockerfile and also
search for any files included in ADD/COPY statements (such as our script and the require-
ments file). The --tag argument tells Docker which name to assign to the built image
(in this case manning-airflow/wttr-example).

 Running this build command will give something like the following output:

Sending build context to Docker daemon   5.12kB
Step 1/7 : FROM python:3.8-slim
 ---> 9935a3c58eae
Step 2/7 : COPY requirements.txt /tmp/requirements.txt
 ---> 598f16e2f9f6

Listing 10.3 Dockerfile for fetching weather from the wttr API

Listing 10.4 Building a Docker image using the Dockerfile
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Step 3/7 : RUN pip install -r /tmp/requirements.txt
 ---> Running in c86b8e396c98
Collecting click
...
Removing intermediate container c86b8e396c98
 ---> 102aae5e3412
Step 4/7 : COPY scripts/fetch_weather.py /usr/local/bin/fetch-weather
 ---> 7380766da370
Step 5/7 : RUN chmod +x /usr/local/bin/fetch-weather
 ---> Running in 7d5bf4d184b5
Removing intermediate container 7d5bf4d184b5
 ---> cae6f678e8f8
Step 6/7 : ENTRYPOINT [ "/usr/local/bin/fetch-weather" ]
 ---> Running in 785fe602e3fa
Removing intermediate container 785fe602e3fa
 ---> 3a0b247507af
Step 7/7 : CMD [ "--help" ]
 ---> Running in bad0ef960f30
Removing intermediate container bad0ef960f30
 ---> ffabdb642077
Successfully built ffabdb642077
Successfully tagged wttr-example:latest

This essentially shows the entire build process involved in creating our image, starting
with the Python base image (step 1) up until our final CMD instruction (step 7), fin-
ished by Docker stating it tagged the built image with the provided name. 

 To do a test run of the built image, we can use the following command.

$ docker run manning-airflow/wttr-example:latest

This should print the following help message from our script inside the container:

Usage: fetch-weather [OPTIONS] CITY

  CLI application for fetching weather forecasts from wttr.in.

Options:
  --output_path FILE  Optional file to write output to.
  --help              Show this message and exit.

Now that we have our container image, we can start using it to fetch weather forecasts
from the wttr API in the next section. 

10.2.4 Persisting data using volumes

We can run the wttr-example image we built in the previous section to fetch the weather
for a city like Amsterdam using the following Docker command.

 

Listing 10.5 Running a Docker container using the wttr image
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$ docker run wttr-example:latest Amsterdam

Assuming everything goes correctly, this should print some weather forecasts for
Amsterdam in the terminal, together with some fancy graphs (figure 10.4).

To build some history of weather forecasts, we may also want to write the forecasts to
some output file(s) that we can use for future reference or analysis. Fortunately, our
CLI script includes an extra argument, --output_path, which allows us to specify an
output file path to write the forecasts to, instead of writing them to the console.

Listing 10.6 Running the wttr container for a specific city

Figure 10.4 Example output from the wttr-example container for Amsterdam
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 However, if you try to run this command with a local file path, you will see that it
doesn’t actually create any JSON output on your local file system:

$ docker run wttr-example:latest Amsterdam --output_path amsterdam.json
$ ls amsterdam.json
ls: amsterdam.json: No such file or directory

This is because your container environment is isolated from your host operating sys-
tem, which means that it (among other things) has an isolated file system separated
from the host file system. 

 To share files with your container you need to make sure that the files are available
in a file system your container has access to. One commonly used option is to read/write
files using storage that can be accessed via the internet (such as Amazon’s S3 storage) or
the local network. Alternatively, you can mount files or folders from your host system
into the container to make them accessible from within the container. 

 To mount a file or folder into your container, you need to supply a --volume argu-
ment to docker run that specifies the file/folder to mount and the desired path inside
the container.

$ docker run --volume `pwd`/data:/data wttr-example ...      B

B Mount the local directory data (left) in the container under /data.

This effectively tells Docker to mount the local folder data under the path /data
within the container. This means that we can now write our weather output to the
mounted data volume using the following command.

$ docker run --rm --volume `pwd`/data:/data \

➥ wttr-example Amsterdam --output_path /data/amsterdam.json        B

B Pass extra arguments from Amsterdam and --output_path to the container.

We can verify everything worked by checking if the text file indeed exists after our
container finished running:

$ ls data/amsterdam.json
data/amsterdam.json

When you’re done with running containers, you can use the following command to
check if any containers are still secretly running:

$ docker ps

You can stop any running containers with Docker’s stop command, using the con-
tainer IDs obtained from the previous command to reference the running containers:

$ docker stop <container_id>

Listing 10.7 Mounting a volume when running a container

Listing 10.8 Persisting output from the wttr container



230 CHAPTER 10 Running tasks in containers
Stopped docker containers still hang around in a suspended state in the background
in case you want to start them again at a later point in time. If you don’t need the con-
tainer anymore, you can fully remove the container using Docker’s rm command:

$ docker rm <container_id>

Note that stopped containers aren’t visible by default when using Docker’s ps com-
mand to look for running containers. You can view stopped containers by including
the -a flag when running the ps command:

$ docker ps -a

10.3 Containers and Airflow
Now that we have a basic understanding of what Docker containers are and how they
can be used, let’s turn back to Airflow. In this section, we’ll dive into how containers
can be used within Airflow and what potential benefits they can bring. 

10.3.1 Tasks in containers

Airflow allows you to run your tasks as containers. In practice, this means that you can
use container-based operators (such as the DockerOperator and the Kubernetes-
PodOperators) to define tasks. These operators will, when executed, start running a
container and wait for it to finish running whatever it was supposed to (similar to
docker run). 

 The result of each task depends on the executed command and the software inside
the container image. As an example, consider our recommender DAG (figure 10.1).
The original example uses three operators to perform three different tasks, namely fetch-
ing ratings (using the HttpOperator), ranking movies (using the PythonOperator), and
posting the results (using a MySQL-based operator). Using a Docker-based approach
(figure 10.5), we could replace these different tasks using the DockerOperator and
use it to execute commands in three different Docker containers with the appropriate
dependencies.

DAG

DockerOperator

DockerOperator

DockerOperator

Docker

Http container

Recommender container

MySQL container

Figure 10.5 Docker version of the recommender DAG from figure 10.1



231Containers and Airflow
10.3.2 Why use containers?

Of course, this kind of container-based approach does require building images for
each of the tasks (although sometimes you might be able to share images between
related or similar tasks). As such, you might wonder why you would go through the
hassle of building and maintaining these Docker images instead of implementing
everything in a few scripts or Python functions. 

EASIER DEPENDENCY MANAGEMENT

One of the biggest advantages of using (Docker) containers is that they provide an eas-
ier approach for managing dependencies. By creating different images for different
tasks, you can install the exact dependencies required by each of the tasks into their
respective image. As tasks then run in isolation within these images, you no longer have
to deal with conflicts in dependencies between tasks (figure 10.6). As an additional
advantage, you don’t have to install any task dependencies in the Airflow worker envi-
ronment (only in Docker), as the tasks are no longer run directly on the workers.

UNIFORM APPROACH FOR RUNNING DIFFERENT TASKS 
Another advantage of using containers for tasks is that each containerized task has
the same interface, as they’re all effectively the same operation (running a con-
tainer) executed by the same operator (e.g., the DockerOperator). The only differ-
ences are the involved images, with some slight variation in their configuration and
executed command. This uniformity makes it easier to develop DAGs, as you only
have to learn one operator. And, if any operator-related issues pop up, we only have
to debug and fix issues in this one operator instead of having to be intimately famil-
iar with many different ones.
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Figure 10.6 Managing dependencies 
across different tasks using containers
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IMPROVED TESTABILITY

Finally, another benefit of using container images is that they can be developed and
maintained separately from the Airflow DAG in which they run. This means that each
image can have its own development life cycle and can be subjected to a dedicated test
suite (e.g., running on mock data), which verifies whether the software in the image
does what we expect. The separation into containers makes this testing easier than,
for example, using the PythonOperator, which often involves tasks that are tightly
coupled to the DAG itself, thus making it hard to test the functions separate from Air-
flow’s orchestration layer. 

10.4 Running tasks in Docker
After this introduction, it’s time to implement a part of our recommender DAG in
containers. In this section, we’ll dive into how to run the existing DAG in containers
using Docker. 

10.4.1 Introducing the DockerOperator

The easiest way to run a task in a container with Airflow is to use the DockerOperator,
which is available in the apache-airflow-providers-docker4 provider package. As
the name of the operator insinuates, the DockerOperator allows you to run tasks in
containers using Docker. The basic API of the operator looks like this.

rank_movies = DockerOperator(
       task_id="rank_movies",
       image="manning-airflow/movielens-ranking",   B
       command=[                                    c
           "rank_movies.py",
           "--input_path",
           "/data/ratings/{{ds}}.json",
           "--output_path",
           "/data/rankings/{{ds}}.csv",
       ],
       volumes=["/tmp/airflow/data:/data"],         d
   )

B Tell the DockerOperator which image to use.

c Specify which command to run in the container.

d Define which volumes to mount inside the container (format: host_path: container_path).

The idea behind the DockerOperator is that it performs the equivalent of a docker
run command (as shown in the previous section) to run a specified container image
with specific arguments and wait for the container to finish doing its work. In this
case, we’re telling Airflow to run the rank_movies.py script inside the manning-
airflow/movielens-ranking Docker image, with some extra arguments indicating

4 For Airflow 1.10.x, you can install the DockerOperator using the apache-airflow-backport-providers-
docker backport package.

Listing 10.9 Example use of the DockerOperator
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where the script should read/write its data. Note that we also provide an extra volumes
argument that mounts a data directory into the container so that we can provide input
data to the container and also keep the results after the task/container finishes.

 What happens when this operator is actually executed? In essence, what happens is
illustrated in figure 10.7. First, Airflow tells a worker to execute the task by scheduling
it (1). Next, the DockerOperator executes a docker run command on the Worker
machine with the appropriate arguments (2). Then, if needed, the Docker daemon
fetches the required Docker image from the registry (3). Finally, Docker creates a con-
tainer running the image (4) and mounts the local volume into the container (5). As
soon as the command finishes, the container is terminated and the DockerOperator
retrieves the results in the Airflow worker.

10.4.2 Creating container images for tasks

Before we can run tasks using the DockerOperator, we need to build any required
Docker images for the various tasks. To build an image for any given task, we need to
determine exactly which software (and corresponding dependencies) are required
to execute the task. Once this is clear, we can start creating a Dockerfile (together
with any supporting files) and use docker build to actually create the required image. 

 As an example, let’s look at the first task in our movie recommender DAG: the task
for fetching ratings (figure 10.1). This task needs to contact an external API to fetch
movie ratings from users for a given range of dates so that we can use these ratings as
input for our recommender model in the next task.

 To be able to run this process within a container, we first need to convert the code
we wrote for fetching ratings in chapter 8 into a script that can be easily run inside the
container. The first step toward building this script is using a small scaffold to create a
CLI script in Python, which we can then fill in with the required functionality. Using
the popular click Python library,5 such a scaffold could look something like listing 10.10.
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ContainerLocal storage

(4)

(3)

Fetches image

(if needed)

Runs

(5)

Mounts

(2)

Executes

docker run

(1)

Schedules

task

Figure 10.7 Illustration of what happens when a task is executed using the DockerOperator. The image 
registry stores a collection of Docker images This can be a private registry (containing our own images), or a 
public registry like DockerHub (which is used by default when fetching images). Images are cached locally 
when fetched so that you only have to do it once (barring any updates to the image).
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#!/usr/bin/env python                           B

import logging
import click

logging.basicConfig(level=logging.INFO)         c

@click.command()                                d
@click.option(                                  e
   "--start_date",
   type=click.DateTime(formats=["%Y-%m-%d"]),
   required=True,
   help="Start date for ratings.",
)
@click.option(                                  f
   ...
)
@click.option(
   ...
)
...
def main(start_date, ...):                      g
   """CLI script for fetching ratings from the movielens API."""
   ...

if __name__ == "__main__":                      h
   main()

B Shebang telling Linux to execute this script using Python

c Setup logging to provide feedback to the user

d Converts the main function to a click CLI command

e Adds an option to the CLI command, with corresponding types and annotations

f Adds further options needed for the command

g The options are passed as keyword arguments to the main function and can be used from then on.

h Python’s way of ensuring that the main function/command is called when this script is executed

In this scaffold, we define one function, main, which is executed when our script runs
and should therefore implement our rating fetching functionality. We also use the
click.command decorator to convert the main function into a click CLI command,
which will take care of parsing any arguments from the command line and presenting
useful feedback to the user. The click.option decorators are used to tell the click
library which arguments our CLI should accept and what types of values to expect.
The nice thing about this is that click will also handle parsing and validating argu-
ments for us, so we don’t have to handle this type of logic ourselves.

5 You can, of course, also use the built-in argparse library, but we personally quite like the brevity of the click
library’s API for building CLI applications.

Listing 10.10 Skeleton for a Python CLI script, based on the click library
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 Using the scaffold, we can start filling in the main function with the same logic we
started with in chapter 8.6

...
from pathlib import Path

@click.command()
@click.option(...)                                                   B
...
def main(start_date, end_date, output_path, 
         host, user, password, batch_size):
   """CLI script for fetching ratings from the movielens API."""

   session = requests.Session()                                      c
   session.auth = (user, password)

   logging.info("Fetching ratings from %s (user: %s)", host, user)   d
   ratings = list(
       _get_ratings(                                                 e
           session=session,
           host=host,
           start_date=start_date,
           end_date=end_date,
           batch_size=batch_size,
       )
   )
   logging.info("Retrieved %d ratings!", len(ratings))

   output_path = Path(output_path)

   output_dir = output_path.parent                                   f
   output_dir.mkdir(parents=True, exist_ok=True)

   logging.info("Writing to %s", output_path)
   with output_path.open("w") as file_:                              g
       json.dump(ratings, file_)

B Define the different CLI arguments for click. Omitted here for brevity; full implementation is 
available in the code samples.

c Sets up the requests session for performing HTTP requests, with the correct authentication details

d Logging is used to provide feedback to the user.

e Uses our _get_ratings function (omitted for brevity) for fetching ratings using the provided session

f Makes sure the output directory exists

g Writes the output as JSON to the output directory

In short, this code starts with setting up a requests session for performing HTTP
requests and then uses the _get_ratings function7 to retrieve ratings for the defined

Listing 10.11 Ratings script (docker/images/movielens-fetch/scripts/fetch_ratings.py)

6 Code is adapted from the PythonOperator-based example we started with in chapter 8.
7 The _get_ratings function is omitted here for brevity but is available in the source code accompanying this

book.
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time period from the API. The result from this function call is a list of records (as
dicts), which is then written to the output path in JSON format. We also use some log-
ging statements in between to provide feedback to the user. 

 Now that we have our script, we can start building the Docker image. To do this, we
need to create a Dockerfile that installs the dependencies for our script (click and
requests), copies our script into the image, and makes sure this script is in our PATH.8

This should give us something like the following Dockerfile.

FROM python:3.8-slim
RUN pip install click==7.1.1 requests==2.23.0                 B
COPY scripts/fetch_ratings.py /usr/bin/local/fetch-ratings    c
RUN chmod +x /usr/bin/local/fetch-ratings
ENV PATH="/usr/local/bin:${PATH}"                             d

B Install the required dependencies.

c Copy the fetch_ratings script and make it executable.

d Ensure the script is on the PATH (so it can be run without having to specify the full path to the script).

Note that this assumes we put our script fetch_ratings.py in a scripts directory next
to our Dockerfile. Our dependencies are installed by specifying them directly in the
Dockerfile, although you may also want to use a requirements.txt file instead, which
you copy into the image before running pip.

COPY requirements.txt /tmp/requirements.txt
RUN pip install -r /tmp/requirements.txt

With this Dockerfile, we can finally build our image for fetching ratings:

$ docker build -t manning-airflow/movielens-fetch .

To test the built image, we can try executing it with docker run:

$ docker run --rm manning-airflow/movielens-fetch fetch-ratings --help

This command should print the help message from our script, which looks something
like this:

Usage: fetch-ratings [OPTIONS]

  CLI script for fetching movie ratings from the movielens API.

Options:
  --start_date [%Y-%m-%d]  Start date for ratings.  [required]

8 This is so that we can run the script using the fetch-ratings command instead of having to specify the full path
to the script.

Listing 10.12 Embedding the ratings script (docker/images/movielens-fetch/Dockerfile)

Listing 10.13 Using requirements.txt (docker/images/movielens-fetch-reqs/Dockerfile)
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  --end_date [%Y-%m-%d]    End date for ratings.  [required]
  --output_path FILE       Output file path.  [required]
  --host TEXT              Movielens API URL.
  --user TEXT              Movielens API user.  [required]
  --password TEXT          Movielens API password.  [required]
  --batch_size INTEGER     Batch size for retrieving records.
  --help                   Show this message and exit.

This means that we now have a container image for our first task. We can use a similar
approach to build different images for each of the other tasks as well. Depending on
the amount of shared code, you may also want to create images that are shared
between tasks but that can run with different arguments or even with different scripts.
How you organize this is up to you.

10.4.3 Building a DAG with Docker tasks

Now that we know how to build Docker images for each of our tasks, we can start
building the DAG for running the Docker tasks. The process for building such a
Docker-based DAG is relatively simple: we only need to replace our existing tasks with
DockerOperators and make sure that each DockerOperator runs its task with the cor-
rect arguments. We also need to think about how to exchange data between tasks, as
the Docker containers’ filesystems will not exist past the duration of the task.

 Starting with the fetching of the ratings, the first part of our DAG is simply a Docker-
Operator that calls the fetch-ratings script inside the manning-airflow/movielens-
fetch container, which we built in the previous section.

import datetime as dt

from airflow import DAG
from airflow.providers.docker.operators.docker import DockerOperator

with DAG(
   dag_id="01_docker",
   description="Fetches ratings from the Movielens API using Docker.",
   start_date=dt.datetime(2019, 1, 1),
   end_date=dt.datetime(2019, 1, 3),
   schedule_interval="@daily",
) as dag:
   Fetch
ratings = DockerOperator(
       task_id="fetch_ratings",
       image="manning-airflow/movielens-fetch",   B
       command=[
           "fetch-ratings",                       c
           "--start_date",
           "{{ds}}",
           "--end_date",

Listing 10.14 Running the fetch container (docker/dags/01_docker.py)
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           "{{next_ds}}",
           "--output_path",
           "/data/ratings/{{ds}}.json",
           "--user",
           os.environ["MOVIELENS_USER"],          d
           "--password",
           os.environ["MOVIELENS_PASSWORD"],
           "--host",
           os.environ["MOVIELENS_HOST"],
       ], 
       volumes=["/tmp/airflow/data:/data"],       e
       network_mode="airflow",                    f
)

B Tell the DockerOperator to use the movielens-fetch image.

c Run the fetch-ratings script in the container with the required arguments.

d Provide host and authentication details for our API.

e Mount a volume to store data. Note that this host path is on the Docker host, not the Airflow 
container.

f Make sure the container is attached to the airflow Docker network so that it can reach the API 
(which is running on the same network). 

When running the container from the operator, make sure to include arguments that
tell the operator how to connect to the MovieLens API (host, user, password), which
range of dates to fetch ratings for (start_date/end_date), and where to write the
retrieved ratings to (output_path). 

 We also tell Docker to mount a host file system path into the container under
/data so that we can persist the fetched ratings outside the container. Additionally, we
tell Docker to run the container on a specific (Docker) network called Airflow, which
is where our MovieLens API container is running if you’re using our docker-compose
templates to run Airflow.9 

 For our second movie ranking task, we can follow a similar approach to build a
Docker container for the task, which we can then run using the DockerOperator.

   rank_movies = DockerOperator(
       task_id="rank_movies",
       image="manning-airflow/movielens-ranking",    B
       command=[
           "rank-movies",                            c
           "--input_path",
           "/data/ratings/{{ds}}.json",
           "--output_path",
           "/data/rankings/{{ds}}.csv",
       ],

9 We won’t go any deeper into Docker networking here, as it’s a bit of an implementation detail; you wouldn’t
need to configure networking if you were accessing an API on the internet. If you’re interested, check out
Docker networking in a good Docker book or the online documentation.

Listing 10.15 Adding the ranking task to the DAG (docker/dags/01_docker.py)



239Running tasks in Docker
       volumes=["/tmp/airflow/data:/data"],
   )
   fetch_ratings >> rank_movies

B Use the movielens-ranking image.

c Call the rank-movies script with the required input/output paths.

Here you can also see one of the big advantages of using the DockerOperator: even
though these tasks do different things, the interface for running the tasks is the same
(save for the command arguments that are passed to the container).  As such, this task
now runs the rank-movies command inside the manning-airflow/movielens-ranking
image, making sure to read and write data to the same host path mount as the previ-
ous task. This allows the ranking task to read the output from the fetch_ratings task
and persist the ranked movies in the same directory structure.

 Now that we have our first two tasks10 in the DAG, we can try running it from
within Airflow. To do so, open the Airflow web UI and activate the DAG. After waiting
for it to finish running, you should see a couple of successful runs for the past few days
(figure 10.8).

You can check the result of the run by clicking on the task and then opening the logs
by clicking on View logs. For the fetch_ratings task, this should show something like
the following log entries, in which you can see that the DockerOperator started our
image and logged the output logs from the container.

[2020-04-13 11:32:56,780] {docker.py:194} INFO - 

➥ Starting docker container from image manning-airflow/movielens-fetch
[2020-04-13 11:32:58,214] {docker.py:244} INFO - 

➥ INFO:root:Fetching ratings from http://movielens:5000 (user: airflow)
 [2020-04-13 11:33:01,977] {docker.py:244} INFO - 

➥ INFO:root:Retrieved 3299 ratings!
 [2020-04-13 11:33:01,979] {docker.py:244} INFO - 

➥ INFO:root:Writing to /data/ratings/2020-04-12.json

10 We’ll leave the third task of loading recommendations into a database as an exercise.

Listing 10.16 Log output from the fetch_ratings task

Figure 10.8 The Docker-based DAG in the Airflow UI
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You can also check the output files from the DAG run by looking at the output files,
which (in our example) were written to the /tmp/airflow/data directory on the
Docker host.

$ head /tmp/airflow/data/rankings/*.csv | head
==> /tmp/airflow/data/rankings/2020-04-10.csv <==
movieId,avg_rating,num_ratings
912,4.833333333333333,6
38159,4.833333333333333,3
48516,4.833333333333333,3
4979,4.75,4
7153,4.75,4

10.4.4 Docker-based workflow

As we have seen, the workflow for building DAGs using Docker containers is a bit dif-
ferent than the approach we have used for other DAGs. The biggest difference in the
Docker-based approach is that you first need to create Docker containers for your dif-
ferent tasks. As such, the overall workflow typically consists of several steps (illustrated
in figure 10.9).

1 A developer creates Dockerfile(s) for the required image(s), which install the
required software and dependencies. The developer (or a CI/CD process) then
tells Docker to build the image(s) using the Dockerfile(s).

2 The Docker daemon builds the corresponding image(s) on the development
machine (or a machine in the CI/CD environment).

3 The Docker daemon pushes the built image(s) to a container registry to expose
the image for further use downstream.

4 A developer creates the DAG using DockerOperators that reference the built
image(s).

Listing 10.17 Movie ranking output from the DAG 
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5 After the DAG is activated, Airflow starts running the DAG and scheduling
DockerOperator tasks for the respective runs.

6 Airflow workers pick up the DockerOperator task(s) and pull the required
image(s) from the container registry.

7 For each task, the Airflow worker runs a container with the corresponding
image and arguments using the Docker daemon installed on the worker.

One benefit of this approach is that it effectively decouples the development of the soft-
ware for running the task, which is now stored inside the Docker image, from the devel-
opment of the overall DAG. This allows the development of the images to occur within
their own life cycle and allows you to test the images separate from the DAG itself.

10.5 Running tasks in Kubernetes
Although Docker provides a convenient approach for running containerized tasks on
a single machine, it does not help you with orchestrating and distributing the work
over multiple machines, thus limiting the scalability of the approach. This limitation
of Docker has led to the development of container orchestration systems such as
Kubernetes, which help scale containerized applications across computer clusters. In
this section, we’ll show how you can run your containerized tasks on Kubernetes
instead of Docker and illustrate some of the benefits and drawbacks of using Kuber-
netes on top of Docker.

10.5.1 Introducing Kubernetes

As Kubernetes is an entire subject in itself, we won’t give a full account of what it is but
aim to give you a high-level understanding of what it can do for you.11

 Kubernetes is an open source container orchestration platform that focuses on the
deployment, scaling, and management of containerized applications. Compared to
the more vanilla Docker, Kubernetes helps you scale your containers by managing
their deployment across multiple worker nodes while also taking things like required
resources (CPU and/or memory), storage, and special hardware requirements (e.g.,
GPU access) into account when scheduling containers onto nodes.

 Kubernetes is essentially organized into two main components: the Kubernetes
master (or control plane) and the nodes (figure 10.10). The Kubernetes master is
responsible for running many of the different components, including the API server,
the scheduler, and other services responsible for managing deployments, storage, and
so on. The Kubernetes API server is used by clients such as kubectl (Kubernetes’s
main CLI interface) or the Kubernetes Python SDK to query Kubernetes and run
commands to initiate deployments. This makes the Kubernetes master the main con-
tact point for managing your containerized applications on a Kubernetes cluster.

11 For a full overview of Kubernetes, we recommend you read a comprehensive book on the subject, such as
Kubernetes in Action by Marko Lukša (Manning, 2018).
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The Kubernetes worker nodes are responsible for running the container applications
assigned to them by the scheduler. In Kubernetes, these applications are referred to as
pods, which can contain one or multiple containers that need to be run together on a
single machine. For now, all you need to know is that a pod is the smallest unit of work
inside Kubernetes. In the context of Airflow, each task will run as a container inside a
single pod.

 Kubernetes also provides built-in functionality for managing secrets and storage.
In essence, this means that we can, for example, request a storage volume from the
Kubernetes master and mount this as persistent storage inside the container. As such,
these storage volumes function similarly to the Docker volume mounts we saw in the
previous section, but are managed by Kubernetes. This means that we don’t have to
worry about where the storage comes from (unless you are responsible for operating
the cluster, of course), but can simply request and use the volume provided. 

10.5.2 Setting up Kubernetes

Before we dive into adjusting our DAG to run in Kubernetes, let’s start with setting up
the required resources we need in Kubernetes. First, make sure you have access to a

Kubernetes node 1 Kubernetes node 2 Kubernetes node …

Kubernetes master
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Container

Container

Pod B

Container

Pod C

Container

SecretsStorageSchedulerAPI server
Controller/

manager

Image

registry
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Figure 10.10 High-level overview of Kubernetes
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Kubernetes cluster and have the kubectl client installed locally. The easiest way to get
access is to install one locally (using, for example, Docker for Mac/Windows or Mini-
kube), or to set one up in one of the cloud providers. 

 Once you have Kubernetes set up properly, you can verify if it is functioning by
running 

$ kubectl cluster-info. 

When using Docker for Mac, this should return something like the following output: 

Kubernetes master is running at https:/ /kubernetes.docker.internal:6443
KubeDNS is running at https:/ /kubernetes.docker.internal:6443/api/v1/

namespaces/kube-system/services/kube-dns:dns/proxy

If your Kubernetes cluster is up and running, we can continue with creating some
resources. First, we need to create a Kubernetes namespace that will contain all of our
Airflow-related resources and task pods.

$ kubectl create namespace airflow
namespace/airflow created

Next, we’re going to create some storage resources for our Airflow DAG, which will
allow us to store the results of our tasks. These resources are defined as follows using
Kubernetes’s YAML syntax for specifying resources.

apiVersion: v1
kind: PersistentVolume           B
metadata:
 name: data-volume               c
 Labels:
   type: local
Spec:
 storageClassName: manual
 capacity:
   storage: 1Gi                  d
 accessModes:
   - ReadWriteOnce               e
 hostPath:
   path: "/tmp/data"             f
---
apiVersion: v1
kind: PersistentVolumeClaim      g
metadata:
 name: data-volume               h
spec:
 storageClassName: manual
 accessModes:
   - ReadWriteOnce               i

Listing 10.18 Creating a Kubernetes namespace

Listing 10.19 YAML specification for storage (kubernetes/resources/data-volume.yml) 
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 resources:
   requests:
     storage: 1Gi                j

B Kubernetes specification for defining a persistent volume, a virtual disk that provides space for pods 
to store data

c Name to assign to the volume

d Size for the volume

e Allow read/write access, one container at a time.

f Specify the file path on the host where this storage will be kept.

g Kubernetes specification for a persistent volume claim, which represents a reservation of some of 
the storage in the specified volume

h The name of the volume to claim storage space on

i Allowed access modes for the storage claim

j The amount of storage to claim

In essence, this specification defines two resources used for storage. The first is a
Kubernetes volume, and the second is a storage claim, which essentially tells Kuber-
netes that we need some storage to be used for our containers. This claim can be
used by any of the Kubernetes pods run by Airflow to store data (as we’ll see in the
next section).

 Using this YAML, we can create the required storage resources. 

$ kubectl --namespace airflow apply -f resources/data-volume.yml
persistentvolumeclaim/data-volume created
persistentvolume/data-volume created

We also need to create a deployment of our MovieLens API, which we will be querying
using our DAG. The following YAML allows us to create deployment and service
resources for the MovieLens API, which tell Kubernetes how to start running our API
service.

apiVersion: apps/v1
kind: Deployment                              B
metadata:
 name: movielens-deployment                   c
 labels:
   app: movielens                             d
spec:
 replicas: 1
 selector:
   matchLabels:
     app: movielens
 template:
   metadata:
     Labels:
       app: movielens

Listing 10.20 Deploying the storage resources using kubectl

Listing 10.21 YAML specification for the API (kubernetes/resources/api.yml)



245Running tasks in Kubernetes
   spec:
     containers:                              e
     - name: movielens
       image: manning-airflow/movielens-api   f
       ports:
       - containerPort: 5000
       env:
       - name: API_USER
         value: airflow
       - name: API_PASSWORD
         value: airflow
---
apiVersion: v1                                g
kind: Service
metadata:
 name: movielens
spec:
 selector:                                    h
   app: movielens
 ports:
   - protocol: TCP                            i
     port: 80
     targetPort: 5000

B Kubernetes specification for creating a deployment of a container

c Name of the deployment

d Labels for the deployment (which are matched in the service)

e Specify which containers to include in the deployment, together with their respective ports, 
environment variables, etc.

f Tell Kubernetes to use the latest version of the movielens-api image. (Latest is the default image tag 
used by Docker/Kubernetes if no specific version tag is specified.)

g Kubernetes specification for creating a service, which allows us to connect to a given deployment

h Selector that matches the labels of the deployment, linking this service to the deployment 

i Mapping the service port (80) to the port exposed by the container in the deployment (5000)

We can create the service in the same manner we used for the storage resources. 

$ kubectl --namespace airflow apply -f resources/api.yml
deployment.apps/movielens-deployment created
service/movielens created

After waiting for a couple of seconds, you should see the pods for the API coming
online: 

$ kubectl --namespace airflow get pods                                                                                                      
NAME                       READY   STATUS   RESTARTS   AGE
movielens-deployment-...   1/1     Running   0          11s

You can check if the API service is working by running

$ kubectl --namespace airflow port-forward svc/movielens 8000:80

Listing 10.22 Deploying the MovieLens API 
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and then opening http:/ /localhost:8000 in a browser. If everything is working correctly,
you should now see the “hello world” from the API displayed in your browser.

10.5.3 Using the KubernetesPodOperator

After creating the required Kubernetes resources, we can now start adjusting our
Docker-based recommender DAG to use the Kubernetes cluster instead of Docker.

 To start running our tasks on Kubernetes, we need to replace our DockerOperators
with instances of the KubernetesPodOperator, which are available in the apache-
airflow-providers-cncf-kubernetes providers package.12 As the name implies, the
KubernetesPodOperator runs tasks within pods on a Kubernetes cluster. The basic
API of the operator is as follows.

fetch_ratings = KubernetesPodOperator(
       task_id="fetch_ratings",
       image="manning-airflow/movielens-fetch",    B
       cmds=["fetch-ratings"],                     c
       arguments=[                                 d
           "--start_date",
           "{{ds}}",
           "--end_date",
           "{{next_ds}}",
           "--output_path",
           "/data/ratings/{{ds}}.json",
           "--user",
           os.environ["MOVIELENS_USER"],
           "--password",
           os.environ["MOVIELENS_PASSWORD"],
           "--host",
           os.environ["MOVIELENS_HOST"],
       ],
       namespace="airflow",                        e
       name="fetch-ratings",                       f
       cluster_context="docker-desktop",           g
       in_cluster=False,                           h
       volumes=[volume],                           i
       volume_mounts=[volume_mount],               i
       image_pull_policy="Never",                  j
       is_delete_operator_pod=True,                1)
   )

B Which image to use

c The executable to run inside the container

d Arguments to pass to the executable (specified separately here, in contrast to the DockerOperator)

e Kubernetes namespace to run the pod in

f Name to use for the pod

12 For Airflow 1.10.x, you can install the KubernetesPodOperator using the apache-airflow-backport-
providers-cncf-kubernetes backport package.

Listing 10.23 Using the KubernetesPodOperator (kubernetes/dags/02_kubernetes.py)
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g Name of the cluster to use (in case you have multiple Kubernetes clusters registered)

h Specifies that we’re not running Airflow itself inside Kubernetes

i Volumes and volume mounts to use in the pod

j Specify an image pull policy that requires Airflow to use our locally built images rather than trying to 
pull images from Docker Hub.

1) Automatically deletes pods when they finish running

Similar to the DockerOperator, the first few arguments tell the KubernetesPodOperator
how to run our task as a container: the image argument tells Kubernetes which Docker
image to use, while the cmds and arguments parameters define which executable to
run (fetch-ratings) and which arguments to pass to the executable. The remaining
arguments tell Kubernetes which cluster to use (cluster_context), in which name-
space to run the pod (namespace), and what name to use for the container (name). 

 We also supply two extra arguments, volumes and volume_mounts, which specify
how the volumes we created in the previous section should be mounted into the tasks in
the Kubernetes pod. These configuration values are created using two config classes
from the Kubernetes Python SDK: V1Volume and V1VolumeMount.

from kubernetes.client import models as k8s

...

volume_claim = k8s.V1PersistentVolumeClaimVolumeSource(   B
   claim_name="data-volume"
)
volume = k8s.V1Volume(                                    B
   name="data-volume", 
   persistent_volume_claim=volume_claim
)
volume_mount = k8s.V1VolumeMount(
   name="data-volume", 
   mount_path="/data",                                    c
   sub_path=None, 
   read_only=False,                                       d
)

B References to the previously created storage volume and claim

c Where to mount the volume

d Mount the volume as writable.

Here, we first create a V1Volume configuration object, which references the per-
sistent volume claim data-volume, which we created as a Kubernetes resource in the
previous section. Next, we create a V1VolumeMount configuration object, which
refers to the volume configuration we just created (data-volume) and specifies
where this volume should be mounted in the pod’s container. These configuration
objects can then be passed to the KubernetesPodOperators using the volumes and
volume_mounts arguments. 

Listing 10.24 Volumes and volume mounts (kubernetes/dags/02_kubernetes.py)
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 Now the only thing remaining is to create a second task for the movie ranking task.

   rank_movies = KubernetesPodOperator(
       task_id="rank_movies",
       image="manning-airflow/movielens-rank",
       cmds=["rank-movies"],
       arguments=[
           "--input_path",
           "/data/ratings/{{ds}}.json",
           "--output_path",
           "/data/rankings/{{ds}}.csv",
       ],
       namespace="airflow",
       name="fetch-ratings",
       cluster_context="docker-desktop",
       in_cluster=False,
       volumes=[volume],
       volume_mounts=[volume_mount],
       image_pull_policy="Never",
       is_delete_operator_pod=True,
   )

Then we tie all this together into the final DAG.

import datetime as dt
import os

from kubernetes.client import models as k8s

from airflow import DAG
from airflow.providers.cncf.kubernetes.operators.kubernetes_pod import (
   KubernetesPodOperator,
)

with DAG(
   dag_id="02_kubernetes",
   description="Fetches ratings from the Movielens API using kubernetes.",
   start_date=dt.datetime(2019, 1, 1),
   end_date=dt.datetime(2019, 1, 3),
   schedule_interval="@daily",
) as dag:
   volume_claim = k8s.V1PersistentVolumeClaimVolumeSource(...)
   volume = k8s.V1Volume(...)
   volume_mount = k8s.V1VolumeMount(...)

   fetch_ratings = KubernetesPodOperator(...)
   rank_movies = KubernetesPodOperator(...)

   fetch_ratings >> rank_movies

Listing 10.25 Adding the movie ranking task (kubernetes/dags/02_kubernetes.py)

Listing 10.26 Implementing the overall DAG (kubernetes/dags/02_kubernetes.py)
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After finishing the DAG, we can start running it by enabling it from the Airflow web
UI. After waiting a few moments, we should see Airflow starting to schedule and run
our tasks (figure 10.11). For more detail, you can open the log of an individual task
instance by clicking on the task and then clicking View logs. This shows you the output
of the task, which should look something like this. 

...
[2020-04-13 20:28:45,067] {logging_mixin.py:95} INFO - 

➥ [[34m2020-04-13 20:28:45,067[0m] {[34mpod_launcher.py:[0m122} 

➥ INFO[0m - Event: [1mfetch-ratings-0a31c089[0m had an event 

➥ of type [1mPending[0m[0m
[2020-04-13 20:28:46,072] {logging_mixin.py:95} INFO - 

➥ [[34m2020-04-13 20:28:46,072[0m] {[34mpod_launcher.py:[0m122} 

➥ INFO[0m - Event: [1mfetch-ratings-0a31c089[0m had an event 

➥ of type [1mRunning[0m[0m
[2020-04-13 20:28:48,926] {logging_mixin.py:95} INFO - 

➥  [[34m2020-04-13 20:28:48,926[0m] {[34mpod_launcher.py:[0m105} 

➥ INFO[0m - b'Fetching ratings from 

➥ http://movielens.airflow.svc.cluster.local:80 (user: airflow)\n'[0m
[2020-04-13 20:28:48,926] {logging_mixin.py:95} INFO - 

➥ [[34m2020-04-13 20:28:48,926[0m] {[34mpod_launcher.py:[0m105} 

➥ INFO[0m - b'Retrieved 3372 ratings!\n'[0m
[2020-04-13 20:28:48,927] {logging_mixin.py:95} INFO - 

➥ [[34m2020-04-13 20:28:48,927[0m] {[34mpod_launcher.py:[0m105} 

➥ INFO[0m - b'Writing to /data/ratings/2020-04-10.json\n'[0m
[2020-04-13 20:28:49,958] {logging_mixin.py:95} INFO - 

➥ [[34m2020-04-13 20:28:49,958[0m] {[34mpod_launcher.py:[0m122} 

➥ INFO[0m - Event: [1mfetch-ratings-0a31c089[0m had an event 

➥ of type [1mSucceeded[0m[0m
...

10.5.4 Diagnosing Kubernetes-related issues

If you’re unlucky, you may see that your tasks get stuck in the running state instead of
finishing correctly. This usually happens because Kubernetes is unable to schedule the
tasks pod, which means that the pod will be stuck in the pending state rather than
running on the cluster. To check if this is indeed the case, you can look at the logs

Listing 10.27 Logs from the Kubernetes-based fetch_ratings task

Figure 10.11 Several successful runs of the recommender DAG based on the KubernetesPodOperator
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of the corresponding task(s), which can tell you more about the state of the pods on
the cluster.

[2020-04-13 20:27:01,301] {logging_mixin.py:95} INFO - 

➥ [[34m2020-04-13 20:27:01,301[0m] {[34mpod_launcher.py:[0m122} 

➥ INFO[0m - Event: [1mfetch-ratings-0a31c089[0m had an event of type

➥ [1mPending[0m[0m
[2020-04-13 20:27:02,308] {logging_mixin.py:95} INFO - 

➥ [[34m2020-04-13 20:27:02,308[0m] {[34mpod_launcher.py:[0m122} 

➥ INFO[0m - Event: [1mfetch-ratings-0a31c089[0m had an event 

➥ of type [1mPending[0m[0m
[2020-04-13 20:27:03,315] {logging_mixin.py:95} INFO - 

➥ [[34m2020-04-13 20:27:03,315[0m] {[34mpod_launcher.py:[0m122} 

➥ INFO[0m - Event: [1mfetch-ratings-0a31c089[0m had an event 

➥ of type [1mPending[0m[0m
...

Here, you can see that the pods are indeed still pending on the cluster.
 To diagnose the underlying issue, you can look up the task pods using

$ kubectl --namespace airflow get pods

Once you have identified the name of the corresponding pod, you can ask Kubernetes
for more details on the state of the pod using the describe subcommand in kubectl.

$ kubectl --namespace describe pod [NAME-OF-POD]
...
Events:
  Type     Reason            Age   From               Message
  ----     ------            ----  ----               -------
  Warning  FailedScheduling  82s   default-scheduler  persistentvolumeclaim 

➥ "data-volume" not found

This command produces a great amount of detail about the corresponding pod,
including recent events (in the Events section shown). Here, we can see that our pod
was not being scheduled because the required persistent volume claim was not cre-
ated properly.

 To fix this, we can try fixing the resources by properly applying our resource speci-
fication (which we probably forgot to do), and then checking for new events.

$ kubectl --namespace airflow apply -f resources/data-volume.yml
persistentvolumeclaim/data-volume created
persistentvolume/data-volume created

$ kubectl --namespace describe pod [NAME-OF-POD]
...

Listing 10.28 Log output showing a task stuck in a pending state 

Listing 10.29 Describing a specific pod to identify any issues.

Listing 10.30 Fixing the issue by creating the missing resources
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Events:
  Type     Reason           Age    From              Message
  ----    ------            ----   ----              ------
  Warning FailedScheduling  33s    default-scheduler persistentvolumeclaim 

➥ "data-volume" not found
  Warning  FailedScheduling 6s     default-scheduler pod has unbound 

➥ immediate PersistentVolumeClaims
  Normal   Scheduled        3s     default-scheduler Successfully assigned 

➥ airflow/fetch-ratings-0a31c089 to docker-desktop
  Normal   Pulled           2s     kubelet, ...      Container image 

➥ "manning-airflow/movielens-fetch" already present on machine
  Normal   Created          2s     kubelet, ...      Created container base
  Normal   Started          2s     kubelet, ...      Started container base

This shows that Kubernetes was indeed able to schedule our pod after creating the
required volume claim, thus fixing our previous issue. 

NOTE In general, we recommend that you start diagnosing any issues by first
checking the Airflow logs for any useful feedback. If you see anything that
looks like scheduling issues, kubectl is your best hope for identifying any
issues with your Kubernetes cluster or configuration.

Although far from comprehensive, this example hopefully gives you some idea of the
approaches you can use for debugging Kubernetes-related issues when using the
KubernetesPodOperator. 

10.5.5 Differences with Docker-based workflows

The Kubernetes-based workflow (figure 10.12) is relatively similar to that of the Docker-
based approach (figure 10.9). However, in addition to having to set up and maintain a
Kubernetes cluster (which is not necessarily trivial), there are some other differences
to keep in mind.

Airflow worker

Image

Docker

Development machine Image registry

Image

Airflow

Kubernetes cluster

Nodes

Master

(8) Runs pod on a node(2) Builds image (3)
Pushes image

to registry

(7)
Pulls image

from registry

(1)

Developer tells

Docker to build

and push image

(6)

KubernetesPodOperator

tells cluster to run task as pod

(5)

Airflow schedules

KubernetesPodOperator task

(4)

Developer creates DAG

with KubernetesPodOperators

Figure 10.12 Workflow for building DAGs using the KubernetesPodOperator
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One is that the task containers are no longer executed on the Airflow worker node
but on a separate (Kubernetes) node within the Kubernetes cluster. This means that
any resources used on the worker are fairly minimal, and you can use functionality in
Kubernetes to make sure your task is deployed to a node with the correct resources
(e.g., CPU, memory, GPU). 

 Second, any storage will no longer be accessed from the Airflow worker but needs
to be made available to the Kubernetes pod. Typically this means using storage pro-
vided via Kubernetes (as we have shown with Kubernetes volumes and storage claims);
however, you can also use different types of network/cloud storage, as long as the pod
has the appropriate access to the storage. 

 Overall, Kubernetes provides considerable advantages over Docker, especially w.r.t.
scalability, flexibility (e.g., providing different resources/nodes for different work-
loads), and managing other resources such as storage, secrets, and so on. Additionally,
Airflow itself can be run on top of Kubernetes, meaning that you can have your entire
Airflow setup running on a single, scalable, container-based infrastructure.

Summary
 Airflow deployments can be difficult to manage if they involve many different

operators, as this requires knowledge of the different APIs and complicates
debugging and dependency management.

 One way of tackling this issue is to use container technologies such as Docker
to encapsulate your tasks inside container images and run these images from
within Airflow.

 This containerized approach has several advantages, including easier depen-
dency management, a more uniform interface for running tasks, and improved
testability of tasks.

 Using the DockerOperator, you can run tasks in container images directly using
Docker, similar to the docker run CLI command.

 You can use the KubernetesPodOperator to run containerized tasks in pods on
a Kubernetes cluster.

 Kubernetes allows you to scale your containerized tasks across a compute clus-
ter, which provides (among other things) greater scalability and more flexibility
in terms of computing resources.



Part 3

Airflow in practice

Now that you’ve learned how to build complex pipelines, let’s start using
them in production! To help you get started, part 3 discusses several topics in
using Airflow in production.

 First, chapter 11 reviews some of the practices we’ve seen for implementing
pipelines and highlights several best practices that should help you build effi-
cient and maintainable pipelines. 

 Chapter 12 and 13 dive into details to consider for running Airflow in a
production setting. Chapter 12 describes how to deploy Airflow, touching on
topics such as architectures for scaling Airflow, monitoring, logging, and alert-
ing. Chapter 13 focuses specifically on securing Airflow to avoid unwanted
access and minimizing the impact of security breaches.

 Finally, chapter 14 ties all previous chapters together in a summary use case.
 After completing part 3, you should be able to write efficient and maintainable

pipelines in Airflow. You should also have a good idea of how to deploy Airflow and
which implementation details to consider for a robust and secure deployment.





Best practices
In previous chapters, we have described most of the basic elements that go into
building and designing data processes using Airflow DAGs. In this chapter, we dive
a bit deeper into some best practices that can help you write well-architected DAGs
that are both easy to understand and efficient in terms of how they handle your
data and resources. 

This chapter covers
 Writing clean, understandable DAGs using style 

conventions

 Using consistent approaches for managing 
credentials and configuration options

 Generating repeated DAGs and tasks using 
factory functions 

 Designing reproducible tasks by enforcing 
idempotency and determinism constraints

 Handling data efficiently by limiting the amount 
of data processed in your DAG 

 Using efficient approaches for handling/storing 
(intermediate) data sets

 Managing managing concurrency using resource 
pools
255
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11.1 Writing clean DAGs
Writing DAGs can easily become a messy business. For example, DAG code can
quickly become overly complicated or difficult to read—especially if DAGs are written
by team members with very different styles of programming. In this section, we touch
on some tips to help you structure and style your DAG code, hopefully providing some
(often needed) clarity for your intricate data processes.

11.1.1 Use style conventions

As in all programming exercises, one of the first steps to writing clean and consistent
DAGs is to adopt a common, clean programming style and apply this style consistently
across all your DAGs. Although a thorough exploration of clean coding practices is
well outside the scope of this book, we can provide several tips as starting points. 

FOLLOWING STYLE GUIDES

The easiest way to make your code cleaner and easier to understand is to use a com-
monly used style when writing your code. There are multiple style guides available in
the community, including the widely known PEP8 style guide (https://www.python.org/
dev/peps/pep-0008/) and guides from companies such as Google (https://google
.github.io/styleguide/pyguide.html). These generally include recommendations for
indentation, maximum line lengths, naming styles for variables/classes/functions, and so
on. By following these guides, other programmers will be better able to read your code.

spam( ham[ 1 ], { eggs: 2 } )

i=i+1
submitted +=1

my_list = [
    1, 2, 3,
    4, 5, 6,
    ]

spam(ham[1], {eggs: 2})  B
 
i = i + 1                c
submitted += 1           c

my_list = [              d
    1, 2, 3,
    4, 5, 6,
] 

B Less unnecessary whitespace

c Consistent whitespace around operators

d More readable indenting around list brackets

Listing 11.1 Examples of non-PEP8-compliant code

Listing 11.2 Making the examples in listing 11.1 PEP-8 compliant

https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://google.github.io/styleguide/pyguide.html
https://google.github.io/styleguide/pyguide.html
https://google.github.io/styleguide/pyguide.html
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USING STATIC CHECKERS TO CHECK CODE QUALITY 
The Python community has also produced a plethora of software tools that can be
used to check whether your code follows proper coding conventions and/or styles.
Two popular tools are Pylint and Flake8, which both function as static code checkers,
meaning that you can run them over your code to get a report of how well (or not)
your code adheres to their envisioned standards.

 For example, to run Flake8 over your code, you can install it using pip and run it
by pointing it at your codebase.

python -m pip install flake8
python -m flake8 dags/*.py

This command will run Flake8 on all of the Python files in the DAGs folder, giving you
a report on the perceived code quality of these DAG files. The report will typically
look something like this.

$ python -m flake8 chapter08/dags/
chapter08/dags/04_sensor.py:2:1: F401
 ➥ 'airflow.operators.python.PythonOperator' imported but unused
chapter08/dags/03_operator.py:2:1: F401
 ➥ 'airflow.operators.python.PythonOperator' imported but unused

Both Flake8 and Pylint are used widely within the community, although Pylint is gen-
erally considered to have a more extensive set of checks in its default configuration.1

Of course, both tools can be configured to enable/disable certain checks, depending
on your preferences, and can be combined to provide comprehensive feedback. For
more details, we refer you to the respective websites of both tools. 

USING CODE FORMATTERS TO ENFORCE COMMON FORMATTING

Although static checkers give you feedback on the quality of your code, tools such as
Pylint or Flake8 do not impose overly strict requirements on how you format your
code (e.g., when to start a new line, how to indent your function headers, etc.). As
such, Python code written by different people can still follow very different formatting
styles, depending on the preferences of the author.

 One approach to reducing the heterogeneity of code formatting within teams is to
use a code formatter to surrender control (and worry) to the formatting tool, which
will ensure that your code is reformatted according to its guidelines. As such, applying
a formatter consistently across your project will ensure all code follows one consistent
formatting style: the style implemented by the formatter.

Listing 11.3 Installing and running Flake8

Listing 11.4 Example output from Flake8

1 This can be considered to be a strength or weakness of pylint, depending on your preferences, as some peo-
ple consider it overly pedantic.
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 Two commonly used code Python formatters are YAPF (https://github.com/google/
yapf) and Black (https://github.com/psf/black). Both tools adopt a similar style of
taking your Python code and reformatting it to their styles, with slight differences in
the styles enforced by both. As such, the choice between Black and YAPF may depend
on personal preference, although Black has gained much popularity within the Python
community over the past few years.

 To show a small example, consider the following (contrived) example of an ugly
function.

def my_function(
    arg1, arg2,
    arg3):
    """Function to demonstrate black."""
    str_a = 'abc'
    str_b = "def"
    return str_a + \
        str_b

Applying Black to this function will give you the following (cleaner) result.

def my_function(arg1, arg2, arg3):        B
    """Function to demonstrate black."""
    str_a = "abc"                         c
    str_b = "def"                         c
    return str_a + str_b                  d

B More consistent indenting for arguments

c Consistent use of double quotes

d Unnecessary line break removed

To run Black yourself, install it using pip and apply it to your Python files using the
following.

python -m pip install black
python -m black dags/

This should give you something like the following output, indicating whether Black
reformatted any Python files for you.

reformatted dags/example_dag.py
All done! ✨  ✨
1 file reformatted.

Listing 11.5 Code example before Black formatting

Listing 11.6 The same code example after Black formatting

Listing 11.7 Installing and running black

Listing 11.8 Example output from black

https://github.com/google/yapf
https://github.com/google/yapf
https://github.com/google/yapf
https://github.com/psf/black
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Note that you can also perform a dry run of Black using the --check flag, which will
cause Black to indicate only whether it would reformat any files rather than doing any
actual reformatting.

 Many editors (such as Visual Studio Code, Pycharm) support integration with these
tools, allowing you to reformat your code from within your editor. For details on how to
configure this type of integration, see the documentation of the respective editor.

AIRFLOW-SPECIFIC STYLE CONVENTIONS

It’s also a good idea to agree on style conventions for your Airflow code, particularly
in cases where Airflow provides multiple ways to achieve the same results. For exam-
ple, Airflow provides two different styles for defining DAGs.

with DAG(...) as dag:                 B
    task1 = PythonOperator(...)
    task2 = PythonOperator(...)
 
dag = DAG(...)                        c
task1 = PythonOperator(..., dag=dag)
task2 = PythonOperator(..., dag=dag) 

B Using a context manager

c Without a context manager

In principle, both these DAG definitions do the same thing, meaning that there is no
real reason to choose one over the other, outside of style preferences. However, within
your team it may be a good idea to choose one of the two styles and follow them
throughout your codebase, keeping things more consistent and understandable.

 This consistency is even more important when defining dependencies between tasks,
as Airflow provides several different ways for defining the same task dependency.

task1 >> task2
task1 << task2
[task1] >> task2
task1.set_downstream(task2)
task2.set_upstream(task1)

Although these different definitions have their own merits, combining different styles
of dependency definitions within a single DAG can be confusing.

task1 >> task2
task2 << task3
task5.set_upstream(task3)
task3.set_downstream(task4)

As such, your code will generally be more readable if you stick to a single style for
defining dependencies across tasks.

Listing 11.9 Two styles for defining DAGs

Listing 11.10 Different styles for defining task dependencies

Listing 11.11 Mixing different task dependency notations
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task1 >> task2 >> task3 >> [task4, task5]

As before, we don’t necessarily have a clear preference for any given style; just make
sure that you pick one that you (and your team) like and apply it consistently. 

11.1.2 Manage credentials centrally

In DAGs that interact with many different systems, you may find yourself juggling with
many different types of credentials—databases, compute clusters, cloud storage, and
so on. As we’ve seen in previous chapters, Airflow allows you to maintain these creden-
tials in its connection store, which ensures your credentials are maintained securely2

in a central location.
 Although the connection store is the easiest place to store credentials for built-in

operators, it can be tempting to store secrets for your custom PythonOperator func-
tions (and other functions) in less secure places for ease of accessibility. For example,
we have seen quite a few DAG implementations with security keys hardcoded into the
DAG itself or in external configuration files.

 Fortunately, it is relatively easy to use the Airflow connections store to maintain
credentials for your custom code too, by retrieving the connection details from the
store in your custom code and using the obtained credentials to do your work.

from airflow.hooks.base_hook import BaseHook

def _fetch_data(conn_id, **context)
    credentials = BaseHook.get_connection(conn_id)     B
    ...

fetch_data = PythonOperator(
    task_id="fetch_data",
    op_kwargs={"conn_id": "my_conn_id"},
    dag=dag
)

B Fetching credentials using the given ID

An advantage of this approach is that it uses the same method of storing credentials as
all other Airflow operators, meaning that credentials are managed in one single place.
As a consequence, you only have to worry about securing and maintaining credentials
in this central database.

 Of course, depending on your deployment you may want to maintain your secrets
in other external systems (e.g., Kubernetes secrets, cloud secret stores) before passing

Listing 11.12 Using a consistent style for defining task dependencies

2 Assuming Airflow has been configured securely. See chapters 12 and 13 for more information on configuring
Airflow deployments and security in Airflow.

Listing 11.13 Fetching credentials from the Airflow metastore
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them into Airflow. In this case, it is still a good idea to make sure these credentials are
passed into Airflow (using environment variables, for example) and that your code
accesses them using the Airflow connection store.

11.1.3 Specify configuration details consistently

You may have other parameters you need to pass in as configuration to your DAG,
such as file paths, table names, and so on. Because they are written in Python, Airflow
DAGs provide you with many different options for configuration options, including
global variables (within the DAG), configuration files (e.g., YAML, INI, JSON), envi-
ronment variables, Python-based configuration modules, and so on. Airflow also allows
you to store configurations in the metastore using Variables (https://airflow.apache
.org/docs/stable/concepts.html#variables).

 For example, to load some configuration options from a YAML file3 you might use
something like the following.

import yaml

with open("config.yaml") as config_file:
    config = yaml.load(config_file)        B
...
fetch_data = PythonOperator(
    task_id="fetch_data",
    op_kwargs={
        "input_path": config["input_path"],
        "output_path": config["output_path"],
    },
    ...
)

B Read config file using PyYAML.

input_path: /data
output_path: /output

Similarly, you could also load the config using Airflow Variables, which is essentially an
Airflow feature for storing (global) variables in the metastore.4

 

3 Note that you should be careful to not store any sensitive secrets in such configuration files, as these are typi-
cally stored in plain text. If you do store sensitive secrets in configuration files, make sure that only the correct
people have permissions to access the file. Otherwise, consider storing secrets in more secure locations such
as the Airflow metastore.

Listing 11.14 Loading configuration options from a YAML file

Listing 11.15 Example YAML configuration file

4 Note that fetching Variables like this in the global scope of your DAG is generally bad for the performance of
your DAG. Read the next subsection to find out why.

https://airflow.apache.org/docs/stable/concepts.html#variables
https://airflow.apache.org/docs/stable/concepts.html#variables
https://airflow.apache.org/docs/stable/concepts.html#variables
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from airflow.models import Variable

input_path = Variable.get("dag1_input_path")       B
output_path = Variable.get("dag1_output_path")

fetch_data = PythonOperator(
    task_id="fetch_data",
    op_kwargs={
        "input_path": input_path,
        "output_path": output_path,
    },
    ...
)

B Fetching global variables using Airflow’s Variable mechanism

Note that fetching Variables in the global scope like this can be a bad idea, as this
means Airflow will refetch them from the database every time the scheduler reads
your DAG definition. 

 In general, we don’t have any real preference for how you store your config, as
long as you are consistent about it. For example, if you store your configuration for
one DAG as a YAML file, it makes sense to follow the same convention for other DAGs
as well.

 For configuration that is shared across DAGs, it is highly recommended to specify
the configuration values in a single location (e.g., a shared YAML file), following the
DRY (don’t repeat yourself) principle. This way, you will be less likely to run into
issues where you change a configuration parameter in one place and forget to change
it in another. 

 Finally, it is good to realize that configuration options can be loaded in different
contexts depending on where they are referenced within your DAG. For example, if
you load a config file in the main part of your DAG, as follows.

import yaml

with open("config.yaml") as config_file:
    config = yaml.load(config_file)        B

fetch_data = PythonOperator(...)

B In the global scope, this config will be loaded on the scheduler.

The config.yaml file is loaded from the local file system of the machine(s) running
the Airflow webserver and/or scheduler. This means that both these machines should
have access to the config file path. In contrast, you can also load the config file as part
of a (Python) task.

Listing 11.16 Storing configuration options in Airflow Variables

Listing 11.17 Loading configuration options in the DAG definition (inefficient)
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import yaml

def _fetch_data(config_path, **context):
    with open(config_path) as config_file:
        config = yaml.load(config_file)       B
    ...

fetch_data = PythonOperator(
    op_kwargs={"config_path": "config.yaml"},
    ...
)

B In task scope, this config will be loaded on the worker. 

In this case, the config file won’t be loaded until your function is executed by an Airflow
worker, meaning that the config is loaded in the context of the Airflow worker. Depend-
ing on how you set up your Airflow deployment, this may be an entirely different envi-
ronment (with access to different file systems, etc.), leading to erroneous results or
failures. Similar situations may occur with other configuration approaches as well. 

 You can avoid these types of situations by choosing one configuration approach
that works well and sticking with it across DAGs. Also, be mindful of where different
parts of your DAG are executed when loading configuration options and preferably
use approaches that are accessible to all Airflow components (e.g., nonlocal file sys-
tems, etc.).

11.1.4 Avoid doing any computation in your DAG definition

Airflow DAGs are written in Python, which gives you a great deal of flexibility when
writing them. However, a drawback of this approach is that Airflow needs to execute
your Python DAG file to derive the corresponding DAG. Moreover, to pick up any
changes you may have made to your DAG, Airflow has to reread the file at regular
intervals and sync any changes to its internal state.

 As you can imagine, this repeated parsing of your DAG files can lead to problems if
any of them take a long time to load. This can happen, for example, if you do any
long-running or heavy computations when defining your DAG.

...
task1 = PythonOperator(...)
my_value = do_some_long_computation()          B
task2 = PythonOperator(op_kwargs={"my_value": my_value})
...

B This long computation will be computed every time the DAG is parsed.

This kind of implementation will cause Airflow to execute do_some_long_computation
every time the DAG file is loaded, blocking the entire DAG parsing process until the
computation has finished. 

Listing 11.18 Loading configuration options within a task (more efficient)

Listing 11.19 Performing computations in the DAG definition (inefficient)
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 One way to avoid this issue to postpone the computation to the execution of the
task that requires the computed value.

def _my_not_so_efficient_task(value, ...):
    ...

PythonOperator(
    task_id="my_not_so_efficient_task",
    ...
    op_kwargs={
        "value": calc_expensive_value()        B
    }
)

def _my_more_efficient_task(...):
    value = calc_expensive_value()             c
    ...

PythonOperator(
    task_id="my_more_efficient_task",
    python_callable=_my_more_efficient_task,   c
    ...
)

B Here, the value will be computed every time the DAG is parsed.

c By moving the computation into the task, the value will only be calculated when the task is executed.

Another approach would be to write our own hook/operator, which only fetches cre-
dentials when needed for execution, but this may require a bit more work.

 Something similar may occur in more subtle cases, in which a configuration is
loaded from an external data source or file system in your main DAG file. For exam-
ple, we may want to load credentials from the Airflow metastore and share them
across a few tasks by doing something like this.

from airflow.hooks.base_hook import BaseHook

api_config = BaseHook.get_connection("my_api_conn")     B
api_key = api_config.login
api_secret = api_config.password

task1 = PythonOperator(
    op_kwargs={"api_key": api_key, "api_secret": api_secret},
    ... 
)
...

B This call will hit the database every time the DAG is parsed.

Listing 11.20 Performing computations within tasks (more efficient)

Listing 11.21 Fetching credentials from the metastore in the DAG definition (inefficient)
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However, a drawback of this approach is that it fetches credentials from the database
every time our DAG is parsed instead of only when the DAG is executed. As such, we
will see repeated queries every 30 seconds or so (depending on the Airflow config)
against our database, simply for retrieving these credentials.

 These types of performance issues can generally be avoided by postponing the
fetching of credentials to the execution of the task function.

from airflow.hooks.base_hook import BaseHook

def _task1(conn_id, **context):
    api_config = BaseHook.get_connection(conn_id)     B
    api_key = api_config.login
    api_secret = api_config.password
    ...

task1 = PythonOperator(op_kwargs={"conn_id": "my_api_conn"})

B This call will only hit the database when the task is executed.

This way, credentials are only fetched when the task is actually executed, making our
DAG much more efficient. This type of computation creep, in which you accidentally
include computations in your DAG definitions, can be subtle and requires some vigi-
lance to avoid. Also, some cases may be worse than others: you may not mind repeat-
edly loading a configuration file from a local file system, but repeatedly loading from
a cloud storage or database may be less preferable.

11.1.5 Use factories to generate common patterns

In some cases, you may find yourself writing variations of the same DAG over and over
again. This often occurs in situations where you are ingesting data from related data
sources, with only small variations in source paths and any transformations applied to
the data. Similarly, you may have common data processes within your company that
require many of the same steps/transformations and as a result are repeated across
many different DAGs.

 One effective way to speed up the process of generating these common DAG struc-
tures is to write a factory function. The idea behind such a function is that it takes any
required configuration for the respective steps and generates the corresponding DAG
or set of tasks (thus producing it, like a factory). For example, if we have a common
process that involves fetching some data from an external API and preprocessing this
data using a given script, we could write a factory function that looks a bit like this.

def generate_tasks(dataset_name, raw_dir, processed_dir, 
                   preprocess_script, output_dir, dag):                   B
    raw_path = os.path.join(raw_dir, dataset_name, "{ds_nodash}.json")    c

Listing 11.22 Fetching credentials within a task (more efficient)

Listing 11.23 Generating sets of tasks with a factory function (dags/01_task_factory.py)
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    processed_path = os.path.join(
        processed_dir, dataset_name, "{ds_nodash}.json"
    )
    output_path = os.path.join(output_dir, dataset_name, "{ds_nodash}.json")

   fetch_task = BashOperator(                                             d
       task_id=f"fetch_{dataset_name}",
       bash_command=f"echo 'curl http://example.com/{dataset_name}.json 
         ➥ > {raw_path}.json'",
       dag=dag,
   )

   preprocess_task = BashOperator(
       task_id=f"preprocess_{dataset_name}",
       bash_command=f"echo '{preprocess_script} {raw_path} 
         ➥ {processed_path}'",
       dag=dag,
   )

   export_task = BashOperator(
       task_id=f"export_{dataset_name}",
       bash_command=f"echo 'cp {processed_path} {output_path}'",
       dag=dag,
   )

fetch_task >> preprocess_task >> export_task                              e

return fetch_task, export_task                                            f

B Parameters that configure the tasks that will be created by the factory function

c File paths used by the different tasks

d Creating the individual tasks

e Defining task dependencies

f Return the first and last tasks in the chain so that we can connect them to other tasks in the larger 
graph (if needed).

We could then use this factory function to ingest multiple data sets like this.

import airflow.utils.dates
from airflow import DAG

with DAG(
    dag_id="01_task_factory",
    start_date=airflow.utils.dates.days_ago(5),
    schedule_interval="@daily",
) as dag:
    for dataset in ["sales", "customers"]:
        generate_tasks(                                    B
            dataset_name=dataset,
            raw_dir="/data/raw",
            processed_dir="/data/processed",
            output_dir="/data/output",

Listing 11.24 Applying the task factory function (dags/01_task_factory.py)
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            preprocess_script=f"preprocess_{dataset}.py",
            dag=dag,                                       c
        )

B Creating sets of tasks with different configuration values

c Passing the DAG instance to connect the tasks to the DAG

This should give us a DAG similar to the one in figure 11.1. Of course, for indepen-
dent data sets, it would probably not make sense to ingest the two in a single DAG. You
can, however, easily split the tasks across multiple DAGs by calling the generate_tasks
factory method from different DAG files.

You can also write factory methods for generating entire DAGs, as shown in listing 11.25.

def generate_dag(dataset_name, raw_dir, processed_dir, preprocess_script):
    with DAG(
        dag_id=f"02_dag_factory_{dataset_name}",
        start_date=airflow.utils.dates.days_ago(5),
        schedule_interval="@daily",
    ) as dag:                           B
        raw_file_path = ...
        processed_file_path = ...

        fetch_task = BashOperator(...)
        preprocess_task = BashOperator(...)

        fetch_task >> preprocess_task

    return dag

B Generating the DAG instance within the factory function

This would allow you to generate a DAG using the following, minimalistic DAG file.

Listing 11.25 Generating DAGs with a factory function (dags/02_dag_factory.py)

Tasks generated
by one call to
factory function

Tasks generated
by another call

Figure 11.1 Generating repeated patterns of tasks using factory methods. This example DAG contains 
multiple sets of almost identical tasks, which were generated from a configuration object using a task 
factory method.
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...

dag = generate_dag(          B
    dataset_name="sales",
        raw_dir="/data/raw",
        processed_dir="/data/processed",
        preprocess_script="preprocess_sales.py",
)

B Creating the DAG using the factory function

You can also use this kind of approach to generate multiple DAGs using a DAG file.

...

for dataset in ["sales", "customers"]:
    globals()[f"02_dag_factory_{dataset}"] = generate_dag(     b
        dataset_name=dataset,
        raw_dir="/data/raw",
        processed_dir="/data/processed",
        preprocess_script=f"preprocess_{dataset}.py",
    )

b Generating multiple DAGs with different configurations. Note we have to assign each DAG a unique 
name in the global namespace (using the globals trick) to make sure they don’t overwrite each other.

This loop effectively generates multiple DAG objects in the global scope of your DAG
file, which Airflow picks up as separate DAGs (figure 11.2). Note that the objects need
to have different variable names to prevent them from overwriting each other; other-
wise, Airflow will only see a single DAG instance (the last one generated by the loop).

Listing 11.26 Applying the DAG factory function

Listing 11.27 Generating multiple DAGs with a factory function (dags/02_dag_factory.py)

DAGs generated by the DAG factory

Figure 11.2 Multiple DAGs generated from a single file using a DAG factory function. (Screenshot taken from 
the Airflow UI, showing multiple DAGs that were generated from a single DAG file using a DAG factory function.)
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 We recommend some caution when generating multiple DAGs from a single DAG
file, as it can be confusing if you’re not expecting it. (The more general pattern is to
have one file for each DAG.) As such, this pattern is best used sparingly when it pro-
vides significant benefits.

 Task or DAG factory methods can be particularly powerful when combined with
configuration files or other forms of external configuration. This allows you to, for
example, build a factory function that takes a YAML file as input and generates a DAG
based on the configuration defined in that file. This way, you can configure repetitive
ETL processes using a bunch of relatively simple configuration files, which can also be
edited by users who have little knowledge of Airflow.

11.1.6 Group related tasks using task groups

Complex Airflow DAGs, particularly those generated using factory methods, can often
become difficult to understand due to complex DAG structures or the sheer number
of tasks involved. To help organize these complex structures, Airflow 2 has a new fea-
ture called task groups. Task groups effectively allow you to (visually) group sets of tasks
into smaller groups, making your DAG structure easier to oversee and comprehend. 

 You can create task groups using the TaskGroup context manager. For example,
taking our previous task factory example, we can group the tasks generated for each
data set as follows.

...
for dataset in ["sales", "customers"]:
    with TaskGroup(dataset, tooltip=f"Tasks for processing {dataset}"):
        generate_tasks(
            dataset_name=dataset,
            raw_dir="/data/raw",
            processed_dir="/data/processed",
            output_dir="/data/output",
            preprocess_script=f"preprocess_{dataset}.py",
            dag=dag,
    )

This effectively groups the set of tasks generated for the sales and customers data
sets into two task groups, one for each data set. As a result, the grouped tasks are
shown as a single condensed task group in the web interface, which can be expanded
by clicking on the respective group (figure 11.3).

 Although this is a relatively simple example, the task group feature can be quite
effective in reducing the amount of visual noise in more complex cases. For example, in
our DAG for training machine learning models in chapter 5, we created a considerable
number of tasks for fetching and cleaning weather and sales data from different sys-
tems. Task groups allow us to reduce the apparent complexity of this DAG by group-
ing the sales- and weather-related tasks into their respective task groups. This allows us
to hide the complexity of the data set fetching tasks by default but still zoom in on the
individual tasks when needed (figure 11.4).

Listing 11.28 Using TaskGroups to visually group tasks (dags/03_task_groups.py)
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11.1.7 Create new DAGs for big changes

Once you’ve started running a DAG, the scheduler database contains instances of the
runs of that DAG. Big changes to the DAG, such as to the start date and/or schedule
interval, may confuse the scheduler, as the changes no longer fit with previous DAG
runs. Similarly, removing or renaming tasks will prevent you from accessing the his-
tory of those tasks from the UI, as they will no longer match the current state of the
DAG and will therefore no longer be displayed. 

 The best way to avoid these issues is to create a new version of the DAG whenever
you decide to make big changes to existing ones, as Airflow does not support ver-
sioned DAGs at this time. You can do this by creating a new versioned copy of the DAG
(i.e., dag_v1, dag_v2) before making the desired changes. This way, you can avoid con-
fusing the scheduler while also keeping historical information about the old version

A collapsed task group
(default state)

Expanded task group
after being clicked on

Figure 11.3 Task groups can help organize DAGs by grouping related tasks. Initially, task groups are 
depicted as single nodes in the DAG, as shown for the customers task group in this figure. By clicking on 
a task group you can expand it and view the tasks within the group, as shown here for the sales task 
group. Note that task groups can be nested, meaning that you can have task groups within task groups.

The complexity of these
tasks can be hidden within
the task group.

Figure 11.4 Using task groups to organize the umbrella DAG from chapter 5. Here, grouping the tasks for 
fetching and cleaning the weather and sales data sets helps greatly simplify the complex task structures 
involved in these processes. (Code example is given in dags/04_task_groups_umbrella.py.)
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available. Support for versioned DAGs may be added in the future, as there is a strong
desire in the community to do so. 

11.2 Designing reproducible tasks
Aside from your DAG code, one of the biggest challenges in writing a good Airflow
DAG is designing your tasks to be reproducible, meaning that you can easily rerun a
task and expect the same result—even if the task is run at different points in time. In
this section, we revisit some key ideas and offer some advice on ensuring your tasks fit
into this paradigm.

11.2.1 Always require tasks to be idempotent

As briefly discussed in chapter 3, one of the key requirements for a good Airflow task
is that the task is idempotent, meaning that rerunning the same task multiple times
gives the same overall result (assuming the task itself has not changed).

 Idempotency is an important characteristic because there are many situations in
which you or Airflow may rerun a task. For example, you may want to rerun some
DAG runs after changing some code, leading to the re-execution of a given task. In
other cases, Airflow itself may rerun a failed task using its retry mechanism, even
though the given task did manage to write some results before failing. In both cases,
you want to avoid introducing multiple copies of the same data in your environment
or running into other undesirable side effects. 

 Idempotency can typically be enforced by requiring that any output data is over-
written when a task is rerun, as this ensures any data written by a previous run is over-
written by the new result. Similarly, you should carefully consider any other side
effects of a task (such as sending notifications, etc.) and determine whether these vio-
late the idempotency of your task in any detrimental way.

11.2.2 Task results should be deterministic

Tasks can only be reproducible if they are deterministic. This means that a task should
always return the same output for a given input. In contrast, nondeterministic tasks
prevent us from building reproducible DAGs, as every run of the task may give us a
different result, even for the same input data.

 Nondeterministic behavior can be introduced in various ways:

 Relying on the implicit ordering of your data or data structures inside the func-
tion (e.g., the implicit ordering of a Python dict or the order of rows in which a
data set is returned from a database, without any specific ordering) 

 Using external state within a function, including random values, global variables,
external data stored on disk (not passed as input to the function), and so on

 Performing data processing in parallel (across multiple processes/threads),
without doing any explicit ordering on the result

 Race conditions within multithreaded code
 Improper exception handling
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In general, issues with nondeterministic functions can be avoided by carefully think-
ing about sources of nondeterminism that may occur within your function. For exam-
ple, you can avoid nondeterminism in the ordering of your data set by applying an
explicit sort to it. Similarly, any issues with algorithms that include randomness can be
avoided by setting the random seed before performing the corresponding operation.

11.2.3 Design tasks using functional paradigms

One approach that may help in creating your tasks is to design them according to the
paradigm of functional programming. Functional programming is an approach to
building computer programs that essentially treats computation as the application of
mathematical functions while avoiding changing state and mutable data. Additionally,
functions in functional programming languages are typically required to be pure,
meaning that they may return a result but otherwise do not have any side effects. 

 One of the advantages of this approach is that the result of a pure function in a
functional programming language should always be the same for a given input. As
such, pure functions are generally both idempotent and deterministic—exactly what
we are trying to achieve for our tasks in Airflow functions. Therefore, proponents of
the functional paradigm have argued that similar approaches can be applied to data-
processing applications, introducing the functional data engineering paradigm.

 Functional data engineering approaches essentially aim to apply the same con-
cepts from functional programming languages to data engineering tasks. This includes
requiring tasks to not have any side effects and to always have the same result when
applied to the same input data set. The main advantage of enforcing these constraints
is that they go a long way toward achieving our ideals of idempotent and deterministic
tasks, thus making our DAGs and tasks reproducible. 

 For more details, refer to this blog post by Maxime Beauchemin (one of the key
people behind Airflow), which provides an excellent introduction to the concept of
functional data engineering for data pipelines in Airflow: http://mng.bz/2eqm.

11.3 Handling data efficiently
DAGs that are meant to handle large amounts of data should be carefully designed to
do so in the most efficient manner possible. In this section, we’ll discuss a couple of
tips on how to handle large data volumes efficiently.

11.3.1 Limit the amount of data being processed

Although this may sound a bit trivial, the best way to efficiently handle data is to limit
your processing to the minimal data required to obtain the desired result. After all, pro-
cessing data that is going to be discarded anyway is a waste of both time and resources.

 In practice, this means carefully thinking about your data sources and determining
if they are all required. For the data sets that are needed, you can try to see if you
can reduce the size of them by discarding rows/columns that aren’t used. Perform-
ing aggregations early on can also substantially increase performance, as the right

http://mng.bz/2eqm
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aggregation can greatly reduce the size of an intermediate data set—thus decreasing
the amount of work that needs to be done downstream.

 To give an example, imagine a data process in which we are interested in calcu-
lating the monthly sales volumes of our products among a particular customer base
(figure 11.5). In this example, we can calculate the aggregate sales by first joining the
two data sets, followed by an aggregation and filtering step in which we aggregate our

Sales

Customers

Joined data set

Aggregate sales

per customer

Filter and

aggregateMerge

data sets

via join

Sales

Customers

Aggregate

Aggregated sales

Filter for

req. customers

Selected customers

Merge

data sets

via join

Aggregate sales

per customer

B. More efficient processing via early filtering

A. Inefficient processing using the full data set

Figure 11.5 Example of an inefficient data process compared to a more efficient one. (A) One way to 
calculate the aggregate sales per customer is to first fully join both data sets and then aggregate sales 
to the required granularity and filter for the customers of interest. Although this may give the desired 
result, it is not very efficient due to the potentially large size of the joined table. (B) A more efficient 
approach is to first filter/aggregate the sales and customer tables down to the minimum required 
granularity, allowing us to join the two smaller data sets.
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sales to the required granularity then filtered for the required customers. A drawback
of this approach is that we are joining two potentially large data sets to get our result,
which may take considerable time and resources.

 A more efficient approach is to push the filtering/aggregation steps forward,
allowing us to reduce the size of the customer and sales data sets before joining them.
This potentially allows us to greatly reduce the size of the joined data set, making our
computation much more efficient. 

 Although this example may be a bit abstract, we have encountered many similar
cases where smart aggregation or the filtering of data sets (both in terms of rows and
columns) greatly increased the performance of the involved data processes. As such, it
may be beneficial to carefully look at your DAGs and see if they are processing more
data than needed.

11.3.2 Incremental loading/processing

In many cases, you may not be able to reduce the size of your data set using clever
aggregation or filtering. However, especially for time series data sets, you can often
also limit the amount of processing you need to do in each run of your processing by
using incremental data processing.

 The main idea behind incremental processing (which we touched on in chapter 3)
is to split your data into (time-based) partitions and process them individually in each
of your DAG runs. This way, you limit the amount of data being processed in each run
to the size of the corresponding partition, which is usually much smaller than the size
of the entire data set. However, by adding each run’s results as increments to the out-
put data set, you’ll still build up the entire data set over time (figure 11.6).

An advantage of designing your process to be incremental is that any error in one of
the runs won’t require you to redo your analysis for the entire data set; you can simply
restart the run that failed. Of course, in some cases you may still have to do analyses

Run 1

Run 2

Run 3

Monolithic

run

Data batches

Aggregate result

Data batches Incremental results

A. Processing of the entire data set B. Incremental processing

Figure 11.6 Illustration of monolithic processing (A), in which the entire data set is processed on 
every run, compared to incremental processing (B), in which the data set is analyzed in incremental 
batches as data comes in
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on the entire data set. However, you can still benefit from incremental processing by
performing filtering/aggregation steps in the incremental part of your process and
doing the large-scale analysis on the reduced result.

11.3.3 Cache intermediate data

In most data-processing workflows, DAGs consist of multiple steps that each perform
additional operations on data coming from preceding steps. An advantage of this
approach (as described earlier in this chapter) is that it breaks our DAG down into
clear, atomic steps, which are easy to rerun if we encounter any errors.

 However, to be able to rerun any steps in such a DAG efficiently, we need to make
sure that the data required for those steps is readily available (figure 11.7). Otherwise,
we wouldn’t be able to rerun any individual step without also rerunning all its depen-
dencies, which defeats part of the purpose of splitting our workflow into tasks in the
first place.

A drawback of caching intermediate data is that this may require excessive amounts of
storage if you have several intermediate versions of large data sets. In this case, you
may consider making a trade-off in which you only keep intermediate data sets for a
limited amount of time, providing you with some time to rerun individual tasks
should you encounter problems in recent runs. 

 Regardless, we recommend always keeping the rawest version of your data avail-
able (e.g., the data you just ingested from an external API). This ensures you always
have a copy of the data as it was at that point in time. This type of snapshot/versioning
of data is often not available in source systems, such as databases (assuming no snap-
shots are made) or APIs. Keeping this raw copy of your data around ensures you can
always reprocess it as needed, for example, whenever you make changes to your code
or if any problems occurred during the initial processing.

11.3.4 Don’t store data on local file systems

When handling data within an Airflow job, it can be tempting to write intermediate
data to a local file system. This is especially the case when using operators that run
locally on the Airflow worker, such as the Bash and Python operators, as the local file
system is easily accessible from within them.

Fetch records

Raw data

Preprocess

Preprocessed data

API

Figure 11.7 Storing intermediate data from tasks ensures that each task can easily be rerun independently 
of other tasks. In this case, cloud storage (indicated by the bucket) is used to store intermediate results of 
the fetch/preprocess tasks.



276 CHAPTER 11 Best practices
 However, a drawback of writing files to local systems is that downstream tasks may
not be able to access them because Airflow runs its tasks across multiple workers,
which allows it to run multiple tasks in parallel. Depending on your Airflow deploy-
ment, this can mean that two dependent tasks (i.e., one task expects data from the
other) can run on two different workers, which do not have access to each other’s file
systems and are therefore not able to access each other’s files.

 The easiest way to avoid this issue is to use shared storage that can be accessed in
the same manner from every Airflow worker. For example, a commonly used pattern
is to write intermediate files to a shared cloud storage bucket, which can be accessed
from each worker using the same file URLs and credentials. Similarly, shared data-
bases or other storage systems can be used to store data, depending on the type of
data involved.

11.3.5 Offload work to external/source systems

In general, Airflow really shines when it’s used as an orchestration tool rather than
using the Airflow workers themselves to perform actual data processing. For example,
with small data sets, you can typically get away with loading data directly on the workers
using the PythonOperator. However, for larger data sets, this can become problematic,
as they will require you to run Airflow workers on increasingly larger machines. 

 In these cases, you can get much more performance out of a small Airflow clus-
ter by offloading your computations or queries to external systems that are best
suited for that type of work. For example, when querying data from a database, you
can make your work more efficient by pushing any required filtering/aggregation to
the database system itself rather than fetching data locally and performing the compu-
tations in Python on your worker. Similarly, for big data applications, you can typically
get better performance by using Airflow to run your computation on an external
Spark cluster.

 The key message here is that Airflow was primarily designed as an orchestration
tool, so you’ll get the best results if you use it that way. Other tools are generally better
suited for performing the actual data processing, so be sure to use them for doing so,
allowing the different tools to each play to their strengths. 

11.4 Managing your resources
When working with large volumes of data, it can be easy to overwhelm your Airflow
cluster or other systems used for processing the data. In this section, we’ll dive into a
few tips for managing your resources effectively, hopefully providing some ideas for
managing these kinds of problems.

11.4.1 Managing concurrency using pools

When running many tasks in parallel, you may run into situations where multiple tasks
need access to the same resource. This can quickly overwhelm said resource if it is not
designed to handle this kind of concurrency. Examples can include shared resources
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like a database or GPU system, but can also include Spark clusters if, for example, you
want to limit the number of jobs running on a given cluster.

 Airflow allows you to control how many tasks have access to a given resource using
resource pools, where each pool contains a fixed number of slots, which grant access to
the corresponding resource. Individual tasks that need access to the resource can be
assigned to the resource pool, effectively telling the Airflow scheduler that it needs to
obtain a slot from the pool before it can schedule the corresponding task.

 You can create a resource pool by going to the “Admin > Pools” section in the Air-
flow UI. This view will show you an overview of the pools that have been defined
within Airflow (figure 11.8). To create a new resource pool, click Create. In the new
screen (figure 11.9), you can enter a name and description for the new resource pool,
together with the number of slots you want to assign to it. The number of slots defines
the degree of concurrency for the resource pool. This means that a resource pool with
10 slots will allow 10 tasks to access the corresponding resource simultaneously.

Pool names Number of slots
in each pool

Pool statistics

Figure 11.8 Overview of Airflow resource pools in the web UI

Name of the pool

Number of slots for this pool

Figure 11.9 Creating a new resource pool in the Airflow web UI
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To make your tasks use the new resource pool, you need to assign the resource pool
when creating the task.

PythonOperator(
    task_id="my_task",
    ...
    pool="my_resource_pool"
)

This way, Airflow will check to see if any slots are still available in my_resource_pool
before scheduling the task in a given run. If the pool still contains free slots, the
scheduler will claim an empty slot (decreasing the number of available slots by one)
and schedule the task for execution. If the pool does not contain any free slots, the
scheduler will postpone scheduling the task until a slot becomes available. 

11.4.2 Detecting long-running tasks using SLAs and alerts

In some cases, your tasks or DAG runs may take longer than usual due to unforeseen
issues in the data, limited resources, and so on. Airflow allows you to monitor the
behavior of your tasks using its SLA (service-level agreement) mechanism. This SLA
functionality effectively allows you to assign SLA timeouts to your DAGs or tasks, in
which case Airflow will warn you if any of your tasks or DAGs misses its SLA (i.e., takes
longer to run than the specified SLA timeout). 

 At the DAG level, you can assign an SLA by passing the sla argument to the
default_args of the DAG.

from datetime import timedelta

default_args = {
    "sla": timedelta(hours=2),
    ...
}

with DAG(
    dag_id="...",
    ...
    default_args=default_args,
) as dag:
    ...

By applying a DAG-level SLA, Airflow will examine the result of each task after its exe-
cution to determine whether the task’s start or end time exceeded the SLA (com-
pared to the start time of the DAG). If the SLA was exceeded, Airflow will generate an
SLA miss alert, notifying users it was missed. After generating the alert, Airflow will

Listing 11.29 Assigning a specific resource pool to a task

Listing 11.30 Assigning an SLA to all tasks in the DAG (dags/05_sla_misses.py)
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continue executing the rest of the DAG, generating similar alerts for other tasks that
exceed the SLA.

 By default, SLA misses are recorded in the Airflow metastore and can be viewed
using the web UI under Browse > SLA misses. Alert emails are also sent to any email
addresses defined on the DAG (using the email DAG argument), warning users that
the SLA was exceeded for the corresponding task.

 You can also define custom handlers for SLA misses by passing a handler function
to the DAG using the sla_miss_callback parameter.

def sla_miss_callback(context):   
    send_slack_message("Missed SLA!")

...

with DAG(
    ... 
    sla_miss_callback=sla_miss_callback
) as dag:
    ... 

It is also possible to specify task-level SLAs by passing an sla argument to a task’s
operator.

PythonOperator(
    ...
    sla=timedelta(hours=2)
)

This will only enforce the SLA for the corresponding tasks. However, it’s important
to note that Airflow will still compare the end time of the task to the start time of the
DAG when enforcing the SLA, rather than the start time of the task. This is because
Airflow SLAs are always defined relative to the start time of the DAG, not to individ-
ual tasks.

Summary
 Adopting common style conventions together with supporting linting/format-

ting tools can greatly increase the readability of your DAG code.
 Factory methods allow you to efficiently generate recurring DAGs or task struc-

tures while capturing differences between instances in small configuration objects
or files.

 Idempotent and deterministic tasks are key to building reproducible tasks and
DAGs, which are easy to rerun and backfill from within Airflow. Concepts from
functional programming can help you design tasks with these characteristics.

Listing 11.31 Custom callback for SLA misses (dags/05_sla_misses.py)

Listing 11.32 Assigning an SLA to specific tasks
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 Data processes can be implemented efficiently by carefully considering how
data is handled (i.e., processing in the appropriate systems, limiting the amount
of data that is loaded, and using incremental loading) and by caching interme-
diate data sets in available file systems that are available across workers.

 You can manage/limit access to your resources in Airflow using resource pools.
 Long-running tasks/DAGs can be detected and flagged using SLAs.



Operating Airflow
in production
In most of the previous chapters, we focused on various parts of Airflow from a pro-
grammer’s perspective. In this chapter, we aim to explore Airflow from an operations
perspective. A general understanding of concepts such as (distributed) software
architecture, logging, monitoring, and alerting is assumed. However, no specific tech-
nology is required.

 
 
 
 

This chapter covers
 Dissecting the Airflow scheduler

 Configuring Airflow to scale horizontally using 
different executors

 Monitoring the status and performance of 
Airflow visually

 Sending out alerts in case of task failures
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12.1 Airflow architectures
At a minimum, Airflow consists of three components (figure 12.1):

 Webserver
 Scheduler
 Database

The webserver and scheduler are both Airflow processes. The database is a separate
service you have to provide to Airflow for storing metadata from the webserver and
scheduler. A folder with DAG definitions must be accessible by the scheduler. 

Configuring Airflow
Throughout this chapter, we often refer to the Airflow configuration. Configuration in
Airflow is interpreted in this order of preference:

1 Environment variable (AIRFLOW__[SECTION]__[KEY])
2 Command environment variable (AIRFLOW__[SECTION]__[KEY]_CMD)
3 In airflow.cfg
4 Command in airflow.cfg
5 Default value

Whenever referring to configuration options, we will demonstrate option 1. For exam-
ple, take the configuration item web_server_port in the webserver section. This
will be demonstrated as AIRFLOW__WEBSERVER__WEB_SERVER_PORT.

To find the current value of any configuration item, you can scroll down in the Config-
urations page in the Airflow UI down to the table “Running Configuration,” which
shows all configuration options, their current value, and from which of the five options
the configuration was set.

Webserver and DAGs deployment in Airflow 1
In Airflow 1, the DAG files must be accessible to both the webserver and scheduler.
This complicates deployment because sharing files between multiple machines or
processes is not a trivial task.

In Airflow 2, DAGs are written in a serialized format in the database. The webserver
reads this serialized format from the database and does not require access to the
DAG files.

Webserver Scheduler DAGsDatabase

Figure 12.1 The most basic 
Airflow architecture
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The webserver’s responsibility is to visually display information about the current
status of the pipelines and allow the user to perform certain actions, such as trigger-
ing a DAG. 

 The scheduler’s responsibility is twofold:

1 Parse DAG files (i.e., read DAG files, extract bits and pieces, and store these in
the metastore).

2 Determine tasks to run and place these tasks on a queue.

We will dive deeper into the scheduler’s responsibilities in section 12.1.3. Airflow can
be installed in various ways: from a single machine (which requires minimal effort to
set up but is not scalable), to multiple machines (which requires more initial work but
has horizontal scalability). In Airflow, the different execution modes are configured
by the type of executor. At the time of writing, there are four types of executors:

 SequentialExecutor (default)
 LocalExecutor

 CeleryExecutor

 KubernetesExecutor

The type of executor is configurable by setting AIRFLOW__CORE__EXECUTOR to one of the
executor types from the list (table 12.1). Let’s look at how these four executors operate
internally.

Serialization of DAGs has been possible since Airflow 1.10.10, although it is optional.
To enable DAG serialization in Airflow 1 (1.10.10 only), you must configure the
following:

 AIRFLOW__CORE__STORE_DAG_CODE=True
 AIRFLOW__CORE__STORE_SERIALIZED_DAGS=True

Table 12.1 Overview of the Airflow executor modes

Executor Distributed Ease of installation Good fit

SequentialExecutor No Very easy Demoing/testing

LocalExecutor No Easy When running on a single 
machine is good enough

CeleryExecutor Yes Moderate If you need to scale out over 
multiple machines

KubernetesExecutor Yes Complex When you’re familiar with Kuber-
netes and prefer a container-
ized setup
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12.1.1 Which executor is right for me?

The SequentialExecutor is the simplest and the one you get automatically with Airflow.
As the name implies, it runs tasks sequentially. It is mainly used for testing and demo
purposes and will run tasks rather slowly. It will only operate on a single machine.

 The next step, while remaining on a single machine, is the LocalExecutor, which
is not limited to a single task at a time but can run multiple tasks in parallel. Internally,
it registers tasks to execute in a Python FIFO (first in, first out) queue, which worker
processes read and execute. By default, the LocalExecutor can run up to 32 parallel
processes (this number is configurable).

 If you want to distribute your workloads over multiple machines, you have two
options: the CeleryExecutor and the KubernetesExecutor. Distributing work over mul-
tiple machines can be done for various reasons: you’re hitting the resource limits of a
single machine, you want redundancy by running jobs on multiple machines, or you
simply want to run workloads faster by distributing the work across multiple machines.

 The CeleryExecutor internally applies Celery (http://www.celeryproject.org) as
the mechanism for queueing tasks to run, and workers read and process tasks from
the queue. From a user’s perspective, it works the same as the LocalExecutor by send-
ing tasks to a queue, and workers read tasks to process from the queue. However, the
main difference is that all components can run on different machines, spreading the
workload. Currently, Celery supports RabbitMQ, Redis, and AWS SQS for the queuing
mechanism (called the broker in Celery terms). Celery also comes with a monitoring
tool named Flower for inspecting the state of the Celery system. Celery is a Python
library and thus nicely integrates with Airflow. For example, the CLI command air-
flow celery worker will actually start a Celery worker. The only real external depen-
dency for this setup is the queuing mechanism.

 Lastly, the KubernetesExecutor, as the name implies, runs workloads on Kuber-
netes (https://kubernetes.io). It requires the setup and configuration of a Kubernetes
cluster on which to run Airflow, and the executor integrates with the Kubernetes APIs
for distributing Airflow tasks. Kubernetes is the de facto solution for running container-
ized workloads, which implies every task in an Airflow DAG is run in a Kubernetes pod.
Kubernetes is highly configurable and scalable and is often already in use within an
organization; therefore, many happily use Kubernetes in combination with Airflow.

12.1.2 Configuring a metastore for Airflow

Everything that happens in Airflow is registered in a database, which we also refer to
as the metastore in Airflow. A workflow script consists of several components, which the
scheduler interprets and stores in the metastore. Airflow performs all database opera-
tions with the help of SQLAlchemy, a Python ORM (object relational mapper) frame-
work, for conveniently writing Python objects directly to a database without having to
manually write out SQL queries. As a result of using SQLAlchemy internally, only data-
bases supported by it are also supported by Airflow. From all supported databases, Air-
flow recommends using PostgreSQL or MySQL. SQLite is also supported, but only in

http://www.celeryproject.org
https://kubernetes.io
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combination with the SequentialExecutor as it does not support concurrent writes
and is therefore not suitable for a production system. It is, however, very convenient
for testing and development purposes due to its easy setup.

 Without any configuration, running airflow db init creates a SQLite database in
$AIRFLOW_HOME/airflow.db. In case you want to set up a production system and go
with MySQL or Postgres, you must first create the database separately. Next, you must
point Airflow to the database by setting AIRFLOW__CORE__SQL_ALCHEMY_CONN.

 The value of this configuration item should be given in URI format (protocol:
//[username:password@]host[:port]/path). See the following examples:

 MySQL: mysql://username:password@localhost:3306/airflow
 PostgreSQL: postgres://username:password@localhost:5432/airflow

The Airflow CLI provides three commands for configuring the database:

 airflow db init: Create the Airflow database schema on an empty database.
 airflow db reset: Wipe any existing database and create a new, empty, data-

base. This is a destructive operation!
 airflow db upgrade: Apply missing database schema upgrades (if you’ve upgraded

the Airflow version) to the database. Running db upgrade on an already upgraded
database schema will result in no action and is therefore safe to execute multi-
ple times. In the case no database has been initialized, the effect will be the
same as db init. Note, however, that it does not create default connections as
db init does.

Running any of the these database commands will print something like the following.

$ airflow db init
DB: sqlite:////home/airflow/airflow.db
[2020-03-20 08:39:17,456] {db.py:368} INFO - Creating tables
INFO [alembic.runtime.migration] Context impl SQLiteImpl.
INFO [alembic.runtime.migration] Will assume non-transactional DDL.
... Running upgrade  -> e3a246e0dc1, current schema
... Running upgrade e3a246e0dc1 -> 1507a7289a2f, create is_encrypted
...

What you see is the output of Alembic, another Python database framework, for script-
ing database migrations. Each line in listing 12.1 is the output of one single database
migration. If you upgrade to a newer Airflow version that contains database migra-
tions (whether or not a new version contains database upgrades is listed in the release
notes), you must also upgrade the corresponding database. Running airflow db
upgrade will check at which migration step your current database lives and apply the
migration steps that were added in the new release.

 At this stage, you have a fully functional Airflow database and can run airflow
webserver and airflow scheduler. When opening the webserver on http:/ /local-
host:8080, you will see many example_* DAGs and connections (figure 12.2).

Listing 12.1 Initializing the Airflow metastore
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These examples might come in handy during development but are likely not desir-
able for a production system. You can exclude example DAGs by setting AIRFLOW__
CORE__LOAD_EXAMPLES=False.

 However, upon restarting the scheduler and webserver, you will probably be sur-
prised to still see the DAGs and connections. The reason is that setting load_examples
to False tells Airflow to not load example DAGs (does not apply to connections!),
and Airflow will not reload them. However, already loaded DAGs remain in the data-
base and are not deleted. The same behavior applies to default connections, which
can be excluded by setting AIRFLOW__CORE__LOAD_DEFAULT_CONNECTIONS=False.

 With this in mind, a “clean” (i.e., no examples) database is achieved by the com-
pleting the following steps:

1 Install Airflow.
2 Set AIRFLOW__CORE__LOAD_EXAMPLES=False.
3 Set AIRFLOW__CORE__LOAD_DEFAULT_CONNECTIONS=False.
4 Run airflow db init.

12.1.3 A closer look at the scheduler

To understand how and when tasks are executed, let’s take a closer look at the sched-
uler. The scheduler has multiple responsibilities:

 Parsing DAG files and storing extracted information in the database
 Determining which tasks are ready to execute and placing these in the queued

state
 Fetching and executing tasks in the queued state

Figure 12.2 By default, Airflow will load example DAGs (and connections, not displayed here).
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Airflow runs all tasks in DAGs within a job. Although job classes are internal to Airflow,
you can view the running jobs in the Airflow UI. The scheduler also runs in a job,
albeit its own special job, namely a SchedulerJob. All jobs can be inspected in the Air-
flow UI under Browse  Jobs (figure 12.3).

The SchedulerJob has three responsibilities. First, it’s responsible for parsing DAG
files and storing extracted information in the database. Let’s inspect what that entails.

THE DAG PROCESSOR

The Airflow scheduler periodically processes Python files in the DAGs directory (the
directory set by AIRFLOW__CORE__DAGS_FOLDER). This means that even if no change
was made to a DAG file,1 it periodically evaluates each DAG file and persists the found
DAGs in the Airflow metastore because you can create dynamic DAGs (that change
structure based on an external source in Airflow) while the code stays the same. An
example is a DAG in which a YAML file is read and tasks are generated based on the
content of it. In order to pick up changes in dynamic DAGs, the scheduler reprocesses
DAG files periodically.

1 While there are ongoing discussions in the Airflow community to make the DAG parsing event-based by listen-
ing for file changes on DAG files and explicitly configuring DAGs for reprocessing if required, which could
alleviate the CPU usage of the scheduler, this does not exist at the time of writing.

Operators in DAGs run in a LocalTaskJob.

The scheduler runs in one single SchedulerJob.

Jobs backfilled with the CLI run in a BackfillJob.

Figure 12.3 The scheduler, regular tasks, and backfill tasks are run within a job in Airflow. All jobs can be 
viewed in the Airflow UI.
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 Processing DAGs takes processing power. The more you re-process your DAG files,
the faster changes will be picked up, but at the cost of taking more CPU power. If you
know your DAGs do not change dynamically, it’s safe to raise default intervals to allevi-
ate the CPU. The interval of DAG processing is related to four configurations (shown
in table 12.2). 

An optimal configuration for your system depends on the number of DAGs, the size of
your DAGs (i.e., how long it takes for the DAG processor to evaluate them), and the
available resources on the machine on which the scheduler is running. All intervals
define a boundary for how often to perform a process; at times the interval value is
compared, but it’s possible, for example, that the DAG_DIR_LIST_INTERVAL is checked
after 305 seconds while the value is set to 300 seconds.

 AIRFLOW__SCHEDULER__DAG_DIR_LIST_INTERVAL is particularly useful to lower. If
you find yourself often adding new DAGs and waiting for them to appear, the issue
can be addressed by lowering this value.

 All DAG processing happens within a while True loop, in which Airflow loops over a
series of steps for processing DAG files over and over. In the log files, you will see the out-
put of DAG processing in /logs/dag_processor_manager/dag_processor_manager.log. 

=================================================================
DAG File Processing Stats

File Path   PID Runtime # DAGs # Errors Last Runtime Last Run
----------- --- ------- ------ -------- ------------ ------------
.../dag1.py                  1        0  0.09s       ... 18:55:15

Table 12.2 Airflow configuration options related to DAG processing

Configuration item Description

AIRFLOW__SCHEDULER__ 
PROCESSOR_POLL_INTERVAL

The time to wait after completing a scheduler loop. Inside a 
scheduler loop (among other operations) DAGs are parsed, so 
the lower this number, the faster DAGs will be parsed.

AIRFLOW__SCHEDULER__ 
MIN_FILE_PROCESS_INTERVAL

The minimum interval for files to be processed (default: 0). Note 
that there is no guarantee files will be processed at this interval; 
it’s only a lower boundary, not the actual interval.

AIRFLOW__SCHEDULER__ 
DAG_DIR_LIST_INTERVAL

The minimum time to refresh the list of files in the DAGs folder 
(default: 300). Already listed files are kept in memory and pro-
cessed at a different interval. Note that this setting represents 
a lower boundary; it is not the actual interval.

AIRFLOW__SCHEDULER__
PARSING_PROCESSES

The maximum number of processes (not threads) to use for pars-
ing all DAG files. Note that this setting represents an upper 
boundary; it is not the actual number of processes.

Listing 12.2 Example output of DAG processor manager
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.../dag2.py                  1        0  0.09s       ... 18:55:15

.../dag3.py                  1        0  0.10s       ... 18:55:15

.../dag4.py 358 0.00s        1        0  0.08s       ... 18:55:15

.../dag5.py 359 0.07s        1        0  0.08s       ... 18:55:15
=================================================================
... - Finding 'running' jobs without a recent heartbeat
... - Failing jobs without heartbeat after 2020-12-20 18:50:22.255611
... - Finding 'running' jobs without a recent heartbeat
... - Failing jobs without heartbeat after 2020-12-20 18:50:32.267603
... - Finding 'running' jobs without a recent heartbeat
... - Failing jobs without heartbeat after 2020-12-20 18:50:42.320578

Note that these file processing stats are not printed with every iteration but every X num-
ber of seconds that AIRFLOW__SCHEDULER__PRINT_STATS_INTERVAL is set to (default:
30 seconds). Also note that the displayed statistics represent the information from the
last run, not the results of the last number of PRINT_STATS_INTERVAL seconds.

THE TASK SCHEDULER

Second, the scheduler is responsible for determining which task instances may be exe-
cuted. A while True loop periodically checks for each task instance if a set of condi-
tions are met, such as (among others) if all upstream dependencies are satisfied, if the
end of an interval is reached, if the task instance in the previous DAG ran successfully
if depends_on_past=True, and so on. Whenever a task instance meets all conditions, it
is set to a scheduled state, which means the scheduler decided it met all conditions
and is okay to execute.

 Another loop in the scheduler determines another set of conditions in which tasks
go from a scheduled to queued state. Here, conditions include (among others) if
there are enough open slots and if certain tasks have priority over others (given the
priority_weight argument). Once all these conditions have been met, the scheduler
will push a command to a queue to run the task and set the state of the task instance
to queued. This means once the task instance has been placed on a queue, it’s no
longer the responsibility of the scheduler. At this point, tasks are now the responsi-
bility of the executor that will read the task instance from the queue and start the
task on a worker.

NOTE The task scheduler is responsible for tasks up to the queued state. Once
a task is given the queued state, it becomes the responsibility of the executor
to run the task.

The type of queue and how a task instance is processed once it’s been placed on a
queue is contained in the process named executor. The executor part of the scheduler
can be configured in various ways, from a single process on a single machine to multi-
ple processes distributed over multiple machines, as explained in section 12.1.1.
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THE TASK EXECUTOR

In general, the task executor process will wait for the task scheduler process to place
task instances to execute on a queue. Once placed on this queue, the executor will
fetch the task instance from the queue and execute it. Airflow registers each state
change in the metastore. The message placed on the queue contains several details of
the task instance. In the executor, executing tasks means creating a new process for the
task to run in so that it doesn’t bring down Airflow if something fails. In the new pro-
cess, it executes the CLI command airflow tasks run to run a single task instance,
such as the following example (using the LocalExecutor).

➥ airflow tasks run [dag_id] [task_id] [execution date] –local –pool [pool 
id] -sd [dag file path]

For example:

➥ airflow tasks run chapter12_task_sla sleeptask 2020-04-04T00:00:00+00:00 
--local --pool default_pool -sd /..../dags/chapter12/task_sla.py

Right before executing the command, Airflow registers the state of the task instance
as running in the metastore. After this, it executes the task and periodically checks in
by sending a heartbeat to the metastore. The heartbeat is yet another while True loop
in which Airflow does the following:

 Checks if the task has finished.
 If finished and the exit code is zero, the task is successful.
 If finished and the exit code does not equal zero, the task failed.
 If not finished,

– Register the heartbeat and wait X seconds, configured with AIRFLOW__
SCHEDULER__JOB_HEARTBEAT_SEC (default 5).

– Repeat.

For a successful task, this process repeats a certain number of times, until the task is
completed. If no error occurred, the state of the task is changed to success. The ideal
flow of a task is depicted in figure 12.4.

12.2 Installing each executor
There are many ways to install and configure Airflow; hence, it’s impractical to elabo-
rate on all ways in this book. However, we demonstrate the main items required for
getting each executor up and running.

 As explained in section 12.1, the executor is part of Airflow’s scheduler. The DAG
processor and task scheduler can only be run in a single way, by starting airflow
scheduler. However, the task executor can be installed in different ways, from a single

Listing 12.3 The command executed for any given task
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process on a single machine to multiple processes on multiple machines, for perfor-
mance and/or redundancy.

 The executor type is set in Airflow with AIRFLOW__CORE__EXECUTOR, where the value
is one of the following:

 SequentialExecutor (default)
 LocalExecutor

 CeleryExecutor

 KubernetesExecutor

You can validate the correct installation of any executor by running a DAG. If any task
makes it to the running state, it means it went through the cycle of being scheduled,
queued, and running, which means it is picked up by the executor.

12.2.1 Setting up the SequentialExecutor

The default executor in Airflow is the SequentialExecutor (figure 12.5). The task
executor part of the scheduler is run in a single subprocess, within which tasks are run
one by one, so it’s the slowest method of task execution. However, it is convenient for
testing because it requires no configuration.

DAGs

DAG processor Task scheduler Task executor

Scheduled
New task

instance
Queued Running Success

Scheduler

Figure 12.4 The ideal flow of a task and the task state for which the components of the scheduler 
are responsible. The dotted line represents the full scheduler responsibility. When running the 
SequentialExecutor/LocalExecutor mode, this is a single process. The CeleryExecutor 
and KubernetesExecutor run the task executor in separate processes, designed to scale over 
multiple machines.

Webserver Scheduler

Subprocess
Database

DAGs

Figure 12.5 With the SequentialExecutor, all components must run on the same machine.
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The SequentialExecutor works with a SQLite database. Running airflow db init
without any configuration will initialize a SQLite database in your $AIRFLOW_HOME
directory, which is a single file named airflow.db. After that, start two processes:

 airflow scheduler
 airflow webserver

12.2.2 Setting up the LocalExecutor

Setting up Airflow with the LocalExecutor is not much different from the Sequential-
Executor setup (figure 12.6). Its architecture is similar to the SequentialExecutor
but with multiple subprocesses, so tasks can be executed in parallel, and thus it per-
forms faster. Each subprocess executes one task, and subprocesses can run in parallel.

Also, the SequentialExecutor is coupled to a SQLite database, while all other execu-
tors can work with more sophisticated databases such as MySQL and PostgreSQL,
resulting in better performance.

 To configure the LocalExecutor, set AIRFLOW__CORE__EXECUTOR to LocalExecutor.
The scheduler can spawn a maximum number of subprocesses configured by AIRFLOW
__CORE__PARALLELISM (default 32). Technically, these are not new processes but
rather processes forked from the parent (scheduler) process.

 There are other ways to limit the number of parallel tasks (e.g., by lowering the
default pool size, AIRFLOW__CORE__DAG_CONCURRENCY, or AIRFLOW__CORE__MAX_ACTIVE
_RUNS_PER_DAG).

 Database-wise, install Airflow with the extra dependencies for the corresponding
database system:

 MySQL: pip install apache-airflow[mysql]
 PostgreSQL: pip install apache-airflow[postgres]

Webserver Scheduler

Subprocess

Subprocess

Subprocess

Subprocess

…

Database

DAGs

Figure 12.6 With the LocalExecutor all components can run on a separate 
machine. However, subprocesses created by the scheduler all run on one 
single machine.
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The LocalExecutor is easy to set up and can get you decent performance. The system
is limited by the resources of the scheduler’s machine. Once the LocalExecutor no
longer suffices (e.g., in terms of performance or redundancy), the CeleryExecutor
and KubernetesExecutor, which we address in sections 12.2.3 and 12.2.4, respectively,
are the logical next steps.

12.2.3 Setting up the CeleryExecutor

The CeleryExecutor is built on top of the Celery project. Celery provides a frame-
work for distributing messages to workers via a queuing system (figure 12.7).

 As you can see in figure 12.7, both the scheduler and Celery workers require access
to both the DAGs and the database. For the database, this is not a problem since you
can connect to it with a client. For the DAGs folder, this can be challenging to set up.
You make the DAGs available to all machines either via a shared file system or by
building a containerized setup where the DAGs are built into an image with Airflow.
In the containerized setup, any change to the DAG code will result in a redeployment
of the software. 

 To get started with Celery, first install Airflow with the Celery extra dependencies
and configure the executor:

 pip install apache-airflow[celery]
 AIRFLOW__CORE__EXECUTOR=CeleryExecutor
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Figure 12.7 In the CeleryExecutor, tasks are divided among multiple machines 
running Celery workers. The workers wait for tasks to arrive on a queue.
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The queueing system can be anything that Celery supports, which is Redis, RabbitMQ,
and AWS SQS at the time of writing. In Celery, the queue is called broker. Installing a
broker is not in the scope of this book, but after installation you must configure Air-
flow to the broker by setting AIRFLOW__CELERY__BROKER_URL:

 Redis: AIRFLOW__CELERY__BROKER_URL=redis://localhost:6379/0
 RabbitMQ: AIRFLOW__CELERY__BROKER_URL=amqp://user:pass@localhost:5672//

Check the documentation for your queueing system for the corresponding URI for-
mat. The BROKER_URL allows the scheduler to send messages to the queue. For the
Celery workers to communicate with the Airflow metastore, we must also configure
AIRFLOW__CELERY__RESULT_BACKEND. In Celery the prefix db+ is used to indicate a
database connection:

 MySQL: AIRFLOW__CELERY__RESULT_BACKEND=db+mysql://user:pass@local-
host/airflow

 PostgreSQL: AIRFLOW__CELERY__RESULT_BACKEND=db+postgresql://user:pass@
localhost/airflow

Ensure the DAGs folder is also accessible on the worker machines on the same path,
as configured by AIRFLOW__CORE__DAGS_FOLDER. After this, we should be good to go:

1 Start Airflow webserver.
2 Start Airflow scheduler.
3 Start Airflow Celery worker.

airflow celery worker is a small wrapper command starting a Celery worker. All
should be up and running now.

NOTE To validate the installation, you could manually trigger a DAG. If any
task completes successfully, it will have gone through all components of the
CeleryExecutor setup, meaning everything works as intended.

To monitor the status of the system, we can set up Flower, a web-based monitoring tool
for Celery in which we can inspect (among others) workers, tasks, and the status of the
whole Celery system. The Airflow CLI also provides a convenience command to start
Flower: airflow celery flower. By default, Flower runs on port 5555. After starting,
browse to http:/ /localhost:5555 (figure 12.8).

 In the first view of Flower, we see the number of registered Celery workers, their
status, and some high-level information on the number of tasks each worker has pro-
cessed. How can you tell if the system is performing well? The most useful graphic in
the Flower interface is the Monitor page in figure 12.9, which shows the status of the
system in a few graphs.

 From the two distributed executor modes Airflow offers (Celery and Kubernetes),
the CeleryExecutor is the easier to set up from scratch because you only need to set
up one additional component: the queue. The Celery workers and Flower dashboard
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Figure 12.8 The Flower dashboard shows the status of all Celery workers.

Queued tasks are ready to be processed,
but Celery doesn’t have enough worker
slots available at the moment.

Succeeded tasks indicate Celery can read
and execute tasks from the queue and the
CeleryExecutor setup is successful.

Figure 12.9 The monitoring tab of Flower shows graphs to understand the performance of the Celery system.



296 CHAPTER 12 Operating Airflow in production
are integrated into Airflow, which makes it easy to set up and scale the execution of
tasks over multiple machines.

12.2.4 Setting up the KubernetesExecutor

Last but not least is the KubernetesExecutor. Set AIRFLOW__CORE__EXECUTOR=
KubernetesExecutor to use it. As the name implies, this executor type is coupled to
Kubernetes, which is the most used system for running and managing software in con-
tainers. Many companies run their software on Kubernetes, since containers provide
an isolated environment that ensures what you develop on your computer runs the
same on the production system. Thus, the Airflow community expressed a strong desire
to run Airflow on Kubernetes. Architecturally, the KubernetesExecutor looks like
figure 12.10.

When working with the KubernetesExecutor, it helps to have prior knowledge of
Kubernetes. Kubernetes can be large and complex. However, the Airflow Kubernetes-
Executor only uses a small part of all available components on the Kubernetes plat-
form. For now, it’s good to know a pod is the smallest unit of work in Kubernetes and can
run one or more containers. In the context of Airflow, one task will run in one pod.

 A pod is created every time a task is executed. When the scheduler decides to
run a task, it sends a pod creation request to the Kubernetes API, which then creates
a pod running an Airflow container, with the command airflow tasks run ..., as
shown in listing 12.3 (disregarding several details). Kubernetes itself monitors the
status of the pod.
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Figure 12.10 With the KubernetesExecutor, all tasks run in a pod in Kubernetes. 
While it is not necessary to run the webserver, scheduler, and database in Kubernetes, 
it is sensible to also run it there when using the KubernetesExecutor.
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 With the other executor setups, there was a clear separation between physical
machines. With Kubernetes, all processes run in pods, where they can be distributed
over multiple machines, although they might also be running on the same machine.
From a user’s perspective, processes run in pods and the user does not know of under-
lying machines.

 The most used way to deploy software on Kubernetes is with Helm, a package man-
ager for Kubernetes. Various third-party Helm charts for Airflow are available on Helm
Hub, the repository for Helm charts. At the time of writing, an official Airflow Helm
chart is available on the master branch of the Airflow project. However, it is not yet avail-
able on public Helm repositories at the time of writing. The minimal installation instruc-
tions are therefore (assuming a functioning Kubernetes cluster and Helm 3+) as follows.

$ curl -OL https://github.com/apache/airflow/archive/master.zip     B
$ unzip master.zip
$ kubectl create namespace airflow                                  c
$ helm dep update ./airflow-master/chart                            d
$ helm install airflow ./airflow-master/chart --namespace airflow   e

NAME: airflow
LAST DEPLOYED: Wed Jul 22 20:40:44 2020
NAMESPACE: airflow
STATUS: deployed
REVISION: 1
TEST SUITE: None
NOTES:
Thank you for installing Airflow!

Your release is named airflow.

➥ You can now access your dashboard(s) by executing the following
command(s) and visiting the corresponding port at localhost in your browser:

Airflow dashboard:

➥ kubectl port-forward svc/airflow-webserver 8080:8080 --namespace airflow

B Download the Airflow source code containing the Helm chart.

c Create an Airflow namespace in Kubernetes.

d Download specified versions of dependent Helm charts.

e Install the Airflow Helm chart.

One of the trickier parts of setting up the KubernetesExecutor is determining how to
distribute DAG files between Airflow processes. There are three methods for this:

1 Share DAGs between pods with a PersistentVolume.
2 Pull the latest DAG code from a repository with a Git-sync init container.
3 Build the DAGs into the Docker image.

First, let’s establish how to deploy Airflow DAG code without using containers. All Air-
flow processes must have access to a directory containing DAG files. On a single machine,

Listing 12.4 Airflow installation on Kubernetes with Helm chart
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this isn’t too hard: start all Airflow processes and point to the directory on the machine
holding the DAG code.

 However, it becomes difficult when running Airflow processes on different machines.
In that case, you need some way to make DAG code accessible by both machines, such as
a shared file system (figure 12.11).

However, getting code on a shared file system is not a trivial task. A file system is built for
storing and retrieving files on a storage medium, not for providing an interface to the
internet for easy file exchange. The exchange of files over the internet would be
handled by an application running on the same machine as the file system is mounted to.

 In more practical words, say you have a shared file system such as NFS (network file
system) to share files between the Airflow scheduler and worker machines. You
develop code on your development machine but cannot copy files directly to the NFS
file system because it does not have an interface to the internet. To copy your files
onto the NFS, it must be mounted to a machine, and files must be written onto it via
an application running on the same machine, such as FTP (figure 12.12).

In figure 12.12, a developer or CI/CD system can push Airflow code to the Airflow sys-
tem via an FTP server, which runs on one of the Airflow machines. Via the FTP server,
the NFS volume should be made accessible for the CI/CD system to push DAG files to
and make it accessible to all Airflow machines.

 What if a pushing mechanism from the CI/CD system is not an option? This is a
common challenge for various reasons, such as security or network limitations. In that

Airflow
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Airflow

scheduler

Development
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filesystem

Figure 12.11 Without containers, a 
developer pushes code to a repository, 
after which the code should be made 
available to both Airflow processes.
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Figure 12.12 Files cannot be written directly to NFS because it provides no internet interface. 
For sending and receiving files over the internet, we could use FTP to store files on the same 
machine as the NFS is mounted to.
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case, an often seen solution is to pull the code in from an Airflow machine, via a DAG
named “the DAG puller DAG.”

import datetime

from airflow.models import DAG
from airflow.operators.bash import BashOperator

dag = DAG(
   dag_id="dag_puller",
   default_args={"depends_on_past": False},          B
   start_date=datetime.datetime(2020, 1, 1),
   schedule_interval=datetime.timedelta(minutes=5),  c
   catchup=False,                                    B
)

fetch_code = BashOperator(
   task_id="fetch_code",
   bash_command=(
       "cd /airflow/dags && "
       "git reset --hard origin/master"              d
   ),
   dag=dag,
)

B Ignore all dependencies; always run tasks.

c Pull the latest code every five minutes.

d Requires Git to be installed and configured

With the DAG puller DAG, the latest code from the master branch is pulled onto the
Airflow machine every five minutes (figure 12.13). This obviously imposes a delay
between the code on the master branch and the deployment of the code in Airflow,
but it’s sometimes the most practical solution.

Now that we know the challenges and potential solutions for deploying DAGs running
Airflow in a distributed setup, let’s see how to share DAGs between pods in Kubernetes.

SHARE DAGS BETWEEN PODS WITH A PERSISTENTVOLUME

PersistentVolumes are Kubernetes’s abstraction over storage and allow mounting
shared volumes to containers without having to know the underlying storage technol-
ogy, such as NFS, Azure File Storage, or AWS EBS. One of the trickier parts is to set up

Listing 12.5 Pulling in the latest code with a DAG puller DAG
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Figure 12.13 With a DAG puller DAG, code will be pulled from an Airflow machine.
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a CI/CD pipeline where DAG code is pushed to the shared volume, which typically
does not provide out-of-the-box functionality for pushing directly to the shared vol-
ume. To enable sharing DAGs with a PersistentVolume, set the configuration item
AIRFLOW__KUBERNETES__DAGS_VOLUME_CLAIM to the name of the volume (“Volume-
Claim” in Kubernetes) on the Airflow pod. DAG code must be copied to the volume,
either with a pushing method, as shown in figure 12.12, or a pulling method, as shown
in listing 12.5. The solution might depend on your chosen volume type, so refer to the
Kubernetes documentation on volumes for more information.

PULL THE LATEST DAG CODE FROM A REPOSITORY WITH A GIT-SYNC INIT CONTAINER

The Airflow configuration holds a list of settings for pulling a Git repository via a side-
car container before running an Airflow task (not complete):

 AIRFLOW__KUBERNETES__GIT_REPO = https://mycompany.com/repository/airflow 
 AIRFLOW__KUBERNETES__GIT_BRANCH = master
 AIRFLOW__KUBERNETES__GIT_SUBPATH = dags
 AIRFLOW__KUBERNETES__GIT_USER = username
 AIRFLOW__KUBERNETES__GIT_PASSWORD = password
 AIRFLOW__KUBERNETES__GIT_SSH_KEY_SECRET_NAME = airflow-secrets
 AIRFLOW__KUBERNETES__GIT_DAGS_FOLDER_MOUNT_POINT = /opt/airflow/dags
 AIRFLOW__KUBERNETES__GIT_SYNC_CONTAINER_REPOSITORY = k8s.gcr.io/git-sync 
 AIRFLOW__KUBERNETES__GIT_SYNC_CONTAINER_TAG = v3.1.2
 AIRFLOW__KUBERNETES__GIT_SYNC_INIT_CONTAINER_NAME = git-sync-clone

While not all details are necessary to fill, setting the GIT_REPO and credentials (USER +
PASSWORD, or GIT_SSH_KEY_SECRET_NAME) will enable the Git sync. Airflow will create a
sync container that pulls the code from the configured repository before starting a task.

BUILD THE DAGS INTO THE DOCKER IMAGE

Lastly, building the DAG files into the Airflow image is also a popular option for its
immutability; any change to DAG files results in the build and deployment of a new
Docker image so that you are always certain which version of your code you are run-
ning on. To tell the KubernetesExecutor you’ve built DAG files into the image, set
AIRFLOW__KUBERNETES__DAGS_IN_IMAGE=True.

 The build and deployment process becomes a little different (figure 12.14).
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Figure 12.14 After a push to the version control system, a new Docker image is built.
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Building an Airflow image together with DAG code provides several benefits:

 We are certain which version of the code is currently deployed.
 We can run the same Airflow environment locally as on production.
 Conflicts between new dependencies are found at build time, not at run time.

If we zoom in on the build, for performance it’s preferable to install Airflow and add
your DAG code in two separate steps:

1 Installation dependencies.
2 Add only DAG code.

The reason for this split is that Airflow contains lots of dependencies, which can take
in the order of minutes to build. You probably will not change dependencies often
during development but will mostly change DAG code. To avoid reinstalling depen-
dencies with every small change, copy your DAG code into the image in a separate
step. If your CI/CD system caches Docker layers, this could be in a separate Docker
statement, because you can retrieve the base layers quickly. If your CI/CD system does
not cache Docker layers, it’s wise to build one base image for Airflow and dependen-
cies and a second image for adding only the DAG code. Let’s illustrate how the latter
option works with two Dockerfiles.2 First is the base Dockerfile.

FROM apache/airflow:2.0.0-python3.8    B

USER root                              c

RUN apt-get update && \
    apt-get install -y gcc && \
    apt-get autoremove -y && \
    apt-get clean -y && \
    rm -rf /var/lib/apt/lists/*

USER airflow                           d
COPY requirements.txt /opt/airflow/requirements.txt
RUN pip install --user -r /opt/airflow/requirements.txt && \
    rm /opt/airflow/requirements.txt

B Base on the official Airflow image

c Default user is a non-root user Airflow, so switch to root for installation.

d Switch back to Airflow after installation.

This base Dockerfile starts with the official Airflow 2.0.0 Docker image and installs
additional dependencies listed in requirements.txt. Having a separate file for addi-
tional dependencies simplifies the CI/CD pipeline, since any change to require-
ments.txt should always trigger a rebuild of the base image. The command docker
build -f Dockerfile.base -t myrepo/airflow-base. will build the base image.

Listing 12.6 Base Airflow Dockerfile example

2 Both Dockerfiles are meant for demonstration purposes.
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FROM myrepo/airflow-base:1.2.3

COPY dags/ /opt/airflow/dags/

Having a pre-built base image with all dependencies makes building the final image a
very fast process since the only step required is copying the DAG files. Use the com-
mand docker build -t myrepo/airflow. to build it. However, this image will be built
with every single change. Depending on the dependencies you’re installing, the dif-
ference in time between building the base and final image can be very large.

python-dotenv~=0.10.3

By splitting the build process of an Airflow Docker image into either separate state-
ments or separate images, we can significantly speed up the build time because
only the files changed most often (the DAG scripts) are copied into the Docker
image. A more time-consuming full rebuild of the Docker image will be performed
only when needed. 

 From the Kubernetes side, ensure your Airflow image tag is defined in the YAML
by AIRFLOW__KUBERNETES__POD_TEMPLATE_FILE, or make sure AIRFLOW__KUBERNETES
__WORKER_CONTAINER_TAG is set to the tag you want the worker pods to deploy. If using
the Airflow Helm chart, you can update the deployed version with the Helm CLI by
setting the tag of the newly built image.

helm upgrade airflow ./airflow-master/chart \
  --set images.airflow.repository=yourcompany/airflow \
  --set images.airflow.tag=1234abc

12.3 Capturing logs of all Airflow processes
What about logging? All systems produce some sort of output, and at times we want to
know what’s going on. In Airflow, there are three types of logs:

 Webserver logs—These hold information on web activity (i.e., which requests are
sent to the webserver.

 Scheduler logs—These hold information on all scheduler activity, which includes
DAG parsing, scheduling tasks, and more.

 Task logs—These hold the logs of one single task instance in each log file.

By default, logs are written in $AIRFLOW_HOME/logs on the local filesystem. Log-
ging is configurable in various ways. In this section, we will demonstrate the default
logging behavior, plus how to write logs to a remote storage system in section 12.3.4.

Listing 12.7 Final Airflow Dockerfile example

Listing 12.8 Example requirements.txt

Listing 12.9 Updating the deployed Airflow image with Helm
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12.3.1 Capturing the webserver output

The webserver serves static files and every request to a file is displayed in the web-
server output. See the following example:

 ➥ 127.0.0.1 - - [24/Mar/2020:16:50:45 +0100] "GET / HTTP/1.1" 302 221
"-" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_5) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36"

 ➥ 127.0.0.1 - - [24/Mar/2020:16:50:46 +0100] "GET /admin/ HTTP/1.1"
200 44414 "-" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_5) AppleWeb-
Kit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36"

 ➥ 127.0.0.1 - - [24/Mar/2020:16:50:46 +0100] "GET /static/bootstrap-
theme.css HTTP/1.1" 200 0 "http:/ /localhost:8080/admin/" "Mozilla/5.0
(Macintosh; Intel Mac OS X 10_14_5) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/80.0.3987.149 Safari/537.36"

When starting the webserver on the command line, you will see this output printed to
stdout or stderr. What if you want to preserve logs after the webserver shuts down?
Within the webserver, there are two types of logs: access logs, as shown, and error logs,
which hold not only errors but also system information such as the following:

 [2020-04-13 12:22:51 +0200] [90649] [INFO] Listening at: http://0.0.0.0:8080
(90649)

 [2020-04-13 12:22:51 +0200] [90649] [INFO] Using worker: sync
 [2020-04-13 12:22:51 +0200] [90652] [INFO] Booting worker with pid: 90652

Both types of logs can be written to a file by providing a flag when starting Airflow
webserver:

 airflow webserver --access_logfile [filename]
 airflow webserver --error_logfile [filename]

The filename will be relative to AIRFLOW_HOME, so setting “accesslogs.log” as the file-
name, for example, will create a file: /path/to/airflow/home/accesslogs.log.

12.3.2 Capturing the scheduler output

The scheduler does write logs to files by default, as opposed to the webserver. Look-
ing at the $AIRFLOW_HOME/logs directory again, we see various files related to sched-
uler logs.

.
├── dag_processor_manager
│   └── dag_processor_manager.log
└── scheduler
    └── 2020-04-14
        ├── hello_world.py.log
        └── second_dag.py.log

Listing 12.10 Log files generated by the scheduler

http://0.0.0.0:8080
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This directory tree is the result of processing two DAGs: hello_world and second_dag.
Every time the scheduler processes a DAG file, several lines are written to the respec-
tive file. These lines are key to understanding how the scheduler operates. Let’s look
at hello_world.py.log.

... Started process (PID=46) to work on /opt/airflow/dags/hello_world.py

... Processing file /opt/airflow/dags/hello_world.py for tasks to queue    B

... Filling up the DagBag from /opt/airflow/dags/hello_world.py

➥ ... DAG(s) dict_keys(['hello_world']) retrieved from 
/opt/airflow/dags/hello_world.py                                      c

... Processing hello_world                                                 d

... Created <DagRun hello_world @ 2020-04-11 00:00:00 ...>                 e

... Examining DAG run <DagRun hello_world @ 2020-04-11 00:00:00 ...>       f
➥ ... Skipping SLA check for <DAG: hello_world> because no tasks in DAG   g

have SLAs                                                             g
➥ ... Creating / updating <TaskInstance: hello_world.hello 2020-04-11 ...>h

 in ORM                                                               h
➥ ... Creating / updating <TaskInstance: hello_world.world 2020-04-11 ...>h

in ORM                                                                h
... Processing /opt/airflow/dags/hello_world.py took 0.327 seconds         i

B Start the processing of this file.

c The DAG hello_world was retrieved from the file.

d Check if the DAG runs and corresponding task instances can be created given their schedule and if 
any SLAs were missed.

e Created DagRun because the end of the interval has been reached

f Check if any existing task instances should be set to running.

g Check if any missed SLA notifications should be sent.

h Check for tasks to create and set to scheduled state.

i Processing of this file completed

These steps of processing a DAG file, loading the DAG object from the file, and check-
ing if many conditions are met, such as DAG schedules, are executed many times over
and are part of the core functionality of the scheduler. From these logs, we can derive
whether the scheduler is working as intended.

 There is also a single file named dag_processor_manager.log (log rotation is per-
formed once it reaches 100 MB), in which an aggregated view (default last 30 sec-
onds) is displayed of which files the scheduler has processed (listing 12.2).

12.3.3 Capturing task logs

Lastly, we have task logs, where each file represents one attempt of one task.

.
├── hello_world                            B
│   ├── hello                              c
│   │   └── 2020-04-14T16:00:00+00:00      d

Listing 12.11 Scheduler reading DAG files and creating corresponding DAGs/tasks 

Listing 12.12 Log files generated upon task execution
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│   │       ├── 1.log                      e
│   │       └── 2.log
│   ├── world
│   │   └── 2020-04-14T16:00:00+00:00
│   │       ├── 1.log
│   │       └── 2.log
└── second_dag
    └── print_context
        ├── 2020-04-11T00:00:00+00:00
        │   └── 1.log
        └── 2020-04-12T00:00:00+00:00
            └── 1.log

B DAG name

c Task name

d Execution date

e Attempt number

The contents of these files reflect what we see when opening a task in the webserver UI.

12.3.4 Sending logs to remote storage

Depending on your Airflow setup, you might want to send logs elsewhere, for exam-
ple, when running Airflow in ephemeral containers in which logs are gone when the
container stops or for archival purposes. Airflow holds a feature named “remote log-
ging,” which allows us to ship logs to a remote system. At the time of writing, the fol-
lowing remote systems are supported:

 AWS S3 (requires pip install apache-airflow[amazon])
 Azure Blob Storage (requires pip install apache-airflow[microsoft.azure])
 Elasticsearch (requires pip install apache-airflow[elasticsearch])
 Google Cloud Storage (requires pip install apache-airflow[google])

To configure Airflow for remote logging, set the following configurations:

 AIRFLOW__CORE__REMOTE_LOGGING=True

 AIRFLOW__CORE__REMOTE_LOG_CONN_ID=...

The REMOTE_LOG_CONN_ID points to the id of the connection holding the credentials
to your remote system. After this, each remote logging system can read configuration
specific to that system. For example, the path to which logs should be written in Goo-
gle Cloud Storage can be configured as AIRFLOW__CORE__REMOTE_BASE_LOG_FOLDER=
gs://my-bucket/path/to/logs. Refer to the Airflow documentation for the details
for each system.

12.4 Visualizing and monitoring Airflow metrics
At some point, you might want to know more about the performance of your Airflow
setup. In this section, we focus on numerical data about the status of the system, called
metrics, for example, the number of seconds delay between queueing a task and the actual
execution of the task. In monitoring literature, observability and full understanding of a



306 CHAPTER 12 Operating Airflow in production
system are achieved by a combination of three items: logs, metrics, and traces. Logs
(textual data) are covered in section 12.3, we cover metrics in this section, and tracing
is not in the scope of this book.

 Each Airflow setup has its own characteristics. Some installations are big; some are
small. Some have few DAGs and many tasks; some have many DAGs with only a few
tasks. It’s impractical to cover every possible situation in a book, so we demonstrate
the main ideas for monitoring Airflow, which should apply to any installation. The
end goal is to get started with collecting metrics about your setup and actively using
these to your advantage, such as with a dashboard (figure 12.15).

12.4.1 Collecting metrics from Airflow

Airflow is instrumented with StatsD (https://github.com/statsd/statsd). What does it
mean to be instrumented? Instrumented in the context of StatsD and Airflow means
certain events in Airflow result in information about the event being sent so it can
be collected, aggregated, and visualized or reported. For example, whenever a task
fails, an event named “ti_failures” is sent with a value of 1, meaning one task failure
occurred.

PUSHING VS PULLING

When comparing metrics systems, a common discussion is about pushing versus pull-
ing, or the push versus pull model. With the push model, metrics are sent, or pushed, to
a metrics collection system. With the pull model, metrics are exposed by the system
to monitor a certain endpoint, and a metrics collection system must fetch, or pull,
metrics from the system to monitor from the given endpoint. Pushing might result in
overflowing the metrics collection system when many systems start pushing many
metrics simultaneously to the metrics collection system.

 StatsD works with the push model. So, when starting with monitoring in Airflow,
we must set up a metrics collection system to which StatsD can push its metrics before
we can view the metrics.

Figure 12.15 An example visualization of the number of running tasks. Here, the parallelism had the default value 
of 32, to which we sometimes see the number of tasks spike.

https://github.com/statsd/statsd
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WHICH METRICS COLLECTION SYSTEM?
StatsD is one of the many available metrics collection systems. Others include Pro-
metheus and Graphite. A StatsD client is installed with Airflow. However, the server
that will collect the metrics is something you have to set up yourself. The StatsD cli-
ent communicates metrics to the server in a certain format, and many metrics col-
lection systems can interchange components by reading each other’s formats.

 For example, Prometheus’s server can be used for storing metrics from Airflow.
However, the metrics are sent in StatsD format, so there must be a translation for
Prometheus to understand the metrics. Also, Prometheus applies the pull model,
whereas StatsD applies the push model, so some intermediary must be installed to
which StatsD can push and Prometheus can pull, because Airflow does not expose
Prometheus’s metrics format, and thus Prometheus cannot pull metrics directly
from Airflow.

 Why the mixing and matching? Mainly because Prometheus is the tool of choice
for metrics collection to many developers and sysadmins. It is used at many companies
and prevails over StatsD on many points, such as its flexible data model, ease of
operation, and integration with virtually any other system. Therefore, we also prefer
Prometheus for dealing with metrics, and we demonstrate how to transform StatsD
metrics into Prometheus metrics, after which we can visualize the collected metrics
with Grafana. Grafana is a dashboarding tool for visualizing time series data for moni-
toring purposes.

 The steps from Airflow to Grafana will look like figure 12.16.

Let’s set up this system from left (Airflow) to right (Grafana) to create a dashboard
visualizing metrics from Airflow.

12.4.2 Configuring Airflow to send metrics

To have Airflow push its StatsD metrics, we must install Airflow with the statsd extra
dependency:

pip install apache-airflow[statsd]

Prometheus

StatsD

exporter

Push metrics Pull metrics

Prometheus Grafana

Query metrics

Airflow

Figure 12.16 Software and steps required for collecting and visualizing metrics from Airflow. Prometheus 
collects metrics, and Grafana visualizes metrics in dashboards. The Prometheus StatsD exporter translates 
StatsD metrics to Prometheus’s metrics format and exposes them for Prometheus to scrape.
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Next, configure the location to which Airflow should push its metrics. Currently there
is no system to collect the metrics, but we’ll configure that next in section 12.4.3.

 AIRFLOW__METRICS__STATSD_ON=True

 AIRFLOW__METRICS__STATSD_HOST=localhost (default value)
 AIRFLOW__METRICS__STATSD_PORT=9125

 AIRFLOW__METRICS__STATSD_PREFIX=airflow (default value)

From the Airflow side, we are now done. With this configuration, Airflow will push
events to port 9125 (over UDP).

12.4.3 Configuring Prometheus to collect metrics

Prometheus is software for systems monitoring. It features a wide array of features, but
at its core, it’s a time series database, which can be queried with a language named
PromQL. You cannot manually insert data into the database like an INSERT INTO ...
query with a relational database, but it works by pulling metrics into the database.
Every X seconds, it pulls the latest metrics from targets you configure. If Prometheus
gets too busy, it will automatically slow down on scraping the targets. However, this
requires a large number of metrics to process, so it’s not applicable right now.

 First, we must install the Prometheus StatsD exporter, which translates Airflow’s
StatsD metrics into Prometheus metrics. The easiest way to do this is with Docker.

docker run -d -p 9102:9102 -p 9125:9125/udp prom/statsd-exporter    Bc

B Prometheus metrics will be shown on http:/ /localhost:9102.

c Ensure this port number aligns with the port set by AIRFLOW__SCHEDULER__STATSD_PORT.

Without Docker, you can download and run the Prometheus StatsD exporter from
https://github.com/prometheus/statsd_exporter/releases.

 To get started we can run the StatsD exporter without configuration. Go to http:/ /
localhost:9102/metrics, and you should see the first Airflow metrics.

# HELP airflow_collect_dags Metric autogenerated by statsd_exporter.        B
# TYPE airflow_collect_dags gauge                                          c
airflow_collect_dags 1.019871                                              d
# HELP airflow_dag_processing_processes Metric autogenerated by statsd_exporter.
# TYPE airflow_dag_processing_processes counter
airflow_dag_processing_processes 35001
# HELP airflow_dag_processing_total_parse_time Metric autogenerated by 

statsd_exporter.
# TYPE airflow_dag_processing_total_parse_time gauge
airflow_dag_processing_total_parse_time 1.019871

➥ # HELP airflow_dagbag_import_errors Metric autogenerated by statsd_exporter.
# TYPE airflow_dagbag_import_errors gauge
airflow_dagbag_import_errors 0

Listing 12.13 Running a StatsD exporter with Docker

Listing 12.14 Sample Prometheus metrics, exposed using the StatsD exporter

https://github.com/prometheus/statsd_exporter/releases
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# HELP airflow_dagbag_size Metric autogenerated by statsd_exporter.
# TYPE airflow_dagbag_size gauge
airflow_dagbag_size 4

B Each metric comes with a default HELP message.

c Each metric has a type such as a gauge.

d The metric airflow_collect_dags currently has a value of 1.019871. Prometheus registers the scrape 
timestamp together with this value.

Now that we’ve made the metrics available on http:/ /localhost:9102, we can install and
configure Prometheus to scrape this endpoint. The easiest way to do this is once again
with Docker to run a Prometheus container. First, we must configure the StatsD exporter
as a target in Prometheus so that Prometheus knows where to get the metrics from.

scrape_configs:
  - job_name: 'airflow'              B
    static_configs:
    - targets: ['localhost:9102']    c

B Defines a Prometheus metrics scraping job

c The target URL of the scraping job

Save the content of listing 12.15 in a file, for example, /tmp/prometheus.yml. Then
start Prometheus and mount the file.

➥ docker run -d -p 9090:9090 -v /tmp/prometheus.yml:/etc/prometheus/
prometheus.yml prom/prometheus

Prometheus is now up and running on http:/ /localhost:9090. To verify, go to http:/ /
localhost:9090/targets and ensure the Airflow target is up (figure 12.17).

 An up-and-running target means metrics are being scraped by Prometheus and we
can start visualizing the metrics in Grafana.

Listing 12.15 Minimal Prometheus configuration

Listing 12.16 Running Prometheus with Docker to collect metrics

Filter for “unhealthy”
Prometheus targets.

Airflow target is “healthy.”

Figure 12.17 If all is 
configured correctly, the 
targets page in Prometheus 
should display the state of 
the Airflow target as UP. If 
the target cannot be reached, 
it is considered unhealthy.
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12.4.4 Creating dashboards with Grafana

After collecting metrics with Prometheus, the last piece of the puzzle is to visualize these
metrics in a dashboard. This should provide us a quick understanding of the function-
ing of the system. Grafana is the main tool for visualizing metrics. The easiest way to get
Grafana up and running is once again with Docker.

docker run -d -p 3000:3000 grafana/grafana

On http:/ /localhost:3000, this is the first view of Grafana you will see (figure 12.18).
 Click Add your first data source to add Prometheus as a data source. You will see a

list of available data sources. Click Prometheus to configure it (figure 12.19).
 On the next screen, provide the URL to Prometheus, which will be http:/ /local-

host:9090 (figure 12.20).
 With Prometheus configured as a data source in Grafana, it’s time to visualize the

first metric. Create a new dashboard and create a panel on the dashboard. Insert
the following metric in the query field: airflow_dag_processing_total_parse_time

Metrics data models
The data model of Prometheus identifies unique metrics by a name (for example,
task_duration) and a set of key-value labels (for example, dag_id=mydag and task
_id=first_task). This allows for great flexibility because you can select metrics
with any desired combination of labels, for example, task_duration{task_id="first
_task"}, for selecting only the task_duration of tasks named “first_task”. An alter-
native data model seen in many other metrics systems such as StatsD is hierarchy-
based, where labels are defined in dot separated metric names:

 task_duration.my_dag.first_task -> 123
 task_duration.my_other_dag.first_task -> 4

This is problematic when you want to select the metric task_duration of all tasks
named first_task, which is one of the reasons why Prometheus gained popularity.

Prometheus’s StatsD exporter applies generic rules to the supplied metrics to con-
vert these from the hierarchical model used by StatsD to the label model used by Pro-
metheus. Sometimes the default conversion rules work nicely, but sometimes they
don’t, and a StatsD metric results in a unique metric name in Prometheus. For exam-
ple, in the metric dag.<dag_id>.<task_id>.duration, dag_id and task_id are
not converted automatically to labels in Prometheus.

While technically still workable in Prometheus, this is not optimal. Therefore, the
StatsD exporter can be configured to convert specific dot-separated metrics into Pro-
metheus metrics. See Appendix C for such a configuration file. For more information,
read the StatsD exporter documentation.

Listing 12.17 Running Grafana with Docker to visualize metrics
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Figure 12.18 Grafana welcome screen

Figure 12.19 In the “Add data source” page, select Prometheus to configure it as a source to read metrics from.

Figure 12.20 Point Grafana to the Prometheus URL to read from it.
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(the number of seconds taken to process all DAGs). The visualization for this metric
will now appear (figure 12.21).

With Prometheus and Grafana in place, Airflow now pushes metrics to Prometheus’s
StatsD exporter, which are eventually plotted in Grafana. There are two things to note
in this setup. First, the metrics in Grafana are close to real time, but not millisecond
real time. Prometheus scrapes metrics in intervals (default: one minute, can be low-
ered), which causes a one-minute delay in the worst case. Also, Grafana periodically
queries Prometheus (query refresh is off by default), so in Grafana we too have a
slight delay. All in all, the delay between an event in Airflow and the graph in Grafana
is at the minute level at most, which is typically more than enough.

 Second, this setup uses Prometheus, which is a system great for monitoring and
alerting metrics. However, it is not a reporting system and does not store individual
events. If you plan to report on individual events in Airflow, you might consider
InfluxDB as a time series database, as it is more geared toward event logging.

12.4.5 What should you monitor?

Now that we have a monitoring setup, what should we monitor to understand the
functioning of Airflow? Starting in general terms, when monitoring anything there
are four basic signals to monitor.

LATENCY

How long it takes to service requests? Think of how long it takes for the webserver to
respond, or how long it takes the scheduler to move a task from queued to running

Added more DAGs Added more DAGs

Figure 12.21 Plot of the number of seconds to process all DAG files. We see two change points at which 
more DAG files were added. A large spike in this graph could indicate a problem with the Airflow scheduler 
or a DAG file.
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state. These metrics are expressed as a duration (e.g., “average milliseconds to return a
webserver request” or “average seconds to move tasks from queued to running state”).

TRAFFIC

How much demand is being asked of the system? Think of how many tasks your Air-
flow system has to process, or how many open pool slots Airflow has available. These
metrics are typically expressed as an average per duration (e.g., “number of tasks run-
ning per minute” or “open pool slots per second”).

ERRORS

Which errors were raised? In the context of Airflow, this can vary from “the number
of zombie tasks” (running tasks where the underlying process has disappeared),
“the number of non-HTTP 200 responses in the webserver” or “the number of timed
out tasks.”

SATURATION

What part of the capacity of your system is utilized? Measuring the machine metrics
that Airflow is running on can be a good indicator, for example “the current CPU
load” or “the number of currently running tasks.” To determine how full a system is,
you must know its upper boundary, which is sometimes not trivial to determine.

 Prometheus features a wide range of exporters, exposing all sorts of metrics about
a system. Thus, start by installing several Prometheus exporters to learn more about
all systems involved running Airflow:

 The node exporter—For monitoring the machines Airflow is running on (CPU,
memory, disk I/O, network traffic).

 The PostgreSQL/MySQL server exporter—For monitoring the database.
 One of the several (unofficial) Celery exporters—For monitoring Celery when using

the CeleryExecutor.
 The Blackbox exporter—For polling a given endpoint to check if a predefined

HTTP code is returned.
 If using Kubernetes, one of the many Kubernetes exporters—For monitoring Kuber-

netes resources. Refer to the Kubernetes monitoring documentation.

An overview of all available metrics is listed in the Airflow documentation; refer to
that for your Airflow version. Some good metrics for getting to know the status of Air-
flow are as follows:

 For knowing the correct functioning of your DAGs, see the following:
– dag_processing.import_errors—Gives the number of errors encountered

while processing DAGs. Anything above zero is not good.
– dag_processing.total_parse_time—Sudden large increases after adding/

changing DAGs is not good.
– ti_failures—The number of failed task instances.
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 For understanding Airflow’s performance, see the following:
– dag_processing.last_duration.[filename]—Time taken to process a DAG

file. High values indicate something bad.
– dag_processing.last_run.seconds_ago.[filename]—The number of sec-

onds since the scheduler last checked on the file containing DAGs. The higher
the value, the worse it is; it means the scheduler is too busy. Values should be
in the order of a few seconds at most.

– dagrun.[dag_id].first_task_scheduling_delay—The delay between the
scheduled execution date and actual execution date of a DAG run.

– executor.open_slots—The number of free executor slots.
– executor.queued_tasks—The number of tasks with queued state.
– executor.running_tasks—The number of tasks with running state.

12.5 How to get notified of a failing task
When running any business-critical pipelines, we want to be notified of the incident
the moment something goes wrong. Think of a failing task, or a task not finishing
within an expected timeframe and delaying other processes. Let’s look at various
options Airflow provides for both detecting conditions that warrant alerts and sending
the actual alerts.

12.5.1 Alerting within DAGs and operators

Within Airflow, there are several levels to configure alerts. First, within the definition
of DAGs and operators, we can configure so-called callbacks (i.e., functions to call on
certain events).

def send_error():                    B
   print("ERROR!")

dag = DAG(
   dag_id="chapter12",
   on_failure_callback=send_error,   B
   ...
)

B send_error is executed when a DAG run fails.

The on_failure_callback is an argument on the DAG, which is executed whenever a
DAG run fails. Think of sending a Slack message to an errors channel, a notification
to an incident reporting system such as PagerDuty, or a plain old email. The function
to execute is something you will need to implement yourself, though.

 On a task level, there are more options to configure. You likely do not want to
configure every task individually, so we can propagate configuration with the DAG’s
default_args down to all tasks.

Listing 12.18 Defining a failure callback function to execute on DAG failure
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def send_error():                                      B
   print("ERROR!")

dag = DAG(
   dag_id="chapter12_task_failure_callback",
   default_args={"on_failure_callback": send_error},   B
   on_failure_callback=send_error,                     c
   ...
)

failing_task = BashOperator(
   task_id="failing_task",
   bash_command="exit 1",                              d
   dag=dag,
)

B default_args propagates arguments down to tasks.

c Note two notifications will be sent here: one for task failure and one for DAG failure.

d This task will not return exit code 0 and therefore fail.

The parent class of all operators (BaseOperator) holds an argument on_failure_
callback; therefore, all operators hold this argument. Setting on_failure_callback
in the default_args will set the configured arguments on all tasks in the DAG, so all
tasks will call send_error whenever an error occurs in listing 12.19. It is also possible
to set on_success_callback (in case of success) and on_retry_callback (in case a
task is retried).

 While you could send an email yourself inside the function called by on_failure_
callback, Airflow provides a convenience argument, email_on_failure, which sends
an email without having to configure the message. However, you must configure
SMTP in the Airflow configuration; otherwise, no emails can be sent. This configura-
tion is specific to Gmail.

AIRFLOW__SMTP__SMTP_HOST=smtp.gmail.com
AIRFLOW__SMTP__SMTP_MAIL_FROM=myname@gmail.com
AIRFLOW__SMTP__SMTP_PASSWORD=abcdefghijklmnop
AIRFLOW__SMTP__SMTP_PORT=587
AIRFLOW__SMTP__SMTP_SSL=False
AIRFLOW__SMTP__SMTP_STARTTLS=True
AIRFLOW__SMTP__SMTP_USER=myname@gmail.com

In fact, Airflow is configured to send emails by default, meaning there is an argument
email_on_failure on the BaseOperator which holds a default value of True. How-
ever, without the proper SMTP configuration, it will not email. Plus, a destination
email address must also be set on the email argument of an operator.

Listing 12.19 Defining a failure callback function to execute on task failure

Listing 12.20 Sample SMTP configuration for sending automated emails
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dag = DAG(
   dag_id="task_failure_email",
   default_args={"email": "bob@work.com"},
   ...
)

With the correct SMTP configuration and a destination email address configured, Air-
flow will now send an email notifying you of a failed task (figure 12.22).

The task logs will also tell us an email was sent:

INFO - Sent an alert email to ['bob@work.com']

12.5.2 Defining service-level agreements

Airflow also knows the concept of SLAs (service-level agreements). The general defini-
tion of an SLA is a certain standard to meet about a service or product. For example,
your television provider may guarantee 99.999% uptime of television, meaning it’s
acceptable to have 5.26 minutes of downtime per year. In Airflow, we can configure
SLAs on a task level to configure the latest acceptable date and time of a task’s comple-
tion. If the SLA is not met, an email is sent or a self-defined callback function is called.
To configure a date and time deadline to complete a task with an SLA, see the following.

dag = DAG(
    dag_id="chapter12_task_sla",
    default_args={"email": "bob@work.com"},
    schedule_interval=datetime.timedelta(minutes=30),     B
    start_date=datetime.datetime(2020, 1, 1, 12),
    end_date=datetime.datetime(2020, 1, 1, 15),
)

Listing 12.21 Configure email address to send alerts to

Listing 12.22 Configuring an SLA

Try 1 out of 1
Exception:
Bash command failed
Log: Link
Host: bas.local
Log file: /…/logs/chapter12_task_failure_email/failing_task/2020-04-01T19:29:50.900788+00:00.log
Mark success: Link

The error encountered in the task

Figure 12.22 Example email alert notification
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sleeptask = BashOperator(
    task_id="sleeptask",
    bash_command="sleep 60",                             c
    sla=datetime.timedelta(minutes=2),                   d
    dag=dag,
)

B The DAG triggers every 30 minutes, say 12:30.

c This task sleeps for 60 seconds.

d The SLA defines the maximum delta between scheduled DAG start and task completion (e.g., 12:32).

SLAs function somewhat counter-intuitively. While you might expect them to function
as maximum runtimes for given tasks, they function as the maximum time difference
between the scheduled start of the DAG run and the completion of the task.

 So, if your DAG starts at 12:30 and you want your task to finish no later than 14:30,
you would configure a timedelta of two hours, even if you expect the task to run for just
five minutes. An example argument to make for this seemingly obscure behavior is
when you want a report to be sent no later than a certain time, say 14:30. If the data pro-
cessing for the report takes longer than expected, the send email with report task would
complete after the 14:30 deadline and an SLA would be triggered. The SLA condition
itself is triggered around the time of the deadline instead of waiting for the completion
of the task. If the task does not complete before the set deadline, an email is sent.

Here's a list of tasks that missed their SLAs:
sleeptask on 2020-01-01T12:30:00+00:00

Blocking tasks:

      =,             .=
     =.|    ,---.    |.=
     =.| "-(:::::)-" |.=
      \\__/`-.|.-'\__//
       `-| .::| .::|-'      Pillendreher
        _|`-._|_.-'|_       (Scarabaeus sacer)
      /.-|    | .::|-.\
     // ,| .::|::::|. \\
    || //\::::|::' /\\ ||
    /'\|| `.__|__.' ||/'\
   ^    \\         //    ^
        /'\       /'\
       ^             ^

Yes, this ASCII art beetle is contained in the email! While the task in listing 12.22
serves as an example, setting an SLA can be desirable to detect a drift in your job. For
example, if the input data of your job suddenly grows five times in size, causing the job
to take considerably longer, you might consider re-evaluating certain parameters of

Listing 12.23 Sample missed SLA email report
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your job. The drift in data size and resulting job duration can be detected with the
help of an SLA.

 The SLA email only notifies you of a missed SLA, so you might consider something
other than email or your own format. This can be achieved with the sla_miss_
callback argument. Confusingly, this is an argument on the DAG class, not on the
BaseOperator class.

 In case you’re looking for a maximum runtime of a task, configure the execution
_timeout argument on your operator. If the duration of the task exceeds the config-
ured execution_timeout, it fails.

12.6 Scalability and performance
In sections 12.1 and 12.2, we covered the executor types Airflow offers:

 SequentialExecutor (default)
 LocalExecutor

 CeleryExecutor

 KubernetesExecutor

Let’s take a closer look at how to configure Airflow and these executor types for ade-
quate scalability and performance. By performance, we refer to the ability to respond
quickly to events, without delays and as little waiting as possible. By scalability, we refer
to the ability to handle a large (increase in) load without impact on the service.

 We’d like to stress the importance of monitoring, as described in section 12.4.
Without measuring and knowing the status of your system, optimizing anything is a
guess in the dark. By measuring what you’re doing, you know if a change has a positive
effect on your system.

12.6.1 Controlling the maximum number of running tasks

Table 12.3 lists Airflow configurations that can control the number of tasks you may
run in parallel. Note that the configuration items are somewhat oddly named, so read
their description carefully.

Table 12.3 Overview of Airflow configurations related to running number of tasks

Configuration item Default value Description

AIRFLOW__CORE__ 
DAG_CONCURRENCY

16 The maximum number of tasks to be in queued or 
running state, per DAG

AIRFLOW__CORE__ 
MAX_ACTIVE_RUNS_PER_DAG

16 The maximum number of parallel DAG runs, per 
DAG

AIRFLOW__CORE__ 
PARALLELISM

32 The maximum number of task instances to run in 
parallel, globally

AIRFLOW__CELERY__ 
WORKER_CONCURRENCY

16 The maximum number of tasks per Celery worker 
(only for Celery)
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If you’re running a DAG with a large number of tasks, the default values limit your
DAG to 16 parallel tasks due to dag_concurrency set to 16, even though parallelism
is set to 32. A second DAG with a large number of tasks will also be limited at 16 paral-
lel tasks, but together they will reach the global limit, 32, set by parallelism.

 There is one more limiting factor to the global number of parallel tasks: by
default, all tasks run in a pool named “default_pool,” with 128 slots by default. dag_
concurrency and parallelism will need to be increased before reaching the default_
pool limit, though.

 Specifically for the CeleryExecutor, the setting AIRFLOW__CELERY__WORKER_
CONCURRENCY controls the number of processes per worker that Celery will handle. In
our experience, Airflow can be quite resource consuming; therefore, account for at
least 200 MB of RAM per process as a baseline for just having a worker with the config-
ured concurrency number up and running. Also, estimate a worst-case scenario where
your most resource-consuming tasks are running in parallel to estimate how many
parallel tasks your Celery worker can handle. For specific DAGs, the default value
max_active_runs_per_dag can be overridden with the concurrency argument on the
DAG class.

 On an individual task level, we can set the pool argument to run a specific task in
a pool, which limits the number of tasks it can run. Pools can be applied for specific
groups of tasks. For example, while it might be fine for your Airflow system to run
20 tasks querying a database and waiting for the result to return, it might be trouble-
some when 5 CPU-intensive tasks are started. To limit such high-resource tasks, you
could assign these a dedicated high_resource pool with a low maximum number
of tasks.

 Also, on a task level, we can set the task_concurrency argument, which provides
an additional limit of the specific task over multiple runs of the task. This can, again,
be useful in case of a resource-intensive task, which can claim all resources of the
machine when running with many instances in parallel (figure 12.23).

12.6.2 System performance configurations

When running any considerable number of tasks, you might notice the load on the
metastore rising. Airflow relies heavily on the database for storing all state. Every
new Airflow version generally includes several performance-related improvements,

task_concurrency = 2

No task_concurrency

Figure 12.23 task_concurrency 
can limit the number of parallel 
executions of a task.
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so it helps to update regularly. We can also tune the number of queries performed
on the database.

 Raising the value of AIRFLOW__SCHEDULER__SCHEDULER_HEARTBEAT_SEC (default: 5)
can lower the number of check-ins Airflow performs on the scheduler job, resulting in
fewer database queries. 60 seconds is a reasonable value. The Airflow UI will display a
warning 30 seconds after the last scheduler heartbeat was received, but this number is
configurable with AIRFLOW__SCHEDULER__SCHEDULER_HEALTH_CHECK_THRESHOLD.

 The value of AIRFLOW__SCHEDULER__PARSING_PROCESSES (default: 2; fixed to 1 if
using SQLite) controls how many processes the task scheduling part of the scheduler
spins simultaneously to process a DAG’s state; each process takes care of checking if
new DAG runs should be created, new task instances should be scheduled or queued,
and so on. The higher this number, the more DAGs will be checked simultaneously
and the lower latency between tasks. Raising this value comes at the cost of more CPU
usage, so increase and measure changes gently.

 Lastly, from a user perspective, it might be interesting to configure AIRFLOW__
SCHEDULER__DAG_DIR_LIST_INTERVAL (default: 300 seconds). This setting determines
how often the scheduler scans the DAG directory for new, previously unseen files. If
you happen to add new DAG files frequently, you will find yourself waiting for it to
appear in the Airflow UI. Lowering this value will make Airflow scan the DAGs direc-
tory for new files more often but at the cost of more CPU usage, so also lower this
value carefully.

12.6.3 Running multiple schedulers

A highly anticipated feature of Airflow 2 is the possibility to horizontally scale the
scheduler (this feature does not exist in Airflow 1). Because the scheduler is the heart
and brains of Airflow, being able to run multiple instances of the scheduler, both for
scalability and redundancy, has long been a desire in the Airflow community.

 Distributed systems are complex, and most systems require the addition of a con-
sensus algorithm to determine which process is the leader. In Airflow, the aim was to
make system operations as simple as possible, and leadership was implemented by
row-level locking (SELECT ... FOR UPDATE) on the database level. As a result, multiple
schedulers can run independently of each other, without requiring any additional
tools for consensus. The only implication is that the database must support certain
locking concepts. At the time of writing, the following databases and versions are
tested and supported:

 PostgreSQL 9.6+
 MySQL 8+

To scale the scheduler, simply start another scheduler process:

airflow scheduler

Each scheduler instance will figure out which tasks (represented by rows in the data-
base) are available for processing, based on a first-come, first-serve principle, and no
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additional configuration is required. Once running multiple instances, if one of the
machines on which one of the schedulers is running fails, it will no longer take down
your Airflow, since the other scheduler instances will remain running.

Summary
 The SequentialExecutor and LocalExecutor are limited to one single machine

but are easy to set up.
 The CeleryExecutor and KubernetesExecutor take more work to set up but

allow scaling tasks over multiple machines.
 Prometheus and Grafana can be used for storing and visualizing metrics from

Airflow.
 Failure callbacks and SLAs can send emails or custom notifications in case of

certain events.
 Deploying Airflow on multiple machines is not trivial because Airflow tasks and

scheduler(s) all require access to the DAGs directory.



Securing Airflow
Given the nature of Airflow, a spider in the web orchestrating a series of tasks, it
must connect with many systems and is therefore a desirable target to gain access
to. To avoid unwanted access, in this chapter we discuss the security of Airflow. We
cover various security-related use cases and elaborate on these with practical
examples. Security is often seen as a topic of black magic, where the understand-
ing of a plethora of technologies, abbreviations, and intricate details is deemed
necessary. While this is not untrue, we wrote this chapter for readers with little

This chapter covers
 Examining and configuring the RBAC interface 

for controlling access

 Granting access to a central set of users by 
connecting with an LDAP service

 Configuring a Fernet key to encrypt secrets in 
the database

 Securing traffic between your browser and the 
webserver

 Fetching secrets from a central secret 
management system
322
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security knowledge in mind, and hence highlight various key points to avoid
unwanted actions on your Airflow installation, which should serve as a starting point.

13.1 Securing the Airflow web interface
Start the Airflow webserver by running airflow webserver and go to http:/ /local-
host:8080, where you will see a login screen (figure 13.1).

Airflow interfaces
Airflow 1.x comes with two interfaces:

 The original interface, developed on top of Flask-Admin
 The RBAC interface, developed on top of Flask-AppBuilder (FAB)

Airflow initially shipped with the original interface and first introduced the role-based
access control (RBAC) interface in Airflow 1.10.0. The RBAC interface provides a
mechanism that restricts access by defining roles with corresponding permissions
and assigning users to these roles. The original interface is, by default, open to the
world. The RBAC interface comes with more security features.

While writing this book, the original interface became deprecated and was removed
in Airflow 2.0. The RBAC interface is now the one and only interface, so this chapter
covers only the RBAC interface. To enable the RBAC interface running Airflow 1.x, set
AIRFLOW__WEBSERVER__RBAC=True.

Figure 13.1 Home screen of the RBAC interface. Password authentication is enabled by default. No default 
user exists.



324 CHAPTER 13 Securing Airflow
This is the first view of the RBAC interface. At this point, the webserver is asking for a
username and password, but there are no users yet.

13.1.1 Adding users to the RBAC interface

We’ll create an account for a user named Bob Smith.

airflow users create \
--role Admin \                  B
--username bobsmith \
--password topsecret \          c
--email bobsmith@company.com \
--firstname Bob \
--lastname Smith

B Admin role grants all permissions to this user.

c Leave out the --password flag to prompt for a password.

This creates a user with a role named “Admin.” The RBAC model consists of users,
which are assigned to a (single) role with permissions (certain operations) assigned to
those roles, which apply to certain components of the webserver interface (figure 13.2).

In listing 13.1, the user “bobsmith” was assigned the role “Admin.” Certain operations
(e.g., edit) on certain components (such as menus and specific pages, e.g., “Connec-
tions”) can then be assigned to a role. For example, having the “can edit on Connec-
tionModelView” permission allows us to edit connections.

 There are five default roles. The admin role grants all permissions, including
access to the security view. However, think wisely about which role to grant a user in a
production system.

 At this point, we can sign in with username “bobsmith” and password “topsecret.”
The main screen will look just like the original interface, but the top bar has a few new
items, shown in figure 13.3.

Listing 13.1 Registering a user for the RBAC interface

Role UI componentPermission

Figure 13.2 RBAC permissions model

A security tab
is visible to the
admin role.

Users can view
their profile.

Figure 13.3 Top bar displaying menu items depending on the role and corresponding permissions 
your user has been granted
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The security view is the most interesting feature of the RBAC interface. Opening the
menu displays several options (figure 13.4).

Click List Roles to inspect all default roles (figure 13.5).

In the list roles view, we see the five roles available to use by default. The default per-
missions for these roles are given in table 13.1.

 The just created “bobsmith” user was assigned the admin role, granting him all
permissions (several permissions were omitted from figure 13.5 for readability). You
might note the public role has no permissions. As the role name implies, all permis-
sions attached to it are public (i.e., you do not have to be logged in). Say you want to
allow people without an Airflow account to view the Docs menu (figure 13.6).

Figure 13.4 Options under 
the Security tab

Figure 13.5 Default roles and corresponding permissions in Airflow. Several permissions are omitted for 
readability.
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To enable access to these components, we must edit the public role and add the cor-
rect permissions to it (figure 13.7).

 The permissions are quite fine-grained; access to every menu and menu item is
controlled by a permission. For example, to make the Docs menu visible, we must
add the “menu access on Docs” permission. And to make the Documentation menu
item within the Docs menu visible, we must add the “menu access on Documentation”
permission. Finding the correct permissions can be cumbersome at times. It is easiest

Table 13.1 Airflow RBAC interface default role permissions

Role name Intended users/usage Default permissions

Admin Only necessary when managing security permissions All permissions

Public Unauthenticated users No permissions

Viewer Read-only view of Airflow Read access to DAGs

User Useful if you want strict separation in your team 
between developers who can and cannot edit secrets 
(connections, variables, etc.). This role only grants 
permissions to create DAGs, not secrets.

Same as viewer but with edit per-
missions (clear, trigger, pause, 
etc.) on DAGs

Op All permissions required for developing Airflow DAGs Same as user but with additional 
permissions to view and edit con-
nections, pools, variables, 
XComs, and configuration

Docs menu visible without
being logged in

Figure 13.6 Granting permissions to the public role makes components of the UI available to 
everybody.
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to inspect the other roles to learn which permissions are available. Permissions are
reflected by a string, which in most cases should be self-explanatory about the access
it provides.

13.1.2 Configuring the RBAC interface

As noted, the RBAC interface is developed on top of the Flask-AppBuilder (FAB)
framework. When you first run the RBAC webserver, you will find a file named web-
server_config.py in $AIRFLOW_HOME. FAB can be configured with a file named config.py,
but for clarity this same file was named webserver_config.py in Airflow. So, this file con-
tains configuration to FAB, the underlying framework of Airflow’s RBAC interface.

 You can provide your own configuration to the RBAC interface by placing a web-
server_config.py file in $AIRFLOW_HOME. If Airflow cannot find the file, it will generate
a default one for you. For all details and available options in this file, refer to the FAB
documentation. It holds all configurations for the RBAC interface (not just those that
are security-related). For example, to configure a theme for your Airflow RBAC inter-
face, set APP_THEME = "sandstone.css" in webserver_config.py. View the FAB docu-
mentation for all available themes (figure 13.8).

13.2 Encrypting data at rest
The RBAC interface requires users to exist in the database, with a username and pass-
word. This prevents random strangers “just looking around” from having access to Air-
flow, but is far from perfect. Before diving into encryption, let’s look back at Airflow’s
basic architecture from figure 12.1.

2. Edit public role 3. Add permissions

1. List roles

Figure 13.7 Adding permissions to the public role
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Airflow consists of several components. Every piece of software is a potential threat
since it serves as a path through which uninvited guests can gain access to your systems
(figure 13.9). Lowering the number of exposed entrance points (i.e., narrowing the
attack surface) is therefore always a good idea. If you must expose a service for practical
reasons, such as the Airflow webserver, always ensure it’s not accessible publicly.1

13.2.1 Creating a Fernet key

You also want your data to be secure after an intruder has managed to gain access.
Before creating any users and passwords, ensure encryption is enabled on your Air-
flow. Without encryption, passwords (and other secrets such as connections) are
stored unencrypted in the database. Anybody with access to the database can then also
read the passwords. When encrypted, they are stored as a sequence of seemingly ran-
dom characters, which is essentially useless. Airflow can encrypt and decrypt secrets
using a so-called Fernet key (figure 13.10).

1 In any cloud, it’s easy to expose a service to the internet. Simple measures you can take to avoid this include
not using an external IP address and/or blocking all traffic and allowlisting your IP range only.

Figure 13.8 RBAC interface configured with the sandstone theme

Webserver Scheduler DAGs

Database

Figure 13.9 The webserver and database expose a service and 
can offer a potential access path for uninvited guests to Airflow. 
Protecting these will lower the attack surface.
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The Fernet key is a secret string used for encryption and decryption. If this key is
somehow lost, encrypted messages can no longer be decrypted. To provide Airflow
with a Fernet key, we can generate one.

from cryptography.fernet import Fernet

fernet_key = Fernet.generate_key()
print(fernet_key.decode())
# YlCImzjge_TeZc7jPJ7Jz2pgOtb4yTssA1pVyqIADWg=

Then we can provide it to Airflow by setting the AIRFLOW__CORE__FERNET_KEY config-
uration item:

AIRFLOW__CORE__FERNET_KEY=YlCImzjge_TeZc7jPJ7Jz2pgOtb4yTssA1pVyqIADWg=

Airflow will now use the given key to encrypt and decrypt secrets such as connections,
variables, and user passwords. Now we can create our first user and safely store their
password. Keep this key safe and secret, since anybody with access to it will be able to
decrypt secrets; plus, you will not be able to decrypt secrets if you ever lose it!

 To avoid storing the Fernet key in plain text in an environment variable, you can
configure Airflow to read the value from a Bash command (e.g., cat /path/to/secret)
instead. The command itself can be set in an environment variable: AIRFLOW__CORE
__FERNET_KEY_CMD=cat /path/to/secret. The file holding the secret value can then
be made read-only to only the Airflow user.

 

Listing 13.2 Creating a Fernet key

Password

J1#Qcw5iZ

f64Qw%3g

OJRIHuTN

6a7fEmw2

Password

Encrypt Decrypt

Fernet key

Airflow

database

Figure 13.10 The Fernet key encrypts data before storing it in the database and decrypts data 
before reading it from the database. Without access to the Fernet key, passwords are useless 
to an intruder. One key for both encryption and decryption is called symmetric encryption.
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13.3 Connecting with an LDAP service
As demonstrated in section 13.1, we can create and store users in Airflow itself. In most
companies, however, there are typically existing systems in place for user management.
Wouldn’t it be much more convenient to connect Airflow to such a user management
system instead of managing your own set of users with yet another password?

 A popular method for user management is via a service supporting the LDAP protocol
(lightweight directory access protocol), such as Azure AD or OpenLDAP, which are
called directory services.

NOTE Throughout this section, we will use the term LDAP service to indicate a
directory service supporting queries via the LDAP protocol. A directory ser-
vice is a storage system, typically used for storing information about resources
such as users and services. LDAP is the protocol via which most of these direc-
tory services can be queried.

When Airflow is connected to an LDAP service, user information is fetched from the
LDAP service in the background upon logging in (figure 13.11).

We first give a small introduction into LDAP and its corresponding technologies
(section 13.3.1) and next demonstrate how to connect Airflow to an LDAP service (sec-
tion 13.3.2).

13.3.1 Understanding LDAP

The relationship between SQL and a relational database (e.g., PostgreSQL or MySQL)
is similar to the relationship between LDAP and a directory service (e.g., Azure AD or
OpenLDAP). Just like a relational database stores data and SQL is used to query the
data, a directory service also stores data (albeit in a different structure), and LDAP is
used to query the directory service.

 However, relational databases and directory services are built for different pur-
poses: relational databases are designed for transactional use of any data you desire
to store, while directory services are designed for high volumes of read operations,
where the data follows a phonebook-like structure (e.g., employees in a company or
devices within a building). For example, a relational database is more suitable for
supporting a payment system since payments are made often and payment analysis

Airflow

Application 1

Application 2

LDAP

Directory service

Figure 13.11 Users are stored in a directory 
service such as Azure AD or OpenLDAP, which 
can be accessed with LDAP. This way, a user 
is created only once and connects to all 
applications.
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involves different types of aggregation. A directory service, on the other hand, is
more suitable for storing user accounts since these are requested often but usually
do not change.

 In a directory service, entities (e.g., users, printers, or network shares) are stored
in a hierarchical structure named a directory information tree (DIT). Each entity is called
an entry, where information is stored as key-value pairs named attributes and values.
Also, each entry is uniquely identified by a distinguished name (DN). Visually, data in a
directory service is represented like figure 13.12.

You might wonder why we demonstrate this hierarchy and what the abbreviations dc,
ou, and cn stand for. While a directory service is a database in which you can theoreti-
cally store any data, there are set LDAP requirements for how to store and structure
data.2 One of the conventions is to start the tree with a so-called domain component
(dc), which we see in figure 13.12 represented as dc=com and dc=apacheairflow. As
the name suggests, these are components of the domain, so your company domain is
split by the dots, for example apacheairflow and com. 

 Next we have ou=people and cn=bob. ou is short for organizational unit, and cn is
short for common name. While nothing is telling you how to structure your DIT, these
are commonly used components.

 The LDAP standard defines various ObjectClasses, which define a certain entity
together with certain keys. For example, the ObjectClass person defines a human being
with keys such as sn (surname, required) and initials (optional). Because the LDAP

2 The standards are defined in RFC 4510-4519.

Given name Bob

sn Smith

mail bob@smith.com

root

dc = com

dc = apacheairflow

ou = people ou = servers

cn = bob cn = carolcn = alice

Entry for “Bob Smith”

DN = cn=bob,ou=people,dc=apacheairflow,dc=com

Directory information tree (DIT)

Figure 13.12 Information in a directory service is stored in a hierarchical structure named DIT. Entries 
represent an entity such as a person and hold key-value attributes about the entity.
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standard defined such ObjectClasses, applications reading the LDAP service are cer-
tain to always find the surname of a person in the field named sn, and thus any appli-
cation that can query an LDAP service knows where to find the desired information.

 Now that we know the main components of a directory service and how information
is stored inside, what exactly is LDAP and how does it connect with a directory service?
Just like SQL provides certain statements such as SELECT, INSERT, UPDATE, and
DELETE, the LDAP provides a set of operations on a directory service (table 13.2).

For only fetching user information, we will require the operations bind (to authenti-
cate as a user with permissions to read users in the directory service), search (to
search for a given DN), and unbind to close the connection.

 A search query contains a set of filters, typically a DN selecting part of the DIT, plus
several conditions the entries must meet, such as uid=bsmith. This is what any applica-
tion querying an LDAP service does under the hood.3

ldapsearch -b "dc=apacheairflow,dc=com"                  B
ldapsearch -b "dc=apacheairflow,dc=com" "(uid=bsmith)"   c

B This will list all entries under dc=apacheairflow,dc=com.

c This will list all entries under dc=apacheairflow,dc=com where uid=bsmith.

Table 13.2 Overview of LDAP operations

LDAP operation Description

Abandon Abort a previously requested operation.

Add Create a new entry.

Bind Authenticate as a given user. Technically, the first connection to a directory service is 
anonymous. The bind operation then changes the identity to a given user, which 
allows you to perform certain operations on the directory service.

Compare Check if a given entry contains a given attribute value.

Delete Remove an entry.

Extended Request an operation not defined by the LDAP standard but that is available on the 
directory service (depends on the type of directory service you’re connecting to).

Modify DN Change the DN of an entry.

Modify Edit attributes of an entry.

Search Search and return entries that match given criteria.

Unbind Close the connection to a directory service.

Listing 13.3 Example LDAP searches

3 ldapsearch requires installation of the ldap-utils package.
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Applications communicating with an LDAP service will perform such searches to fetch
and validate user information for authentication to the application.

13.3.2 Fetching users from an LDAP service

LDAP authentication is supported via FAB; therefore, we must configure it in web-
server_config.py (in $AIRFLOW_HOME). When configured correctly and upon logging
in, FAB will search the LDAP service for the given username and password.

from flask_appbuilder.security.manager import AUTH_LDAP

AUTH_TYPE = AUTH_LDAP
AUTH_USER_REGISTRATION = True
AUTH_USER_REGISTRATION_ROLE = "User"                        B

AUTH_LDAP_SERVER = "ldap://openldap:389"
AUTH_LDAP_USE_TLS = False
AUTH_LDAP_SEARCH = "dc=apacheairflow,dc=com"                c
AUTH_LDAP_BIND_USER = "cn=admin,dc=apacheairflow,dc=com"    d
AUTH_LDAP_BIND_PASSWORD = "admin"                           d
AUTH_LDAP_UID_FIELD = "uid"                                 e

B The default role assigned to any user logging in

c Section of the DIT to search for users

d User on the LDAP service to connect (bind) with and search

e Name of the field in LDAP service to search for username

If found, FAB will allow the found user access to the role configured by AUTH_USER
_REGISTRATION_ROLE. At the time of writing, no feature exists to map LDAP groups to
Airflow RBAC roles.4

 With LDAP set up, you no longer have to manually create and maintain users in
Airflow. All users are stored in the LDAP service, which is the only system in which
user information will be stored, and all applications (including Airflow) will be able to
verify user credentials in the LDAP service without having to maintain their own.

13.4 Encrypting traffic to the webserver
An intruder can obtain data at various places in your system. One of these places is
during the transfer of data between two systems, also known as data in transit. A man-
in-the-middle attack (MITM) is an attack where two systems or people communicate
with each other, while a third person intercepts the communication, reading the mes-
sage (potentially containing passwords and such), and forwarding it so that nobody
notices the interception (figure 13.13).

Listing 13.4 Configuring LDAP synchronization in webserver_config.py

4 It is possible to manually edit the table ab_user_role in the metastore to assign a different role (after the first
login).
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Having secrets intercepted by an unknown person is undesirable, so how do we secure
Airflow such that data in transit is safe? The details about how a man-in-the-middle attack
is performed are not in the scope of this book, but we will discuss how to mitigate the
impact of a man-in-the-middle attack.

13.4.1 Understanding HTTPS

We can work with the Airflow webserver via a browser, which communicates with Air-
flow through the HTTP protocol (figure 13.14). To communicate with the Airflow web-
server securely, we must do so over HTTPS (HTTP Secure). Before securing traffic to
the webserver, let’s understand the difference between HTTP and HTTPS. If you
already know this, you can skip to section 13.4.2.

What is different with HTTPS? To understand how HTTPS works and what the private
key and certificate are for, let’s first establish how HTTP works.

 When browsing to an HTTP website, no checks are performed on either side
(user’s browser or webserver) to verify the identity of the request. All modern brows-
ers display a warning of the insecure connection (figure 13.15).

Webserver

Figure 13.13 A man-in-the-middle attack 
intercepts traffic between a user and the Airflow 
webserver. Traffic is read and forwarded so that 
the user does not notice the interception, while 
the attacker reads all traffic.

(1) Hello http://webserver!

(2) web page

Figure 13.14 With HTTP, the validity 
of the caller is not checked, and data 
is transmitted in plain text.

Figure 13.15 Navigating to http://example.com 
in Google Chrome will display “Not Secure” 
because HTTP traffic is unsecured.

http://example.com
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Now that we know HTTP traffic is not secure, how does HTTPS traffic help us? First,
from a user’s perspective, modern browsers will display a lock or something green to
indicate a valid certificate (figure 13.16).

When your browser and a webserver communicate over HTTPS, the initial handshake
involves more steps to verify the validity of the remote side (figure 13.17).

The encryption used in HTTPS is TLS (transport layer security), which uses both
asymmetric encryption and symmetric encryption. Whereas symmetric encryption applies a
single key for both encryption and decryption, asymmetric encryption consists of two
keys: public and private. The magic of asymmetric encryption is that data encrypted
with the public key can only be decrypted with the private key (which only the web-
server knows), and data encrypted with the private key can only be decrypted with the
public key (figure 13.18).

 At the start of an HTTPS session, the webserver first returns the certificate, which is a
file with a publicly shareable key. The browser returns a randomly generated session key
to the webserver, encrypted with the public key. Only the private key can decrypt this

Figure 13.16 Navigating to an HTTPS 
website in Google Chrome displays a lock 
(if the certificate is valid) to indicate a 
secure connection.

(1) Hello https://webserver!

(2) Return certificate (with )public key

(4) Let’s agree on this random session key

encrypted with the public key

(5) Decrypt session key with ;private key

return message encrypted with session key

(3) Verify certificate

Figure 13.17 At the start of an HTTPS 
session, the browser and webserver agree 
on a mutual session key to encrypt and 
decrypt traffic between the two.
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message, which only the webserver should have access to. For this reason, it’s important
to never share the private key; anybody with this key is able to decrypt the traffic.

13.4.2 Configuring a certificate for HTTPS

Airflow consists of various components, and you want to avoid attacks on and between
all of them, regardless if they’re being used externally (e.g., exposed on a URL such as
the webserver), or internally (e.g., traffic between the scheduler and database). Detect-
ing and avoiding a man-in-the-middle attack can be difficult. However, it is straightfor-
ward to render the data useless to an attacker by encrypting the traffic.

 By default, we communicate with Airflow over HTTP. When browsing to Airflow,
we can tell if the traffic is encrypted by the URL: http(s):/ /localhost:8080. All HTTP
traffic is transferred in plain text; a man-in-the-middle reading the traffic could inter-
cept and read passwords as they’re transmitted. HTTPS traffic means data is encrypted
on one end and decrypted on the other. A man-in-the-middle reading HTTPS traffic
will be unable to interpret the data because it’s encrypted.

 Let’s view how to secure the one public endpoint in Airflow: the webserver. You
will need two items:

 A private key (keep this secret)
 A certificate (safe to share)

We will elaborate on what these items entail later. For now, it’s important to know the
private key and certificate are both files provided by a certificate authority or a self-signed

Password Password

Encrypt Decrypt

(Single) Encryption key

J1#Qcw5iZf64

Qw%3gOJRIH

uTN6a7fEmw2

Symmetric encryption

Encrypt Decrypt

Public key Private key

J1#Qcw5iZf64

Qw%3gOJRIH

uTN6a7fEmw2

Asymmetric encryption

Password Password

Figure 13.18 Using symmetric encryption, a loss of the encryption key allows others to both 
encrypt and decrypt messages. With asymmetric encryption, a public key is shared with others, 
but a loss of the public key does not compromise security.
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certificate (a certificate you generate yourself that is not signed by an official certificate
authority).

openssl req \
-x509 \
-newkey rsa:4096 \
-sha256 \
-nodes \
-days 365 \                                        B
-keyout privatekey.pem \                           c
-out certificate.pem \                             d
-extensions san \                                  e
-config \                                          e
 <(echo "[req]";                                   e
   echo distinguished_name=req;                    e
   echo "[san]";                                   e
   echo subjectAltName=DNS:localhost,IP:127.0.0.1  e
   ) \                                             e
-subj "/CN=localhost"                              e

B Generate a key valid for one year.

c Filename of private key

d Filename of certificate

e Most browsers require the SAN extension for security reasons.

Both the private key and certificate must be stored on a path available to Airflow, and
Airflow must be run with the following:

 AIRFLOW__WEBSERVER__WEB_SERVER_SSL_CERT=/path/to/certificate.pem
 AIRFLOW__WEBSERVER__WEB_SERVER_SSL_KEY=/path/to/privatekey.pem

Start the webserver and you will see that http:/ /localhost:8080 does not serve the web-
server anymore. Instead, it is served on https:/ /localhost:8080 (figure 13.19).

 At this point, traffic between your browser and the Airflow webserver is encrypted.
While the traffic can be intercepted by an attacker, it will be useless to them since it’s
encrypted and thus unreadable. Only with the private key can the data be decrypted;
that’s why it’s important to never share the private key and to keep it in a safe place.

 When using the self-signed certificate, as generated in listing 13.5, you will initially
receive a warning (Chrome displayed in figure 13.20).

 Your computer holds a list of trusted certificates and their location, depending on
your operating system. In most Linux systems, the trusted certificates are stored in
/etc/ssl/certs. These certificates are provided with your operating system and agreed
on by various authorities. These certificates enable you to go to https://www.google
.com, receive Google’s certificate, and verify it in your pre-trusted list of certificates
because Google’s certificate is shipped with your operating system.5 Whenever your

Listing 13.5 Creating a self-signed certificate

5 Various technical details are omitted for clarity. Storing billions of trusted certificates for all websites is impractical.
Instead, few certificates high up in the chain are stored on your computer. Certificates are issued by certain trusted
authorities. Reading a certificate should enable your browser to find the certificate’s issuing authority, and their
respective issuing authority, and again, until one of the certificates in the chain is found on your computer.

https://www.google.com
https://www.google.com
https://www.google.com
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Figure 13.19 After providing a certificate and private key, the webserver is served on https:/ /localhost:8080. 
Note that no official certificate can be issued for localhost; therefore, it must be self-signed. Self-signed 
certificates are by default untrusted, so you must add the certificate to your trusted certificates.

Figure 13.20 Most browsers display warnings when using self-signed certificates 
because their validity cannot be checked.
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browser is directed to a website that returns a certificate not in this list, your browser
will display a warning, as is the case when using our self-signed certificate. Therefore,
we must tell our computer to trust our generated certificate, knowing we generated it
ourselves and therefore trust it.

 How to tell your computer to trust a certificate differs based on the operating sys-
tem used. For macOS, it involves opening Keychain Access and importing your certifi-
cate in the system keychain (figure 13.21).

After this, the certificate is known to the system but still not trusted. To trust it, we
must explicitly trust SSL when encountering the self-signed certificate (figure 13.22).

 If you’re hosting Airflow on an address accessible by others (i.e., not localhost),
everybody will have to go through the hassle of trusting the self-signed certificate. This
is obviously undesirable; therefore, you issue certificates by a trusted authority that
can be validated. For further reading, search the internet for “TLS certificate” (for pur-
chasing a certificate), or “Let’s Encrypt” (for generating DNS-validated certificates, pro-
viding you with encryption).

13.5 Fetching credentials from secret management systems
Many companies apply a central secret storage system, enabling them to store secrets
(passwords, certificates, keys, etc.) just once in one single system, and applications are
able to request the secrets when needed without having to store their own. Examples
include HashiCorp Vault, Azure Key Vault, AWS SSM, and GCP Secrets Manager. This
avoids scattering secrets over various systems and instead keeps secrets all in a single

Select the System keychain.

Drag and drop the generated certificate.pem.

Figure 13.21 Adding a self-signed certificate to the system certificates on macOS
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system that is designed specifically for storing and managing secrets. Additionally,
these systems provide features such as secret rotation and versioning, which you do
not get in Airflow.

 Secret values in Airflow can be stored in variables and connections. Wouldn’t it be
convenient and secure to connect with one of these secret storage systems instead of hav-
ing to copy-paste secrets into Airflow? In Airflow 1.10.10, a new feature was introduced
named the Secrets Backend, which provides a mechanism to fetch secrets from external
secret storage systems while still using the existing variable and connection classes.

 At the time of this writing, AWS SSM, GCP Secret Manager, and HashiCorp Vault
are supported. The secrets backend provides a generic class that can be subclassed to
implement and connect with your own desired secret storage system. Let’s view an
example using HashiCorp Vault.

import airflow.utils.dates
from airflow.models import DAG
from airflow.providers.http.operators.http import SimpleHttpOperator

Listing 13.6 Fetching connection details from a configured secrets backend

Always trust
SSL using the
self-signed
certificate.

Figure 13.22 Trusting SSL using the self-signed certificate enables trust between our computer and 
the Airflow webserver.
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dag = DAG(
   dag_id="secretsbackend_with_vault",
   start_date=airflow.utils.dates.days_ago(1),
   schedule_interval=None,
)

call_api = SimpleHttpOperator(
   task_id="call_api",
   http_conn_id="secure_api",     b
   method="GET",
   endpoint="",
   log_response=True,
   dag=dag,
)

b Refers to the secret id in Vault

As you can see in listing 13.5, there is no explicit reference to HashiCorp Vault in your
DAG code. The SimpleHttpOperator makes an HTTP request, in this case to the URL
set in the connection. Before the existence of secrets backends, you’d save the URL in
an Airflow connection. Now we can save it in (among others) HashiCorp Vault. There
are a couple of things to point out when doing this:

 Secrets backends must be configured with AIRFLOW__SECRETS__BACKEND
and AIRFLOW__SECRETS__BACKEND_KWARGS.

 All secrets must have a common prefix.
 All connections must be stored in a key named “conn_uri.”
 All variables must be stored in a key named “value.”

The secret name is stored as a path (this applies to all secret managers), for example
secret/connections/secure_api, where secret and connections can be seen as fold-
ers used for organization and secure_api is the name identifying the actual secret.

NOTE The “secret” prefix is specific to the Vault backend. Refer to the Air-
flow documentation for all details of your secret backend of choice.

The hierarchical organization of secrets in all secret management systems allows
Airflow to provide a generic secrets backend to interface with such systems. In the
“Secrets Engines” section in HashiCorp Vault, the secret would be stored as displayed
in figure 13.23.

Figure 13.23 Secrets in Vault are stored in 
“Secrets Engines,” which can store secrets in 
various systems. By default, you get an engine 
named “secret” for storing key-value secrets.
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Within a secret engine in Vault, we create a secret with the name connections/
secure_api. While the prefix “connections/” is not necessary, Airflow’s secrets back-
end takes a prefix under which it can search for secrets, which is convenient for
searching within just one part of the secret hierarchy in Vault.

 Storing an Airflow connection in any secret backend requires setting a key named
conn_uri, which is the key Airflow will request (figure 13.24). The connection must be
given in URI format. The URI will internally be passed to Airflow’s connection class,
where the proper details are extracted from the URI.

Say we have an API running on hostname secure_api, port 5000, and it requires a
header with the name “token” and the value “supersecret” for authentication. To be
parsed into an Airflow connection, the API details must be stored in URI format, as
displayed in figure 13.24: http://secure_api:5000?token=supersecret

 In Airflow, we must set two configuration options to fetch the credentials. First,
AIRFLOW__SECRETS__BACKEND must be set to the class reading the secrets:

 HashiCorp Vault: airflow.providers.hashicorp.secrets.vault.VaultBackend
 AWS SSM: airflow.providers.amazon.aws.secrets.systems_manager.Systems-

ManagerParameterStoreBackend
 GCP Secret Manager: airflow.providers.google.cloud.secrets.secrets_manager

.CloudSecretsManagerBackend

Next, various details specific to the chosen secrets backend must be configured in
AIRFLOW__SECRETS__BACKEND_KWARGS. Refer to the Airflow documentation for all details

Figure 13.24 Saving Airflow connection details in Vault requires setting a key: conn_uri.
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of all secret backends. Take, for example, BACKEND_KWARGS for Vault: {"url":"http://
vault:8200","token":"airflow","connections_path":"connections"}

 Here, the "url" point to Vault’s URL, "token" refers to a token for authenticating
against Vault, and "connections_path" refers to the prefix to query for all connections.
In the Vault backend, the default prefix for all secrets (both connections and variables)
is set to secret. As a result, the full search query given a conn_id, “secure_api,” becomes
secret/connections/secure_api.

 The secrets backend does not replace secrets stored in environment variables or
the Airflow metastore. It’s an alternative location to store secrets. The order of fetch-
ing secrets becomes the following:

1 Secret backend
2 Environment variables (AIRFLOW_CONN_* and AIRFLOW_VAR_*)
3 Airflow metastore

With a secret backend set up, we outsourced the storage and management of secret
information into a system developed specifically for that purpose. Other systems can
also connect to the secret management system so that you only store a secret value
once, instead of distributing it over many systems, each with the potential for a
breach. As a result, your attack surface becomes smaller.

 Technically, the number of possibilities to breach into your systems are limitless.
However, we’ve demonstrated various ways to secure data both inside and outside
Airflow—all with the goal of limiting the number of options for an attacker and safe-
guarding against some of the most common ways attackers gain unwanted access. On
a final note, ensure you keep up-to-date with Airflow releases, as these sometimes con-
tain security fixes, closing bugs in older versions.

Summary
 In general, security does not focus on one item but involves securing various

levels of your application to limit the potential attack surface.
 The RBAC interface features a role-based security mechanism to allow certain

actions to the groups in which users are organized.
 Interception of traffic between the client and the Airflow webserver can be

made useless by applying TLS encryption.
 Credentials in Airflow’s database can be made unreadable to an attacker by

encrypting the secrets with a Fernet key.
 A secret management system such as HashiCorp Vault can be used to store and

manage secrets so that secrets are managed in one single location and shared
only when needed with applications such as Airflow.



Project:
Finding the fastest

way to get around NYC
Transportation in New York City (NYC) can be hectic. It’s always rush hour, but
luckily there are more alternative ways of transportation than ever. In May 2013,
Citi Bike started operating in New York City with 6,000 bikes. Over the years, Citi
Bike has grown and expanded and has become a popular method of transportation
in the city.

 Another iconic method of transportation is the Yellow Cab taxi. Taxis were
introduced in NYC in the late 1890s and have always been popular. However, in
recent years the number of taxi drivers has plummeted, and many drivers started
driving for ride-sharing services such as Uber and Lyft.

 Regardless of what type of transportation you choose in NYC, typically the goal
is to go from point A to point B as fast as possible. Luckily the city of New York is
very active in publishing data, including rides from Citi Bikes and Yellow Taxis. 

This chapter covers
 Setting up an Airflow pipeline from scratch

 Structuring intermediate output data

 Developing idempotent tasks

 Implementing one operator to handle multiple 
similar transformations
344
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 In this chapter, we try to answer this question: “If I were to go from A to B in NYC
right now, which method of transportation is fastest?” We’ve created an Airflow mini
project to extract and load data, transform it into a usable format, and ask the data
which method of transportation is faster, depending on the neighborhoods you’re
traveling between and the time of the day.1

 To make this mini project reproducible, a Docker Compose file was created run-
ning several services in Docker containers. This includes the following:

 One REST API serving Citi Bike data
 One file share serving Yellow Cab taxi data
 MinIO, an object store that supports the S3 protocol
 PostgreSQL database for querying and storing data
 A Flask application displaying results

This gives us the building blocks shown in figure 14.1.

Our goal throughout this chapter is to use these building blocks to extract data from
the REST API and share and develop a data pipeline connecting these dots. We
choose MinIO since AWS S3 is often used for data storage and MinIO supports the S3
protocol. The results of the analysis will be written to the PostgreSQL database, and
the web page will display the results. To get started, ensure your current directory
holds the docker-compose.yml file and create all containers.

$ docker-compose up -d
Creating network "airflow-use-case_default" with the default driver
Creating volume "airflow-use-case_logs" with default driver
Creating volume "airflow-use-case_s3" with default driver
Creating airflow-use-case_result_db_1              ... done
Creating airflow-use-case_citibike_db_1            ... done
Creating airflow-use-case_minio_1                  ... done
Creating airflow-use-case_postgres_1               ... done

1 Some of the ideas in this chapter are based on a blog post by Todd Schneider (https://toddwschneider
.com/posts/taxi-vs-citi-bike-nyc), where he analyzes the fastest transportation method by applying a Monte
Carlo simulation.

Listing 14.1 Running use case building blocks in Docker containers

MinIO

(S3 protocol)

Citi Bike

REST API

Yellow Cab

fileshare
PostgreSQL

Result

web page

Figure 14.1 Docker Compose file creates several services. Our task is 
to load data from the REST API and share and transform it to eventually 
view the fastest method of transportation on the resulting web page.

https://toddwschneider.com/posts/taxi-vs-citi-bike-nyc
https://toddwschneider.com/posts/taxi-vs-citi-bike-nyc
https://toddwschneider.com/posts/taxi-vs-citi-bike-nyc


346 CHAPTER 14 Project: Finding the fastest way to get around NYC
Creating airflow-use-case_nyc_transportation_api_1 ... done
Creating airflow-use-case_taxi_db_1                ... done
Creating airflow-use-case_webserver_1              ... done
Creating airflow-use-case_initdb_adduser_1         ... done
Creating airflow-use-case_scheduler_1              ... done
Creating airflow-use-case_minio_init_1             ... done
Creating airflow-use-case_citibike_api_1           ... done
Creating airflow-use-case_taxi_fileserver_1        ... done

This exposes the following services on localhost:[port], with [username]/[password]
given between parentheses:

 5432: Airflow PostgreSQL metastore (airflow/airflow)
 5433: NYC Taxi Postgres DB (taxi/ridetlc)
 5434: Citi Bike Postgres DB (citi/cycling)
 5435: NYC Transportation results Postgres DB (nyc/tr4N5p0RT4TI0N)
 8080: Airflow webserver (airflow/airflow)
 8081: NYC Taxi static file server
 8082: Citi Bike API (citibike/cycling)
 8083: NYC Transportation web page
 9000: MinIO (AKIAIOSFODNN7EXAMPLE/wJalrXUtnFEMI/K7MDENG/bPxRfiCYEX-

AMPLEKEY)

Data for both the Yellow Cab and Citi Bikes rides has been made available in monthly
batches:

 NYC Yellow Taxi: https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
 NYC Citi Bike: https://www.citibikenyc.com/system-data

The goal of this project is to demonstrate a real environment with several real chal-
lenges you might encounter and how to deal with them in Airflow. The data sets are
released once a month. One-month intervals are quite long, and therefore we’ve cre-
ated two APIs in the Docker Compose setup that provide the same data but on inter-
vals configurable to a single minute. Also, the APIs mimic several characteristics of
production systems such as authentication.

 Let’s look at a map of NYC to develop an idea for determining the fastest method
of transportation (figure 14.2).

 We can clearly see that Citi Bike stations are based only in the center of New York
City. To give any meaningful advice about the fastest method of transportation, we are
therefore limited to those zones where both Citi Bikes and Yellow Cab are present. In
section 14.1, we will inspect the data and develop a plan of approach.

 
 

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www.citibikenyc.com/system-data
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14.1 Understanding the data
The Docker Compose file provides two endpoints with the Yellow Cab and Citi Bike
data:

 Yellow Cab data on http:/ /localhost:8081
 Citi Bike data on http:/ /localhost:8082

Let’s examine how to query these endpoints and what data they return.
 

Citi Bike station

Yellow Cab zone

Figure 14.2 NYC Yellow Cab zones plotted with Citi Bike station locations
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14.1.1 Yellow Cab file share

The Yellow Cab data is available on http:/ /localhost:8081. Data is served as static CSV
files, where each CSV file contains taxi rides finished in the last 15 minutes. It will
keep only one full hour of data; data older than one hour is automatically removed. It
does not require any authentication.

$ curl http:/ /localhost:8081
[
  ➥ { "name":"06-27-2020-16-15-00.csv", "type":"file", "mtime":"Sat, 27 Jun 

2020 16:15:02 GMT", "size":16193 },
  ➥ { "name":"06-27-2020-16-30-00.csv", "type":"file", "mtime":"Sat, 27 Jun 

2020 16:30:01 GMT", "size":16580 },
  ➥ { "name":"06-27-2020-16-45-00.csv", "type":"file", "mtime":"Sat, 27 Jun 

2020 16:45:01 GMT", "size":13728 },
  ➥ { "name":"06-27-2020-17-00-00.csv", "type":"file", "mtime":"Sat, 27 Jun 

2020 17:00:01 GMT", "size":15919 }
]

The index returns a list of available files. Each is a CSV file holding the Yellow Cab
rides finished in the last 15 minutes, at the time given in the filename. 

$ curl http:/ /localhost:8081/06-27-2020-17-00-00.csv

➥ pickup_datetime,dropoff_datetime,pickup_locationid,dropoff_locationid,
trip_distance

2020-06-27 14:57:32,2020-06-27 16:58:41,87,138,11.24
2020-06-27 14:47:40,2020-06-27 16:46:24,186,35,11.36
2020-06-27 14:47:01,2020-06-27 16:54:39,231,138,14.10
2020-06-27 15:39:34,2020-06-27 16:46:08,28,234,12.00
2020-06-27 15:26:09,2020-06-27 16:55:22,186,1,20.89
...

We can see each line represents one taxi ride, with a start and end time and start and
end zone IDs.

14.1.2 Citi Bike REST API

The Citi Bike data is available on http:/ /localhost:8082, which serves data via a REST
API. This API enforces basic authentication, meaning we have to supply a username
and password. The API returns Citi Bike rides finished within a configurable period
of time. 

$ date
Sat 27 Jun 2020 18:41:07 CEST

$ curl --user citibike:cycling http:/ /localhost:8082/recent/hour/1  b

Listing 14.2 Sample request to the Yellow Cabfile share

Listing 14.3 Sample snippet of Yellow Cab file

Listing 14.4 Sample request to the Citi Bike REST API
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[
 {
  "end_station_id": 3724,                                           c
  "end_station_latitude": 40.7667405590595,                         c
  "end_station_longitude": -73.9790689945221,                       c
  "end_station_name": "7 Ave & Central Park South",                 c
  "start_station_id": 3159,                                         c
  "start_station_latitude": 40.77492513,                            c
  "start_station_longitude": -73.98266566,                          c
  "start_station_name": "W 67 St & Broadway",                       c
  "starttime": "Sat, 27 Jun 2020 14:18:15 GMT",                     c
  "stoptime": "Sat, 27 Jun 2020 15:32:59 GMT",                      c
  "tripduration": 4483                                              c
 },
 {
  "end_station_id": 319,
  "end_station_latitude": 40.711066,
  "end_station_longitude": -74.009447,
  "end_station_name": "Fulton St & Broadway",
  "start_station_id": 3440,
  "start_station_latitude": 40.692418292578466,
  "start_station_longitude": -73.98949474096298,
  "start_station_name": "Fulton St & Adams St",
  "starttime": "Sat, 27 Jun 2020 10:47:18 GMT",
  "stoptime": "Sat, 27 Jun 2020 16:27:21 GMT",
  "tripduration": 20403
 },
 ...
]

b Request data from the last hour.

c Each JSON object represents one Citi Bike ride.

This query requests the Citi Bike rides finished in the last hour. Each record in the
response represents one ride with Citi Bike and provides latitude/longitude coordi-
nates of the start and end location as well as the start and end time. The endpoint can
be configured to return rides at smaller or larger intervals:

http:/ /localhost:8082/recent/<period>/<amount>

where <period> can be minute, hour, or day. The <amount> is an integer representing
the number of given periods. For example, querying http:/ /localhost:8082/recent/
day/3 would return all Citi Bike rides finished in the last three days.

 The API knows no limitations in terms of request size. In theory, we could request
data for an infinite number of days. In practice, APIs often limit compute power and
data transfer size. For example, an API could limit the number of results to 1,000.
With such a limitation, you would have to know how many bike rides (approximately)
are made within a certain time and make requests often enough to fetch all data while
staying under the maximum 1,000 results.
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14.1.3 Deciding on a plan of approach

Now that we’ve seen samples of the data in listings 14.3 and 14.4, let’s lay out the facts
and decide how to continue. To compare apples with apples, we must map locations
in both data sets to something in common. The Yellow Cab ride data provides taxi
zone IDs, and the Citi Bike data provides latitude/longitude coordinates of the bike
stations. Let’s simplify, enabling our use case but sacrificing a little on the accuracy, by
mapping the latitude/longitude of Citi Bike stations to taxi zones (figure 14.3).

Since the Yellow Cab data is only provided for one hour on the file share, we must
download and save it in our own systems. This way, we build a collection of historical
taxi data over time and can always go back to the downloaded data if we change our
processing. As mentioned, the Docker Compose file creates a MinIO service, which is
an object storage service, so we’ll use that to store the extracted data.

14.2 Extracting the data
When extracting multiple data sources, it is important to note the time intervals of the
data. The Yellow Cab data is available at 15-minute intervals, and the Citi Bike data
interval is configurable. To make it easy, let’s also request Citi Bike data at 15-minute

A

B

Figure 14.3 Mapping Citi Bike stations (dots) to Yellow Cab zones enables accurate comparison but 
neglects the fact that rides within one zone can vary in distance. Ride A is obviously shorter than ride B. 
By averaging all ride times from Greenwich Village South to East Village, you lose such information.
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intervals. This allows you to make two requests at the same interval, in the same DAG,
and process all data in parallel. If we choose a different interval, we have to align the
processing of both data sets differently.

import airflow.utils.dates
from airflow.models import DAG

dag = DAG(
   dag_id="nyc_dag",
   schedule_interval="*/15 * * * *",             B
   start_date=airflow.utils.dates.days_ago(1),
   catchup=False,
)

B Run every 15 minutes.

14.2.1 Downloading Citi Bike data

Within Airflow, we have the SimpleHttpOperator to make HTTP calls. However, this
quickly turns out to not suit our use case: the SimpleHttpOperator simply makes an
HTTP request but provides no functionality for storing the response anywhere.2 In
such a situation, you are quickly forced to implement your own functionality and call
it with a PythonOperator.

 Let’s see how to query the Citi Bike API and store the output on the MinIO object
storage.

import json

import requests
from airflow.hooks.base import BaseHook
from airflow.models import DAG
from airflow.operators.python import PythonOperator
from airflow.providers.amazon.aws.hooks.s3 import S3Hook
from requests.auth import HTTPBasicAuth

def _download_citi_bike_data(ts_nodash, **_):                      B
   citibike_conn = BaseHook.get_connection(conn_id="citibike")       c

   ➥ url = f"http://{citibike_conn.host}:{citibike_conn.port}/recent/minute/15"
   ➥ response = requests.get(url, auth=HTTPBasicAuth(citibike_conn.login, 

citibike_conn.password))
   data = response.json()

   s3_hook = S3Hook(aws_conn_id="s3")                               d
   s3_hook.load_string(
       string_data=json.dumps(data),

Listing 14.5 DAG running every 15 minutes

2 By setting xcom_push=True, you can store the output in XCom.

Listing 14.6 Downloading data from the Citi Bike REST API onto MinIO
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       key=f"raw/citibike/{ts_nodash}.json",                         B
       bucket_name="datalake"
   )

download_citi_bike_data = PythonOperator(
   task_id="download_citi_bike_data",
   python_callable=_download_citi_bike_data,
   dag=dag,
)

B Use the timestamp of the Airflow task in the resulting filename.

c Load Citi Bike credentials from Airflow connection.

d Use S3Hook to communicate with MinIO.

We have no Airflow operator to use for this specific HTTP-to-S3 operation, but we can
apply Airflow hooks and connections. First, we must connect to the Citi Bike API (using
the Python requests library) and MinIO storage (using the S3Hook). Since both require
credentials to authenticate, we will store these in Airflow to be loaded at runtime.

➥ export AIRFLOW_CONN_CITIBIKE=http://citibike:cycling@citibike_api:5000

➥ export AIRFLOW_CONN_S3="s3://@?host=http://minio:9000&aws_access_key_id
=AKIAIOSFODNN7EXAMPLE&aws_secret_access_key=wJalrXUtnFEMI/K7MDENG/bPxRfi
CYEXAMPLEKEY"                                                        B

B Custom S3 host must be given via extras.

By default, the S3 hook communicates with AWS S3 on http://s3.amazonaws.com.
Since we’re running MinIO on a different address, we must provide this address in the
connection details. Unfortunately, this isn’t a straightforward task, and sometimes such
oddities result in having to read a hook’s implementation to understand its inner work-
ings. In the case of the S3Hook, the hostname can be provided via a key host in the
extras (figure 14.4).

Now that we have the connections set up, let’s transfer some data.

s3_hook = S3Hook(aws_conn_id="s3")
s3_hook.load_string(
    string_data=json.dumps(data),
    key=f"raw/citibike/{ts_nodash}.json",     B

Listing 14.7 Setting connection details via environment variables

Listing 14.8 Uploading a piece of data to MinIO using the S3Hook

AIRFLOW_CONN_S3=s3://@?host=http://minio:9000&aws_access_key_id=...&aws_secret_access_key=...

Where you expect to
set the hostname

Hostname provided
via extras

Figure 14.4 A custom S3 hostname can be set, but not where you would expect it.

http://s3.amazonaws.com
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    bucket_name="datalake"
)

B Write to object with the task timestamp templated in key name.

If all succeeds, we can log in on the MinIO interface at http:/ /localhost:9000 and view
the first downloaded file (figure 14.5).

If you were to perform this HTTP-to-S3 operation more often with different parame-
ters, you’d probably want to write an operator for this task to avoid code duplication.

14.2.2 Downloading Yellow Cab data

We also want to download taxi data on the MinIO object storage. This is also an
HTTP-to-S3 operation, but it has a few different characteristics:

 The file share serves files, whereas we had to create new files on MinIO for the
Citi Bike data.

 These are CSV files, while the Citi Bike API returns data in JSON format.
 We don’t know the filenames upfront; we have to list the index to receive a

file list.

When you encounter such specific features, it usually results in having to implement
your own behavior instead of applying an Airflow built-in operator. Some Airflow
operators are highly configurable, and some are not, but for such specific features,
you mostly have to resort to implementing your own functionality. With that said, let’s
see a possible implementation.

def _download_taxi_data():
   taxi_conn = BaseHook.get_connection(conn_id="taxi")
   s3_hook = S3Hook(aws_conn_id="s3")

Listing 14.9 Downloading data from the Yellow Cab file share onto MinIO storage  

Timestamp set by ts_nodash

Figure 14.5 Screenshot of the MinIO interface showing a file written to /datalake/raw/citibike, and 
the filename templated with ts_nodash.
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   url = f"http://{taxi_conn.host}"
   response = requests.get(url)                          B
   files = response.json()

   for filename in [f["name"] for f in files]:
       response = requests.get(f"{url}/{filename}")      c
       s3_key = f"raw/taxi/{filename}"
       ➥ s3_hook.load_string(string_data=response.text, key=s3_key, 

bucket_name="datalake")                             d

download_taxi_data = PythonOperator(
   task_id="download_taxi_data",
   python_callable=_download_taxi_data,
   dag=dag,
)

B Get a list of files.

c Get one single file.

d Upload the file to MinIO.

This code will download data from the file server and upload it to MinIO, but there is
a problem. Can you spot it?

 s3_hook.load_string() is not an idempotent operation. It does not override files
and will only upload one (or string in this case) if it doesn’t exist yet. If a file with the
same name already exists, it fails:

➥ [2020-06-28 15:24:03,053] {taskinstance.py:1145} ERROR - The key 
raw/taxi/06-28-2020-14-30-00.csv already exists.

...
    raise ValueError("The key {key} already exists.".format(key=key))
ValueError: The key raw/taxi/06-28-2020-14-30-00.csv already exists.

To avoid failing on existing objects we could apply Python’s EAFP idiom (try first and
catch exceptions, instead of checking every possible condition) to simply skip when
encountering a ValueError.

def _download_taxi_data():
   taxi_conn = BaseHook.get_connection(conn_id="taxi")
   s3_hook = S3Hook(aws_conn_id="s3")

   url = f"http://{taxi_conn.host}"
   response = requests.get(url)
   files = response.json()

   for filename in [f["name"] for f in files]:
       response = requests.get(f"{url}/{filename}")
       s3_key = f"raw/taxi/{filename}"
       try:
           s3_hook.load_string(

Listing 14.10 Downloading data from the Yellow Cab file share onto MinIO storage



355Applying similar transformations to data
               string_data=response.text,
               key=s3_key,
               bucket_name="datalake",
           )
           print(f"Uploaded {s3_key} to MinIO.")
       except ValueError:                             B
           print(f"File {s3_key} already exists.")

B Catch ValueError exceptions raised when file already exists.

Adding this check for existing files won’t make our pipeline fail anymore! We now have
two download tasks, which both download data on the MinIO storage (figure 14.6).

Data for both the Citi Bike API and Yellow Cab file share are downloaded on the MinIO
storage (figure 14.7).

14.3 Applying similar transformations to data
After we’ve downloaded the Citi Bike and Yellow Cab data, we apply several transfor-
mations to map the Citi Bike station coordinates to Yellow Cab zones and to start
accurately comparing them. There are various ways to do this, depending on the size
of the data.

 In a big-data scenario, you’d want to apply Apache Spark to process the data using
a cluster of machines. A Spark job can be triggered with the SparkSubmitOperator or
another operator that could trigger a Spark job such as the SSHOperator. The Spark
job would then read from S3, apply transformations to the data, and write back to S3.

 On a smaller scale (i.e., data processable on a single machine), we can apply Pan-
das for this task, but there is no PandasOperator at the time of writing, so Pandas code

Figure 14.6 First two tasks of the NYC transportation DAG downloading data
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is typically executed using the PythonOperator. Note that Python code is run on the
same machine as Airflow, whereas a Spark job is typically executed on other machines
dedicated for that task, which will not impact the resources of the Airflow machine. In
the latter case, Airflow is only responsible for starting and monitoring the Spark job. If
a Pandas job is hitting the limits of the machine’s resources, it could, in theory, take
down the machine, and Airflow with it.

 Another way to avoid claiming the Airflow machine’s resources is to offload the job
to Kubernetes using the KubernetesPodOperator or a similar containerized system,
such as AWS ECS, using the ECSOperator.

 Let’s assume we apply Pandas for processing small data. Instead of demonstrating
how to use yet another PythonOperator, let’s look at how we can generalize some com-
ponents for reusability and code deduplication. We have two data sets stored in /raw:

 /raw/citibike/{ts_nodash}.json
 /raw/taxi/*.csv

Both data sets will be read using Pandas, a few transformations will be applied, and
eventually the result will be written to the following:

 /processed/citibike/{ts_nodash}.parquet
 /processed/taxi/{ts_nodash}.parquet

Every 5 minutes, a new export is saved in the datalake for both data sets.1

Figure 14.7 Data exported to the MinIO storage. We have MinIO under our own control and can always 
refer to these files later.
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While the input formats differ, the object type into which they’re loaded and the out-
put formats do not. The abstraction to which operations are applied in Pandas is the
Pandas DataFrame (similar to a Spark DataFrame). There are a few small differences
between our transformations, input data sets, and output file locations, but the core
abstraction is the same: a Pandas DataFrame. Hence, we could implement a single
operator for dealing with both transformations.

import logging

from airflow.models import BaseOperator
from airflow.utils.decorators import apply_defaults

class PandasOperator(BaseOperator):
   template_fields = (
       "_input_callable_kwargs",                                  B
       "_transform_callable_kwargs",                              B
       "_output_callable_kwargs",                                 B
   )

   @apply_defaults
   def __init__(
       self,
       input_callable,
       output_callable,
       transform_callable=None,
       input_callable_kwargs=None,
       transform_callable_kwargs=None,
       output_callable_kwargs=None,
       **kwargs,
   ):
       super().__init__(**kwargs)

       # Attributes for reading data
       self._input_callable = input_callable
       self._input_callable_kwargs = input_callable_kwargs or {}

       # Attributes for transformations
       self._transform_callable = transform_callable
       self._transform_callable_kwargs = transform_callable_kwargs or {}

       # Attributes for writing data
       self._output_callable = output_callable
       self._output_callable_kwargs = output_callable_kwargs or {}

   def execute(self, context):
       df = self._input_callable(**self._input_callable_kwargs)   c
       logging.info("Read DataFrame with shape: %s.", df.shape)

       if self._transform_callable:
           df = self._transform_callable(                         d

Listing 14.11 A single operator for all Pandas DataFrame operations
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               df,                                                d
               **self._transform_callable_kwargs,                 d
           )                                                      d
           logging.info("DataFrame shape after transform: %s.", df.shape)

       self._output_callable(df, **self._output_callable_kwargs)  e

B All kwargs arguments can hold templated values.

c Call the input callable to return a Pandas DataFrame.

d Apply transformations on the DataFrame.

e Write DataFrame.

Let’s break down how to use this PandasOperator. As mentioned, the commonality
between various transformations is the Pandas DataFrame. We use this commonality
to compose operations on the DataFrame given three functions:

 input_callable

 transform_callable (optional)
 output_callable

The input_callable reads data into a Pandas DataFrame, the transform_callable
applies transformations to this DataFrame, and the output_callable writes the Data-
Frame. As long as the input/output of all three functions is a Pandas DataFrame, we
can mix and match callables to process the data using this PandasOperator. Let’s look
at an example.

process_taxi_data = PandasOperator(
   task_id="process_taxi_data",
   input_callable=get_minio_object,                           B
   input_callable_kwargs={
       "pandas_read_callable": pd.read_csv,                   B
       "bucket": "datalake", 
       "paths": "{{ ti.xcom_pull(task_ids='download_taxi_data') }}",
   },
   transform_callable=transform_taxi_data,                    c
   output_callable=write_minio_object,                        d
   output_callable_kwargs={
       "bucket": "datalake",
       "path": "processed/taxi/{{ ts_nodash }}.parquet",
       "pandas_write_callable": pd.DataFrame.to_parquet,      d
       "pandas_write_callable_kwargs": {"engine": "auto"},
   },
   dag=dag,
)

B Read CSV from MinIO storage.

c Apply transformations on DataFrame.

d Write Parquet to MinIO storage.

Listing 14.12 Applying the PandasOperator from listing 14.11
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The goal of the PandasOperator is to provide a single operator that allows mixing and
matching various input, transformation, and output functions. As a result, defining an
Airflow task glues these functions together by pointing to them and providing their
arguments. We start with the input function, which returns a Pandas DataFrame, as
follows.

def get_minio_object(
   pandas_read_callable,
   bucket,
   paths,
   pandas_read_callable_kwargs=None,
):
   s3_conn = BaseHook.get_connection(conn_id="s3")
   minio_client = Minio(                                 B
       s3_conn.extra_dejson["host"].split("://")[1],
       access_key=s3_conn.extra_dejson["aws_access_key_id"],
       secret_key=s3_conn.extra_dejson["aws_secret_access_key"],
       secure=False,
   )

   if isinstance(paths, str):
       paths = [paths]

   if pandas_read_callable_kwargs is None:
       pandas_read_callable_kwargs = {}

   dfs = []
   for path in paths:
       minio_object = minio_client.get_object(
           bucket_name=bucket,
           object_name=path,
       )
       df = pandas_read_callable(                        c
           minio_object,
           **pandas_read_callable_kwargs,
       )
       dfs.append(df)
   return pd.concat(dfs)                                 d

B Initialize a MinIO client.

c Read the file from MinIO.

d Return the Pandas DataFrame.

The transformation function, which adheres to “DataFrame in, DataFrame out” is as
follows.

def transform_taxi_data(df):                                              B
   ➥ df[["pickup_datetime", "dropoff_datetime"]] = df[["pickup_datetime", 

"dropoff_datetime"]].apply(

Listing 14.13 Example function reading MinIO objects and returning Pandas DataFrames

Listing 14.14 Example function transforming taxi data
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       pd.to_datetime
   )
   ➥ df["tripduration"] = (df["dropoff_datetime"] - df["pickup_datetime"])

.dt.total_seconds().astype(int)
   df = df.rename(
       columns={
           "pickup_datetime": "starttime",
           "pickup_locationid": "start_location_id",
           "dropoff_datetime": "stoptime",
           "dropoff_locationid": "end_location_id",
       }
   ).drop(columns=["trip_distance"])
   return df                                                              c

B DataFrame in

c DataFrame out

And last, the output function, which takes a Pandas DataFrame, is as follows.

def write_minio_object(
   df,
   pandas_write_callable,
   bucket,
   path,
   pandas_write_callable_kwargs=None
):
   s3_conn = BaseHook.get_connection(conn_id="s3")
   minio_client = Minio(
       s3_conn.extra_dejson["host"].split("://")[1],
       access_key=s3_conn.extra_dejson["aws_access_key_id"],
       secret_key=s3_conn.extra_dejson["aws_secret_access_key"],
       secure=False,
   )
   bytes_buffer = io.BytesIO()
   pandas_write_method = getattr(df, pandas_write_callable.__name__)   B
   pandas_write_method(bytes_buffer, **pandas_write_callable_kwargs)   c
   nbytes = bytes_buffer.tell()
   bytes_buffer.seek(0)
   minio_client.put_object(                                            d
       bucket_name=bucket,
       object_name=path,
       length=nbytes,
       data=bytes_buffer,
   )

B Fetch the reference to the DataFrame writing method (e.g., pd.DataFrame.to_parquet).

c Call the DataFrame writing method to write the DataFrame to a bytes buffer, which can be stored in 
MinIO.

d Store the bytes buffer in MinIO.

Passing Pandas DataFrames between the input, transform, and output functions now
provides the option to change the input format of a data set simply by changing the

Listing 14.15 Example function writing transformed DataFrame back to MinIO storage
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argument "pandas_read_callable": pd.read_csv to, for example, "pandas_read_
callable": pd.read_parquet. As a result, we don’t have to re-implement logic with
every change or every new data set, resulting in no code duplication and more flexibility.

NOTE Whenever you find yourself repeating logic and wanting to develop a
single piece of logic to cover multiple cases, think of something your opera-
tions have in common, for example a Pandas DataFrame or a Python file-like
object.

14.4 Structuring a data pipeline
As you read in the previous section, we created the folders “Raw” and “Processed” in a
bucket named “datalake.” How did we get to those and why? In terms of efficiency, we
could, in principle, write a single Python function that extracts data, transforms it, and
writes the results to a database, all while keeping the data in memory and never touch-
ing the file system. This would be much faster, so why don’t we?

 First, data is often used by more than one person or data pipeline. In order to dis-
tribute and reuse it, it’s stored in a location where other people and processes can
read the data.

 But more importantly, we want to make our pipeline reproducible. What does
reproducibility imply in terms of a data pipeline? Data is never perfect, and software is
always in progress; this means we want to be able to go back to previous DAG runs and
rerun a pipeline with the data that was processed. If we’re extracting data from a web
service such as a REST API, which only returns a result for the state at that given point
in time, we cannot go back to the API and ask for the same result from two months
ago. In that situation, it’s best to keep an unedited copy of the result. For privacy rea-
sons, sometimes certain parts of the data are redacted, which is inevitable, but the
starting point of a reproducible data pipeline should be to store a copy of the input
data (that is edited as little as possible). This data is typically stored in a raw folder (fig-
ure 14.8).

From this raw data, you (and others) can then alter, enrich, refine, transform, and
mingle with it as much as you like, which is then written back to a processed folder.

External

systems
Raw Processed Export

Own systems

External

systems

Figure 14.8 We cannot control the structure of data in external systems. In our own systems, it’s 
logical to store data according to the life cycle of data. For example, unedited data is stored in 
Raw, derived and transformed data is stored in Processed, and data sets ready for transfer are 
stored in Export.
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Transformations are often compute- and time-intensive, so we try to avoid rerunning a
task and saving the results such that processed results can easily be read again.

 In practice, many organizations apply more fine-grained separations between the
stages of data, for example Raw > Preprocessed > Enriched > Processed > Export. No
one structure suits all; your project and the project’s requirements will determine how
to best structure the movement of data.

14.5 Developing idempotent data pipelines
Now that we have data in the raw folder, we will process it and insert the results in a
Postgres database. Since this chapter isn’t about the best way to process data with Pan-
das or Spark, we will not discuss the details of this transformation job. Instead, let’s
reiterate an important aspect of data pipelines in general, namely ensuring a data
pipeline can be executed multiple times without having to manually reset state or
introduce a change in the results (idempotency).

 There are two points in this data pipeline where we could introduce idempotency.
The first is easy: when transforming the raw data into a processed state and storing it
in a /processed folder, we should set a flag to overwrite destination files. This ensures
rerunning a task will not fail due to an already existing output path.

 The second stage, where we write results into the database, is less evident. Rerun-
ning a task writing results to a database might not fail but could result in duplicate
rows that might pollute the results. How can we ensure results are being written to a
database in idempotent fashion so that we can rerun pipelines without duplicating
results?

 One way is to add a column to the table that can identify something unique about
the job writing to the database, for example, the execution date of the Airflow job.
Say we’re using Pandas to write a DataFrame to a database, as shown in the following
listing.

--CREATE TABLE citi_bike_rides(                                            B
--    tripduration INTEGER,
--    starttime TIMESTAMP,
--    start_location_id INTEGER,
--    stoptime TIMESTAMP,
--    end_location_id INTEGER
--);

df = pd.read_csv(... citi bike data ...)
engine = sqlalchemy.create_engine(
    BaseHook.get_connection(self._postgres_conn_id).get_uri()
)
df.to_sql("citi_bike_rides", con=engine, index=False, if_exists="append")  B

B Pandas DataFrame and table structure must match.

Listing 14.16 Writing a Pandas DataFrame to a SQL database
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There is no way to tell when executing df.to_sql() if we’re going to insert already
existing rows into the table. In this situation, we could alter the database table to add a
column for Airflow’s execution date.

--CREATE TABLE citi_bike_rides(
--    tripduration INTEGER,
--    starttime TIMESTAMP,
--    start_location_id INTEGER,
--    stoptime TIMESTAMP,
--    end_location_id INTEGER,
--    airflow_execution_date TIMESTAMP
--);

df = pd.read_csv(... citi bike data ...)
df["airflow_execution_date"] = pd.Timestamp(                            B
   context["execution_date"].timestamp(),                               B
   unit='s',                                                            B
)                                                                       B
engine = sqlalchemy.create_engine(
   BaseHook.get_connection(self._postgres_conn_id).get_uri()
)
with engine.begin() as conn:                                            c
   conn.execute(
       "DELETE FROM citi_bike_rides"
       f"WHERE airflow_execution_date='{context['execution_date']}';"
   )                                                                    d
   df.to_sql("citi_bike_rides", con=conn, index=False, if_exists="append")

B Add execution_date as a column to Pandas dataframe.

c Begin a transaction.

d First delete any existing records with the current execution_date.

In this example, we start a database transaction because the interaction with the data-
base is twofold: first we delete any existing rows with a given execution date, and then
we insert the new rows. If there are no existing rows with a given execution date, noth-
ing is deleted. The two SQL statements (df.to_sql() executes SQL under the hood)
are wrapped in a transaction, which is an atomic operation, meaning either both
queries complete successfully or none do. This ensures no remainders are leftover in
case of failure.

 Once the data is processed and stored successfully in the database, we can start a
web application on http:/ /localhost:8083, which queries the results in the database
(figure 14.9).

 The results display which method of transportation is faster between two neighbor-
hoods at a given time. For example (row 1), on Sunday between 8:00 and 11:00, travel-
ing from Alphabet City to East Village is (on average) faster by taxi: 330 seconds (5.5
minutes) by taxi versus 1057.2 (17.62 minutes) by Citi Bike.

Listing 14.17 Writing a Pandas DataFrame to a SQL database in one operation
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Airflow now triggers jobs downloading, transforming, and storing data in the Postgres
database at 15-minute intervals. For a real user-facing application, you probably want a
better looking and more searchable frontend, but from the backend perspective, we
now have an automated data pipeline, automatically running at 15-minute intervals
and showing whether a taxi or Citi Bike is faster between given neighborhoods at
given times, that is visualized in the table in figure 14.9.

Summary
 Developing idempotent tasks can be different based on case.
 Storing intermediate data ensures we can resume (partial) pipelines.
 When an operator’s functionality does not fulfill, you must reside to calling a

function with a PythonOperator or implement your own operator.

Figure 14.9 Web application displaying results stored in the PostgreSQL database, continuously updated by 
the Airflow DAG



Part 4

In the clouds

At this point, you should be well on your way to mastering Airflow—being
able to write complex pipelines and knowing how to deploy Airflow in a production-
like setting.

 So far, we’ve focused on running Airflow on a local system, either natively or
using container technologies such as Docker. A common question is how to run
and use Airflow in cloud settings, as many modern technological landscapes
involve cloud platforms. Part 4 focuses entirely on running Airflow in the clouds,
including topics such as designing architectures for Airflow deployments and
leveraging the built-in functionality of Airflow to call various cloud services. 

 First, in chapter 15, we give a short introduction into the different compo-
nents involved in designing cloud-based Airflow deployments. We’ll also briefly
discuss Airflow’s built-in functionality for interacting with various cloud services
and touch on vendor-managed Airflow deployments, which may save you from
rolling your own deployment in the cloud.

 After this introduction, we’ll dive into specific Airflow implementations for
several cloud platforms: Amazon AWS (chapter 16), Microsoft Azure (chapter 17),
and Google Cloud Platform (chapter 18). In each of these chapters, we’ll design
architectures for deploying Airflow using services from the corresponding platform
and discuss built-in Airflow functionality for interacting with platform-specific ser-
vices. Finally, we’ll close each chapter with an example use case.

 After completing part 4, you should have a good idea of how to design an Air-
flow deployment for your cloud of interest. You should also be able to build
pipelines that smoothly integrate with cloud services to leverage the scale of the
clouds in your workflows.





Airflow in the clouds
In this chapter, we’ll start exploring how to deploy and integrate Airflow in cloud
environments. First, we’ll revisit the various components of Airflow and how these
fit together in cloud deployments. We’ll use this breakdown to map each of the
components to their cloud-specific counterparts in Amazon AWS (chapter 16),
Microsoft Azure (chapter 17), and Google Cloud Platform (chapter 18). Then we’ll
briefly introduce cloud-specific hooks/operators, which can be used to integrate
with specific cloud services. We’ll also provide some managed alternatives for
deploying Airflow and discuss several criteria you should consider when weighing
rolling your own deployment versus using a vendor-managed solution.

This chapter covers
 Examining the components required to build 

Airflow cloud deployments

 Introduction to cloud-specific hooks/operators 
for integrating with cloud services

 Vendor-managed services as alternatives to 
rolling your own deployment
367
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15.1 Designing (cloud) deployment strategies
Before we start designing deployment strategies for Airflow in the different clouds
(AWS, Azure and GCP), let’s start by reviewing the different components of Airflow
(e.g., webserver, scheduler, workers) and what kind of (shared) resources these com-
ponents will need access to (e.g., DAGs, log storage, etc.). This will help us later when
mapping these components to the appropriate cloud services. 

 To keep things simple, we’ll start with an Airflow deployment based on the Local-
Executor. In this type of setup, the Airflow workers are running on the same machine
as the scheduler, meaning we only need to set up two compute resources for Airflow:
one for the webserver and one for the scheduler (figure 15.1).

Both the webserver and scheduler components will need access to a shared database
(the Airflow metastore) and (depending on the version and configuration of Air-
flow1) shared storage for DAGs and logs. Depending on how you manage your data,
you’ll also want to have some external storage setup for storing any input and output
data sets.

 Besides these compute and storage resources, we also need to consider network-
ing. Here we have two main concerns: how we will connect the different services together
and how we organize our network setup to protect our internal services. As we will see,
this typically involves setting up different network segments (public and private sub-
nets) and connecting the different services to the appropriate subnets (figure 15.2).
Additionally, a complete setup should also include services that protect any publicly
exposed services from unauthorized access.

1 In Airflow 1, both the Airflow webserver and scheduler require access to the DAG storage by default. In Airflow
1.10.10, an option was added for the webserver to store DAGs in the metastore so that it no longer requires
access to the DAG storage if this option is enabled. In Airflow 2, this option is always enabled, so the webserver
never needs access to the DAG storage.

* In Airflow , the webserver needs access to the DAG directory unless DAG serialization1

is enabled. In Airflow 2, the webserver doesn’t need access to the DAG directory.

Webserver
Scheduler

(+ workers)

DAG storageLog storage Data storageMetastore

*

Figure 15.1 Overview of the different compute and storage components involved in an Airflow 
deployment based on the LocalExecutor
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This gives us a fairly complete overview of the required components for a deployment
based on the LocalExecutor. 

 Moving to the CeleryExecutor (which provides better scaling by running workers
on separate machines) requires a little bit more effort, as Celery-based deployments
require two extra resources: a pool of extra compute resources for the Airflow workers
and a message broker that relays messages to the workers (figure 15.3).

 These architecture sketches should hopefully give you some idea of the resources
needed to implement the Airflow deployments in a cloud setting. In the following
chapters, we’ll dive into implementing these architectures on the different clouds.

15.2 Cloud-specific operators and hooks
Over the years, contributors to Airflow have developed a large number of operators
and hooks that allow you to execute tasks involving different cloud services. For
example, the S3Hook allows you to interact with the AWS S3 storage service (e.g., for
uploading/downloading files), while the BigQueryExecuteQueryOperator allows you
to execute queries on Google’s BigQuery service.

 In Airflow 2, these cloud-specific hooks and operators can be used by installing the
corresponding provider packages. In earlier versions of Airflow, you can use the same
functionality by installing the equivalent backport packages from PyPI.

Public subnet Private subnet

Webserver

Scheduler

(+ workers)

DAG storageLog storage Data storage

Metastore

Internet

Figure 15.2 Networking overview for a deployment based on the LocalExecutor. 
Components are separated into two public/private subnets. Only publicly accessible 
services should be placed in the public subnet. Note that the storage services are drawn 
outside of both subnets, as many cloud storage services (e.g., AWS S3) are not necessarily 
bound to a given subnet. Nonetheless, these storage accounts should be protected from 
public access.
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15.3 Managed services
Although rolling your own Airflow deployment can give you ultimate flexibility in how
you use it, setting up and maintaining such a deployment can be a lot of work. One
way to avoid this burden is to use a vendor-managed service, where you can offload
most of the work to an external provider. This provider will then typically give you
tools for easily creating and managing new Airflow deployments without all the hassle
of rolling your own. Usually the provider also promises to maintain the underlying
infrastructure so that you don’t have to worry about keeping your operating system
and/or Airflow installation up-to-date with the latest security patches, monitoring the
systems, and so on.

 Three prominent managed Airflow services are Astronomer.io, Google Cloud Com-
poser, and Amazon MWAA. In the following sections, we’ll provide a brief overview of
these services and their key features.

Public subnet Private subnet

Webserver

Scheduler

DAG storageLog storage Data storage

Metastore

Internet

Worker

Message

Broker

Figure 15.3 Overview of an architecture for an Airflow deployment based on the 
CeleryExecutor. Main additions include an extra pool of compute components for the 
Airflow workers and a message broker for relaying tasks. Note that the Celery-based setup 
no longer requires the scheduler to have access to the data and log storages, as the worker 
compute resources will be responsible for actually performing the work (and will therefore 
actually be reading/writing data and generating log messages).
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15.3.1 Astronomer.io

Astronomer.io is a Kubernetes-based solution for Airflow that can be used as a SaaS
(software as a service) solution (Astronomer cloud), or can be deployed to your own
Kubernetes cluster (Astronomer Enterprise). Compared to vanilla Airflow, Astrono-
mer also provides extra tooling that helps you easily deploy Airflow instances from the
UI or from their custom-built CLI. The CLI also allows you to run local instances of
Airflow for development, which can ease DAG development (assuming you have
Kubernetes available on your development machine).

 Because it is built on Kubernetes, Astronomer.io should integrate well with any
Kubernetes/Docker-based workflows you may be used to. This makes it easy to (for
example) run your tasks in containers using the KubernetesExecutor and Kubernetes-
PodOperator. Other deployment modes using the LocalExecutor or CeleryExecutor
are also supported, giving you a lot of flexibility in how you run your jobs. Astronomer
also allows you to customize your Airflow deployments by specifying extra OS or
Python dependencies that should be installed into the cluster. Alternatively, you can
build a custom Airflow base image should you need that extra flexibility.

 Pricing for the SaaS solution is calculated using Astronomer units (AUs), with differ-
ent configurations costing a different number of AUs. For an overview of these costs,
see the Astronomer website (https://www.astronomer.io/).

 It’s also worth mentioning that Astronomer.io employs several key contributors to
the Airflow project. As such, they contribute strongly to the Airflow project and regu-
larly drive the development of important improvements to the open source version of
Airflow, making sure everyone can benefit from these new features. Their helm charts
for deploying Airflow on Kubernetes are also freely available online, should you want
to try them outside of the Astronomer platform. 

15.3.2 Google Cloud Composer

Google Cloud Composer is a managed version of Airflow that runs on top of the Goo-
gle Cloud Platform (GCP). As such, Cloud Composer provides an easy, almost one-
click solution for deploying Airflow into GCP that integrates well with its different ser-
vices. GCP will also take care of managing the underlying resources, but you only pay
for the resources they use. You can interact with Cloud Composer using the GCP CLI
and/or monitor the state of your cluster(s) from within the GCP web interface.

 Similar to Astronomer.io solution, Cloud Composer is also based on Kubernetes
and runs on the Google Kubernetes Engine (GKE). A nice feature of Cloud Com-
poser is that it integrates well with different services within GCP (such as Google
Cloud Storage, BigQuery, etc.), making it easy to access these different services from
within your DAGs. Cloud Composer also provides a lot of flexibility w.r.t. how you
configure your Kubernetes cluster in terms of resources, and so on, so you can tune
the deployment to your specific needs. Similar to Astronomer.io, you can install
Python dependencies into your Airflow cluster(s) using the web interface or the
GCP CLI.

https://www.astronomer.io/
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 Google Cloud composer includes a fee for the environment itself (number of
nodes, database storage, network egress, etc.) in addition to costs for underlying ser-
vices (GKE, Google Cloud Storage,2 etc). For an up-to-date overview of these costs, see
the GCP website (https://cloud.google.com/).

 As a strong proponent of open source software, Google also regularly contributes
to the Airflow open source project, and has helped develop an extensive suite of oper-
ators for its different services to enable their usage from within Airflow.3

15.3.3 Amazon Managed Workflows for Apache Airflow

Amazon Managed Workflows for Apache Airflow (MWAA) is an AWS service that allows
you to easily create managed Airflow deployments in the AWS cloud, similar to Goo-
gle’s Cloud Composer. When using MWAA to run Airflow, the service will manage the
underlying infrastructure and scale your deployment to meet the demands of your
workflows. Additionally, Airflow deployments in MWAA are also promised to integrate
well with AWS services such as S3, RedShift, Sagemaker, and with AWS CloudWatch for
logging/alerting and AWS IAM for providing a single login for the web interface and
securing access to your data. 

 Similar to the other managed solutions, MWAA uses the CeleryExecutor for scal-
ing workers based on the current workload, with the underlying infrastructure man-
aged for you. DAGs can be added or edited by uploading them to a predefined S3
bucket, where they will be deployed into your Airflow environment. Similar S3-based
approaches can be used to install additional Airflow plug-ins or Python requirements
into the cluster as needed.

 Pricing includes a base fee for the Airflow environment itself and an additional fee
for each of the Airflow worker instances. In both cases, you have the option to choose
between small/medium/large machines to tailor the deployment to your specific use
case. The dynamic scaling of workers means that worker use should be relatively cost-
effective. There is also an extra (monthly) storage cost for the Airflow metastore, as
well as any storage required for your DAGs or data. See the AWS website for an up-to-
date overview and more details (https://aws.amazon.com/).

15.4 Choosing a deployment strategy
When picking a platform for running your Airflow workloads, we recommend exam-
ining the detailed features of the different offerings (and their pricing) to determine
which service is best suited for your situation. In general, rolling your own deploy-
ment in one of the clouds will give you the most flexibility in choosing which compo-
nents to use for running Airflow and how to integrate these into any existing cloud or
on-site solution you already have. On the other hand, implementing your own cloud

2 Used by Cloud Composer for storing DAGs and logs.
3 Note that you don’t necessarily need to use Google Composer to use these operators, as they also function per-

fectly fine from within Airflow (assuming permissions are set up correctly). 

https://cloud.google.com/
https://aws.amazon.com/
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deployment requires some considerable work and expertise, especially if you want to
keep a close eye on important factors such as security and cost management. 

 Using a managed solution allows you to push many of these responsibilities to a ven-
dor, allowing you to focus on actually building your Airflow DAGs rather than on build-
ing and maintaining the required infrastructure. However, managed solutions may not
always be flexible enough for your needs, if you have complicated requirements. 

 As an example, some important considerations may include the following:

 Do you want to use a Kubernetes-based workflow? If so, Astronomer.io or Goo-
gle Cloud Platform provide an easy approach. Alternatively, you can roll your
own Kubernetes cluster, for example using the Helm chart from Astronomer.io.

 Which services do you want to connect to from your DAGs? If you’re heavily
invested in GCP technologies, using Google Cloud Composer might be a no-
brainer due to the easy integration between Composer and other GCP services.
However, if you’re looking to connect to on-site services or those in other
clouds, running Airflow in GCP may make less sense. 

 How do you want to deploy your DAGs? Both Astronomer.io and Google Cloud
Composer provide an easy way to deploy DAGs using the CLI (Astronomer.io)
or a cloud bucket (Cloud Composer). However, you might want to consider
how you wish to tie this functionality into your CI/CD pipelines for automated
deployments of new DAG versions, and so on.

 How much do you want to spend on your Airflow deployment? Kubernetes-
based deployments can be expensive due to the costs of the underlying cluster.
Other deployment strategies (using other compute solutions in the cloud) or
SaaS solutions (like Astronomer.io) can be cheaper options. If you already have
a Kubernetes cluster, you may also want to consider running Airflow on your
own Kubernetes infrastructure. 

 Do you need more fine-grained control or flexibility than provided by the man-
aged services? In this case, you may want to roll your own deployment strategy
(at the cost of more effort in setting up and maintaining the deployment, of
course).

As this short list already demonstrates, there are many factors to consider when choos-
ing a solution for deploying your Airflow cluster. While we cannot make this decision
for you, we hope this provides you with some pointers to consider when choosing a
solution. 

Summary
 Airflow consists of several components (e.g., webserver, scheduler, metastore,

storage) that need to be implemented using cloud services for cloud deployments.
 Airflow deployments with different executors (e.g., Local/CeleryExecutors)

require different components that need to be accounted for in the deployment
strategy.



374 CHAPTER 15 Airflow in the clouds
 For integrating with cloud-specific services, Airflow provides cloud-specific hooks
and operators that allow you to interact with the corresponding service.

 Vendor-managed services (e.g., Astronomer.io, Google Cloud Composer, Ama-
zon MWAA) provide an easy alternative to rolling out your own deployment by
managing many details for you.

 Choosing between vendor-managed services or creating your own cloud deploy-
ment will depend on many factors, with managed solutions providing greater
ease in deployment and management at the expense of less flexibility and (pos-
sibly) higher running costs.



Airflow on AWS
After our brief introduction in the previous chapter, this chapter will dive further
into how to deploy and integrate Airflow with cloud services in Amazon AWS. First,
we’ll start by designing an Airflow deployment by mapping the different compo-
nents of Airflow to AWS services. Then we’ll explore some of the hooks and opera-
tors that Airflow provides for integrating with several key AWS services. Finally, we’ll
show how to use these AWS-specific operators and hooks to implement a use case
for generating movie recommendations.

16.1 Deploying Airflow in AWS
In the previous chapter, we described the different components that comprise an
Airflow deployment. In this section, we’ll design a few deployment patterns for
AWS by mapping them to specific AWS cloud services. This should give you a good

This chapter covers
 Designing a deployment strategy for AWS using 

ECS, S3, EFS and RDS services

 An overview of several AWS-specific hooks and 
operators 

 Demonstrating how to use AWS-specific hooks 
and operators with a use case 
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idea of the process involved in designing an Airflow deployment for AWS and provide
a good starting point for implementing one. 

16.1.1 Picking cloud services

Starting with the Airflow webserver and scheduler components, one of the easiest
approaches for running these components is probably Fargate, AWS’s serverless com-
pute engine for containers. One of the main advantages of Fargate (compared to
other AWS services like ECS1 or EKS2) is that it allows us to easily run containers in
AWS without having to worry about provisioning and managing the underlying com-
pute resources. This means we can simply provide Fargate with a definition of our
webserver and scheduler container tasks and Fargate will take care of deploying, run-
ning, and monitoring the tasks for us.

 For the Airflow metastore, we recommend looking toward AWS’s hosted RDS solu-
tions (e.g., Amazon RDS3), which helps with setting up relational databases in the
cloud by taking care of time-consuming administration tasks such as hardware provi-
sioning, database setup, patching, and backups. Amazon RDS provides several types of
RDS engines you can choose from, including MySQL, Postgres, and Aurora (which is
Amazon’s proprietary database engine). In general, Airflow supports using all of these
backends for its metastore, so your choice may depend on other requirements such as
cost, or features such as high availability.

 AWS provides several options for shared storage. The most prominent is S3, a scal-
able object storage system. S3 is generally great for storing large amounts of data with
high durability and availability for a relatively low cost. As such, it is ideal for storing
large data sets (which we may be processing in our DAGs) or storing temporary files
such as the Airflow worker logs (which Airflow can write to S3 natively). A drawback of
S3 is that it cannot be mounted as a local filesystem into the webserver or scheduler
machines, making it less ideal for storing files such as DAGs, which Airflow requires
local access to.

 In contrast, AWS’s EFS storage system is compatible with NFS and can therefore be
mounted directly into the Airflow containers, making it suitable for storing DAGs. EFS
is, however, quite a bit more expensive than S3, making it less ideal for storing data or
our log files. Another drawback of EFS is that it is more difficult to upload files into
EFS than S3, as AWS does not provide an easy web-based or CLI interface for copying
files to EFS. For these reasons, it may still make sense to look to other storage options
such as S3 (or alternatively Git) for storing DAGs and then use an automated process
to sync the DAGs to EFS (as we will see later in this chapter).

 Overall this gives us with the following setup (figure 16.1):

 Fargate for the compute components (Airflow webserver and scheduler)
 Amazon RDS (e.g., Aurora) for the Airflow metastore

1 Elastic Compute Service, similar to Fargate but requires you to manage the underlying machines yourself.
2 Elastic Kubernetes Service, AWS’s managed solution for deploying and running Kubernetes. 
3 Amazon RDS includes several database types such as PostgreSQL, MySQL, and Aurora.
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 S3 for storage of logs (and optionally also for data)
 EFS for storage of DAGs

16.1.2 Designing the network

We also need to consider how these services will be connected and how we can man-
age internet access to Airflow. A typical AWS networking setup is to create a VPC (vir-
tual private cloud) containing both public and private subnets. In this type of setup,
the private subnets inside the VPC can be used for services that should not be exposed
directly to the internet, while the public subnets can be used to provide external
access to services and outgoing connectivity to the internet. 

 We have a couple of services that need to be connected by network for our Airflow
deployment. For example, both the webserver and scheduler containers need to have
access to the Airflow metastore RDS and EFS for retrieving their DAGs. We can
arrange this access by connecting both containers, the RDS and our EFS instance, to
our private subnet, which will also ensure that these services are not directly accessible
from the internet (figure 16.2). To provide access to S3 for our containers, we can also
place a private S3 endpoint within the private subnet, which will ensure that any S3
bound traffic doesn’t leave our VPC.

 We also want to expose our Airflow webserver to the internet (with the proper
access controls of course) so that we can access the webserver from our workspace. A
typical approach is to place them behind an application load balancer (ALB), which is
publicly accessible in the public subnet via an internet gateway. This ALB will handle
any incoming connections and forward them to our webserver container if appropri-
ate. To make sure that our webserver can also send back responses to our requests, we
also need to place a NAT gateway in the public subnet.

Airflow

scheduler

+ workers

(Fargate)

Airflow

webserver

(Fargate)

Airflow metastore

(Amazon RDS)

Log storage

(S3)

DAG storage

(EFS)

Data storage

(S3)

Figure 16.1 Mapping the Airflow components from figure 15.1 to AWS services. 
Fargate is used for the compute components (webserver, scheduler, and workers), 
as it provides an easy and flexible container-based compute service. Amazon RDS 
is used as a managed database service for the metastore, while EFS and S3 are 
used for storage. Arrows indicate dependencies between the services.
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16.1.3 Adding DAG syncing

As mentioned before, a drawback of using EFS for storing DAGs is that EFS is not very
easy to access using web-based interfaces or command line tools. As such, you may
want to look toward setting up a process for automatically syncing DAGs from another
storage backend, such as S3 or a Git repository. 

 One possible solution is to create a Lambda function that takes care of syncing
DAGs from git or S3 to EFS (figure 16.3). This Lambda can be triggered (either by S3
events or a build pipeline in the case of Git) to sync any changed DAGs to EFS, mak-
ing the changes available to Airflow.

16.1.4 Scaling with the CeleryExecutor

Although this setup should be robust enough to handle many workloads, we can
improve the scalability of our Airflow deployment by switching to the CeleryExecutor.
The main advantage of this switch is that the CeleryExecutor allows you to run each
Airflow worker in its own container instance, thus substantially increasing the resources
available to each worker.
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Figure 16.2 Projecting our components onto a network layout with public/private subnets. The public subnet 
provides access to the webserver over the internet via an application load balancer, coupled with an internet 
and NAT gateway for routing traffic from/to the internet. The private subnet ensures our compute/storage 
components can reach each other without being exposed online unintentionally. Arrows indicate the direction 
of information flowing between the services.
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To use the CeleryExecutor, we have to make a number of changes to our design (fig-
ure 16.4). First, we need to set up a separate pool of Fargate tasks for the Airflow work-
ers, which run in separate processes in the Celery-based setup. Note that these tasks
also need to have access to the Airflow metastore and the logs bucket to be able to
store their logs and results. Second, we need to add a message broker that relays jobs
from the scheduler to the workers. Although we could choose to host our own mes-
sage broker (e.g., RabbitMQ or possibly Redis) in Fargate or something similar, it is
arguably easier to use AWS’s SQS service, which provides a simple serverless message
broker that requires little effort to maintain.

 Of course, a drawback of using the CeleryExecutor is that the setup is a bit more
complex than the LocalExecutor and therefore requires more effort. The added
components (most notably the extra worker tasks) may also add some considerable
costs for the extra compute resources required for each worker.
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Figure 16.3 Adding automated DAG syncing to our architecture. This allows us to store and edit DAGs in S3, 
which is generally easier to access and interact with than EFS. A Lambda service takes care of automatically 
syncing new DAGs from S3 to EFS.
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16.1.5 Further steps

Although we have sketched some basic deployment strategies for Airflow in AWS, we
should be careful to note that these setups should not be considered production-
ready, as we still need to consider a number of factors.

 First and foremost, security is an important consideration for production deploy-
ments. Although we have put some effort into shielding our different components
from the public internet, we still need to consider further restricting access to com-
ponents using security groups and network ACLs, limiting access to AWS resources
using the appropriate IAM4 roles and policies, and so on. At the Airflow level, you
should also consider how you would like to secure Airflow (using Airflow’s RBAC mech-
anism, etc.). 

 We would also expect production deployments to have a robust approach for log-
ging, auditing, and tracking metrics and for raising alerts if issues are encountered
with any of the deployed services. For this, we recommend looking at the correspond-
ing services provided by AWS, including CloudTrail and CloudWatch. 

4 Identity and access management.

VPC

Public subnet Private subnet

Airflow webserver

(Fargate)

Airflow metastore

(Amazon RDS)

Log storage

(S3)

NAT

gateway

Application

load balancer

Internet

gateway

Internet

Elastic

network

interface

Data storage

(S3)

Local DAG
storage (EFS)

Airflow scheduler

(Fargate)

Airflow workers

(Fargate)

Message

broker (SQS)

Figure 16.4 An alternative deployment based on the CeleryExecutor. The CeleryExecutor runs workers 
in separate compute processes, which are run as individual container instances on Fargate. Amazon’s SQS 
service is used as a message broker to pass tasks to the workers after they have been scheduled.
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16.2 AWS-specific hooks and operators
Airflow provides a considerable number of built-in hooks/operators that allow you to
interact with a great number of the AWS services. These allow you to (for example)
coordinate processes involving moving and transforming data across the different ser-
vices, as well as the deployment of any required resources. For an overview of all the
available hooks and operators, see the Amazon/AWS provider package.5 

 Due to their large number, we won’t go into any details of the AWS-specific hooks
and operators but rather refer you to their documentation. However, tables 16.1 and
16.2 provide a brief overview of several hooks and operators with the AWS services
they tie into and their respective applications. A demonstration of some of these
hooks and operators is also provided in the next section.

5 Can be installed in Airflow 2 using the apache-airflow-providers-amazon providers package, or in Air-
flow 1.10 using the backport package apache-airflow-backport-providers-amazon.

Table 16.1 An excerpt of some of the AWS-specific hooks

Service Description Hook Application(s)

Athena Serverless big data 
queries

AWSAthenaHook Execute queries, poll query 
status, retrieve results.

CloudFormation Infrastructure 
resources (stacks) 
management

AWSCloudFormation
Hook

Create and delete Cloud-
Formation stacks.

EC2 VMs EC2Hook Retrieve details of VMs; wait 
for state changes.

Glue Managed ETL service AwsGlueJobHook Create Glue jobs and check 
their status.

Lambda Serverless functions AwsLambdaHook Invoke Lambda functions. 

S3 Simple storage service S3Hook List and upload/download files.

SageMaker Managed machine 
learning service

SageMakerHook Create and manage machine 
learning jobs, endpoints, etc.

Table 16.2 An excerpt of some of the AWS-specific operators

Operator Service Description

AWSAthenaOperator Athena Execute a query on Athena.

CloudFormationCreateStackOperator CloudFormation Create a CloudFormation stack.

CloudFormationDeleteStackOperator CloudFormation Delete a CloudFormation stack.

S3CopyObjectOperator S3 Copy objects in S3.

SageMakerTrainingOperator SageMaker Create a SageMaker training job.
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One hook that deserves special mention is the AwsBaseHook, which provides a generic
interface to AWS services using AWS’s boto3 library. To use the AwsBaseHook, instanti-
ate it with a reference to an Airflow connection that contains the appropriate AWS
credentials:

from airflow.providers.amazon.aws.hooks.base_aws import AwsBaseHook

hook = AwsBaseHook("my_aws_conn")

The required connection can be created in Airflow using the web UI (figure 16.5) or
other configuration approaches (e.g., environment variables). The connection essen-
tially requires two details: an access key and secret that point to an IAM user in AWS.6

Once we have instantiated the hook, we can use it to create boto3 clients for different
services using the get_client_type method. For example, you can create a client for
the AWS Glue service as follows:

glue_client = hook.get_client_type("glue")

6 We’ll provide an example of how to obtain these details in the next section.

Figure 16.5 Creating a connection for the AWS hook in Airflow. Note that the access key and secret 
should be entered as a JSON construct in the extra field rather than in the login/password fields 
(contrary to what you might expect).
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With this client, we can perform all kinds of operations on the Glue service in AWS. For
more details on the different types of clients and the supported operations, you can ref-
erence the boto3 documentation (https://boto3.amazonaws.com/v1/documentation/
api/latest/index.html). To be able to perform any of these operations, the hook’s
IAM user used should have the appropriate permissions in AWS. As such, make sure to
assign the appropriate permissions to the respective user using IAM policies. 

 In the next section, we’ll show an example of building a custom operator based on
the AwsBaseHook, which demonstrates how this all ties together.

16.3 Use case: Serverless movie ranking with AWS Athena
To explore some of these AWS-specific features, let’s turn to a small example. 

16.3.1 Overview

In this example, we’re interested in using some of the serverless services in AWS (S3,
Glue, Athena) to analyze the movie data we encountered in previous chapters. Our
goal is to find the most popular movies by ranking them by their average rating (using
all the ratings up to that point in time). One of the advantages of using serverless ser-
vices for this task is that we don’t have to worry about running and maintaining any
servers ourselves. This makes the overall setup relatively cheap (we only pay for things
while they’re running), and it requires relatively low maintenance.

 To build this serverless movie ranking process, we need to implement a couple
of steps:

 First, we fetch the movie ratings from our API and load them into S3 to make
them available in AWS. We plan to load the data on a monthly basis so that we
can calculate the ratings for each month as new data comes in.

 Second, we use AWS Glue (a serverless ETL service) to crawl the ratings data on
S3. By doing so, Glue creates a table view of the data stored in S3, which we can
subsequently query to calculate our rankings.

 Finally, we use AWS Athena (a serverless SQL query engine) to execute an
SQL query on the ratings table to calculate our movie rankings. The output of
this query is written to S3 so that we can use the rankings in any applications
downstream. 

This provides us with a relatively straightforward approach (figure 16.6) for ranking
movies, which should scale easily to large data sets (as S3 and Glue/Athena are
highly scalable technologies). Moreover, the serverless aspect means that we don’t
have to pay for any servers to run this one-in-a-month process, keeping down costs.
Nice, right?

https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
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16.3.2 Setting up resources

Before implementing the DAG, let’s start by creating the required resources in AWS.
Our DAG will require the following cloud resources:

 An S3 bucket that will contain our ratings data
 A second S3 bucket that will store the ranking results
 A Glue crawler that will create a table from our ratings data
 An IAM user that will allow us to access the S3 buckets and call services such as

Glue and Athena 

One way to configure these resources is to open the AWS Console (http://console
.aws.amazon.com) and create the required resources manually in the respective sec-
tions of the console. However, for sake of reproducibility, we recommend defining
and managing your resources using an infrastructure-as-code solution such as Cloud-
Formation (AWS templating solution for defining cloud resources in code). For this
example, we have provided a CloudFormation template that creates all of the required
resources in your account. For brevity, we will not dive into the details of the template
here, but happily refer you to its details online (https://github.com/BasPH/data-
pipelines-with-apache-airflow/blob/master/chapter16/resources/stack.yml).

 To create the required resources with our template, open the AWS console, go to
the CloudFormation section, and click Create Stack (figure 16.7). On the following
page, upload the provided template and click Next. On the Stack details page, enter a
name for your stack (= this set of resources) and fill in a unique prefix for your S3
bucket names (which is required to make them globally unique). Now click Next a few
more times (making sure to select “I acknowledge that AWS CloudFormation might
create IAM resources with custom names” on the review page), and CloudFormation
should start creating your resources.

 Once complete, you should be able to see the status of the created stack in the
CloudFormation stack overview page (figure 16.8). You can also see which resources
CloudFormation created for you under the Resources tab (figure 16.9). This should
include an IAM user and a bunch of access policies, the two S3 buckets, and our Glue
crawler. Note that you can navigate to the different resources by clicking the physical
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Ratings

bucket

(S3)

AWS Glue AWS Athena Rankings

bucket

(S3)

Crawl

external table

Rank using
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Figure 16.6 Overview of the data process involved in the serverless movie ranking use case. 
Arrows indicate data transformations performed in Airflow, marked by the corresponding AWS 
service used for performing the data transformation (where applicable).

http://console.aws.amazon.com
http://console.aws.amazon.com
http://console.aws.amazon.com
https://github.com/BasPH/data-pipelines-with-apache-airflow/blob/master/chapter16/resources/stack.yml
https://github.com/BasPH/data-pipelines-with-apache-airflow/blob/master/chapter16/resources/stack.yml
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Figure 16.7 Creating a CloudFormation stack in the AWS console

Figure 16.8 Overview of the created CloudFormation Stack in the AWS console. This page shows the 
overall status of the stack and provides you with controls for updating or deleting the stack, if needed.
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ID link of each resource, which will navigate to the respective resource in the corre-
sponding section of the AWS console. 

 If something went wrong during the creation of the stack, you can try identifying
the issue using the events in the Events tab. This can happen if, for example, your
bucket names conflict with someone else’s preexisting buckets (as they must be glob-
ally unique). 

 Once we have our required set of resources, we have one thing left to do. To be
able to use the IAM user the stack in our DAG created, we need to create an access key
and secret for the user that can be shared with Airflow. To create this access key and
secret, scroll down until you find the AWS:IAM:USER resource created by the stack and
click its physical ID link. This should bring you to the user overview in AWS’s IAM
console. Next, navigate to the Security credentials tab and click Create access key (fig-
ure 16.10). Write the generated access key and secret down and keep them secure, as
we’ll need this later in Airflow.

 

Figure 16.9 Overview of the resources created by the CloudFormation stack. You can use this view 
to navigate to the different resources created by the stack.
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16.3.3 Building the DAG

Now we have all the required resources, let’s start implementing our DAG by looking for
the appropriate hooks and operators. For the first step, we need an operator that
fetches data from our movie ratings API and uploads them to S3. Although Airflow pro-
vides a number of built-in S3 operators, none of them allows us to fetch ratings from our
API and upload them directly to S3. Fortunately, we can also implement this step by
combining the PythonOperator and the S3Hook. Together, these classes allow us to fetch
the ratings using our own Python function(s) and then upload the results to S3.

from airflow.operators.python import PythonOperator
from airflow.providers.amazon.aws.hooks.s3 import S3Hook

from custom.hooks import MovielensHook

def _fetch_ratings(api_conn_id, s3_conn_id, s3_bucket, **context):
    year = context["execution_date"].year
    month = context["execution_date"].month

    logging.info(f"Fetching ratings for {year}/{month:02d}")
    api_hook = MovielensHook(conn_id=api_conn_id)

Listing 16.1 Uploading ratings using the S3Hook (dags/01_aws_usecase.py)

Figure 16.10 Creating an access key and secret for the generated user



388 CHAPTER 16 Airflow on AWS
    ratings = pd.DataFrame.from_records(
        api_hook.get_ratings_for_month(year=year, month=month),
        columns=["userId", "movieId", "rating", "timestamp"],
    )                                                        B
 

 logging.info(f"Fetched {ratings.shape[0]} rows")

 

with tempfile.TemporaryDirectory() as tmp_dir:               c
    tmp_path = path.join(tmp_dir, "ratings.csv")
    ratings.to_csv(tmp_path, index=False)

    logging.info(f"Writing results to ratings/{year}/{month:02d}.csv")
    s3_hook = S3Hook(s3_conn_id)
    s3_hook.load_file(                                       d
        tmp_path,
        key=f"ratings/{year}/{month:02d}.csv",
        bucket_name=s3_bucket,
        replace=True,
    )

fetch_ratings = PythonOperator(
    task_id="fetch_ratings",
    python_callable=_fetch_ratings,
    op_kwargs={
        "api_conn_id": "movielens",
        "s3_conn_id": "my_aws_conn",
        "s3_bucket": "my_ratings_bucket",
     },
)

B Fetch ratings from the API using the MovielensHook from chapter 8 (code for the hook is available in 
dags/custom/hooks.py).

c Write ratings to a temporary directory.

d Upload the written ratings to S3 using the S3Hook.

Note that the S3Hook requires a connection ID that specifies which connection (i.e.,
which credentials) to use for connecting to S3. As such, we need to make sure that Air-
flow is configured with a connection that has an access key and secret for a user with
sufficient permissions. Fortunately, we already created such a user in the previous sec-
tion (using our CloudFormation stack) and can now use the credentials to create our
Airflow connection (figure 16.5). After creating the connection, make sure to substi-
tute its name and the name of your S3 bucket (under the op_kwargs argument to the
PythonOperator).

 For the second step, we need an operator that is able to connect to AWS to trigger
our Glue crawler (which was also created by the CloudFormation stack). Unfortu-
nately, Airflow does not provide an operator for this operation, meaning we have to
build our own. However, we can use the built-in AwsBaseHook as a base for our opera-
tor, which provides us with easy access to the different AWS services using boto3. 
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 Using this AwsBaseHook, we can create our own operator7 (the GlueTrigger-
CrawlerOperator) that essentially retrieves a Glue client using the AwsBaseHook and
uses it to start our crawler using the Glue client’s start_crawler method. After check-
ing if the crawler started successfully, we can check the status of the crawler using the
client’s get_crawler method, which (among other things) returns the status of the
crawler. Once the crawler reaches the ready state, we can be fairly confident8 that it
has finished running, meaning we can continue with any downstream tasks. Alto-
gether, an implementation of this operator could look something like the following.

import time
from airflow.models import BaseOperator
from airflow.providers.amazon.aws.hooks.base_aws import AwsBaseHook
from airflow.utils.decorators import apply_defaults

class GlueTriggerCrawlerOperator(BaseOperator):
    """
    Operator that triggers a crawler run in AWS Glue.

    Parameters
    ----------
    aws_conn_id
        Connection to use for connecting to AWS. Should have the appropriate
        permissions (Glue:StartCrawler and Glue:GetCrawler) in AWS.
    crawler_name
        Name of the crawler to trigger.
    region_name
        Name of the AWS region in which the crawler is located.
    kwargs
        Any kwargs are passed to the BaseOperator.
    """
    @apply_defaults
    def __init__(
        self,
        aws_conn_id: str,
        crawler_name: str,
        region_name: str = None,
        **kwargs
    ):
        super().__init__(**kwargs)
        self._aws_conn_id = aws_conn_id
        self._crawler_name = crawler_name
        self._region_name = region_name

    def execute(self, context):
        hook = AwsBaseHook(                                             B
           self._aws_conn_id, client_type="glue", 

7 See chapter 8 for more details on creating custom operators.
8 This example could arguably be made more robust by adding more checks for unexpected responses, statuses,

and so on.

Listing 16.2 Operator for triggering Glue crawlers (dags/custom/operators.py)
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           region_name=self._region_name
        )   
        glue_client = hook.get_conn()                                   B

        self.log.info("Triggering crawler")
        response = glue_client.start_crawler(Name=self._crawler_name)   c

        if response["ResponseMetadata"]["HTTPStatusCode"] != 200:         d
            raise RuntimeError(
                "An error occurred while triggering the crawler: %r" % response
            )

        self.log.info("Waiting for crawler to finish")
        while True:                                                       e
            time.sleep(1)
            crawler = glue_client.get_crawler(Name=self._crawler_name)
            crawler_state = crawler["Crawler"]["State"]

            if crawler_state == "READY":                                  f
                self.log.info("Crawler finished running")
                break

B Create an AwsBaseHook instance and retrieve a client for AWS Glue.

c Use the Glue client to start the crawler.

d Check if starting the crawler was successful.

e Loop to check the crawler state.

f Stop once the crawler has finished running (indicated by the READY state).

We can use GlueTriggerCrawlerOperator as follows.

from custom.operators import GlueTriggerCrawlerOperator

trigger_crawler = GlueTriggerCrawlerOperator(
    aws_conn_id="my_aws_conn",
    task_id="trigger_crawler",
    crawler_name="ratings-crawler",
)

Finally, for the third step, we need an operator that allows us to execute a query in
Athena. This time we’re in luck, as Airflow provides an operator for doing so: the
AwsAthenaOperator. This operator requires a number of arguments: the connection
to Athena, the database (which should have been created by the Glue crawler), the
execution query, and an output location in S3 to write the results of the query to. Alto-
gether, our usage of the operator would look something like this.

from airflow.providers.amazon.aws.operators.athena import AWSAthenaOperator

rank_movies = AWSAthenaOperator(

Listing 16.3 Using the GlueTriggerCrawlerOperator (dags/01_aws_usecase.py).

Listing 16.4 Ranking movies using the AWSAthenaOperator (dags/01_aws_usecase.py)
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    task_id="rank_movies",
    aws_conn_id="my_aws_conn",
    database="airflow",
    query="""
        SELECT movieid, AVG(rating) as avg_rating, COUNT(*) as num_ratings B
        FROM (
            SELECT movieid, rating, 
                CAST(from_unixtime(timestamp) AS DATE) AS date
            FROM ratings    
        )
        WHERE date <= DATE('{{ ds }}')                                     c
        GROUP BY movieid                                                   d
        ORDER BY avg_rating DESC
    """,
    output_location=f"s3://my_rankings_bucket/{{ds}}",
)

B Retrieve the movie ID, rating value and date of each rating.

c Select all ratings up to the execution date.

d Group by movie ID to calculate the average rating per movie.

Now that we have created all the required tasks, we can start tying everything together
in the overall DAG.

import datetime as dt
import logging
import os
from os import path
import tempfile

import pandas as pd

from airflow import DAG
from airflow.providers.amazon.aws.hooks.s3 import S3Hook
from airflow.providers.amazon.aws.operators.athena import AWSAthenaOperator
from airflow.operators.dummy import DummyOperator
from airflow.operators.python import PythonOperator

from custom.operators import GlueTriggerCrawlerOperator
from custom.ratings import fetch_ratings

with DAG(
    dag_id="01_aws_usecase",
    description="DAG demonstrating some AWS-specific hooks and operators.",
    start_date=dt.datetime(year=2019, month=1, day=1),    b
    end_date=dt.datetime(year=2019, month=3, day=1),
    schedule_interval="@monthly",
    default_args={
        "depends_on_past": True                           c
    }
) as dag:
    fetch_ratings = PythonOperator(...)

Listing 16.5 Building the overall recommender DAG (dags/01_aws_usecase.py)



392 CHAPTER 16 Airflow on AWS
    trigger_crawler = GlueTriggerCrawlerOperator(...)
    rank_movies = AWSAthenaOperator(...)
    fetch_ratings >> trigger_crawler >> rank_movies

b Set start/end dates to fit the ratings data set.

c Use depends_on_past to avoid running queries before past data has been loaded (which would give 
incomplete results). 

With everything in place, we should now be able to run our DAG within Airflow (fig-
ure 16.11). Assuming everything is configured correctly, your DAG runs should be
successful and you should see some CSV outputs from Athena appearing in your rat-
ings output bucket (figure 16.12). If you run into issues, make sure that the AWS
resources were set up correctly and that your access key and secret were configured
correctly.

16.3.4 Cleaning up

After finishing with this example, make sure to clean up any resources you created in
AWS to avoid incurring any unnecessary costs. If you used our CloudFormation tem-
plate for creating the resources, you can delete most by deleting the stack. Note that
some resources, like the S3 buckets, will have to be removed manually even if you are
using the template, as CloudFormation will not let you delete non-empty buckets
automatically. Make sure to check if all created resources were deleted successfully,
paying extra attention to check any resources you may have created manually.

Figure 16.11 The resulting movie-ranking DAG in Airflow, illustrating the three different tasks and the 
corresponding operators involved in each task
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Summary
 Airflow can be deployed in AWS using services such as ECS/Fargate for running

the scheduler and webserver processes, EFS/S3 for storage, and Amazon RDS
for the Airflow metastore.

 Airflow provides many AWS-specific hooks and operators that allow you to inte-
grate with different services with the AWS cloud platform. 

 The AwsBaseHook class provides low-level access to all services in AWS using the
boto3 library, allowing you to implement your own high-level hooks and opera-
tors if these do not yet exist. 

 Using AWS-specific hooks and operators generally requires you to configure the
required resources and access permissions in AWS and Airflow so that Airflow is
allowed to perform the required operations. 

Figure 16.12 The results of the Athena query in the rankings bucket



Airflow on Azure
This chapter will dive further into how to deploy and integrate Airflow with cloud ser-
vices in the Microsoft Azure cloud. First, we’ll start designing an Airflow deployment
by mapping the different components of Airflow to Azure services. Then we’ll explore
some of the hooks and operators that Airflow provides for integrating with several
key Azure services. Finally, we’ll show how to use these Azure-specific operators and
hooks to implement a use case for generating movie recommendations.

17.1 Deploying Airflow in Azure
In chapter 15, we described the different components comprising an Airflow
deployment. In this section, we’ll design a few deployment patterns for Azure by
mapping them to specific Azure cloud services. This should give you a good idea of

This chapter covers
 Designing a deployment strategy for Azure

 An overview of several Azure-specific hooks 
and operators

 Demonstrating how to use Azure-specific hooks 
and operators with a use case
394
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the process involved in designing an Airflow deployment for Azure and provide a
good starting point for implementing one. 

17.1.1 Picking services

Let’s start with the Airflow webserver and scheduler components. One of the easiest
approaches for running these components is to use Azure’s managed container ser-
vices, such as Azure Container Instances (ACI) or Azure Kubernetes Service (AKS).
However, for the webserver, we also have another option: the Azure App Service. 

 Azure App Service is, as Microsoft puts it, “a fully managed platform for building,
deploying and scaling your web apps.” In practice, it provides a convenient approach
for deploying web services onto a managed platform that includes features such as
authentication and monitoring. Importantly, App Service supports deploying appli-
cations in containers, which means that we can use it to deploy the Airflow web-
server and allow it to take care of authentication for us. Of course, the scheduler
doesn’t need any of the web-related functionality provided by App Service. As such,
it still makes sense to deploy the scheduler to ACI, which provides a more basic con-
tainer runtime.

 For the Airflow metastore, it makes a lot of sense to look toward Azure’s managed
database services, such as Azure SQL Database. This service effectively provides us
with a convenient solution for a relational database on an SQL server without having
to worry about the maintenance of the underlying system. 

 Azure provides a number of different storage solutions, including Azure File Stor-
age, Azure Blob Storage, and Azure Data Lake Storage. Azure File Storage is the most
convenient solution for hosting our DAGs, as File Storage volumes can be mounted
directly into the containers running in App Service and ACI. Moreover, File Storage is
easy to access using supporting user applications such as the Azure Storage Explorer,
making it relatively straightforward to add or update any DAGs. For data storage, it
makes more sense to look toward Azure Blob or Data Lake Storage, as these are better
suited for data workloads than file storage. 

 This gives us the following setup (also shown in figure 17.1):

 App Service for the Airflow webserver
 ACI for the Airflow scheduler
 Azure SQL database for the Airflow metastore
 Azure File Storage for storing DAGs
 Azure Blob Storage for data and logs

17.1.2 Designing the network

Now we have picked services for each component, we can start designing the network-
ing connectivity between them. In this case, we want to expose the Airflow webserver
to the internet so that we can access it remotely. However, we want to keep other
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components, such as the Airflow metastore and the Airflow scheduler, in a private net-
work to avoid exposing them online.

 Fortunately, the Azure App Service makes it easy to expose the webserver as a web
application; that is exactly what it is designed for. As such, we can let App Service take
care of exposing the webserver and connecting it to the internet. We can also use the
built-in functionally of App Service to add a firewall or an authentication layer (which
can be integrated with Azure AD, etc.) in front of the webservice, preventing unautho-
rized users from accessing the webserver.

 For the scheduler and metastore, we can create a virtual net (vnet) with a private sub-
net and place these more private components inside the private network (figure 17.2).
This will provide us with connectivity between the metastore and the scheduler. To
allow the webserver to access the metastore, we need to enable vnet integration for
App Service.

 Both Azure File Storage and Azure Blob Storage can be integrated with App Ser-
vice and ACI. By default, both these storage services are accessible via the internet,
meaning that they don’t need to be integrated into our vnet. However, we also recom-
mend looking into using private endpoints for connecting storage accounts to your
private resources, which provides more security by ensuring that data traffic does not
traverse the public internet. 

 

Airflow

scheduler

+ workers

(ACI)

Data storage

(Azure Blob)

Log storage

(Azure Blob)

DAG storage

(Azure Blob)

Airflow metastore

(Azure SQL)

Airflow

webserver

(App service)

Figure 17.1 Mapping the Airflow components from figure 15.1 to Azure services. 
App Service and CI are used for the compute components (webserver, scheduler, 
and workers, respectively), as these provide convenient container-based compute 
services. App Service is used for the webserver instead of ACI, as it provides extra 
functionality for authenticating access to the webserver, and so on. Azure SQL 
Database is used as a managed database service for the metastore, while Azure File 
Storage and Azure Blob Storage services are used for storing DAGs, logs, and data. 
Arrows indicate dependencies between the services.
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17.1.3 Scaling with the CeleryExecutor

Similar to the AWS solution, we can improve the scalability of our Azure deployment
by switching from the LocalExecutor to the CeleryExecutor. In Azure, switching
executors also requires us to create a pool of Airflow workers that the CeleryExecutor
can use. As we are already running our scheduler in ACI, it makes sense to create the
extra Airflow workers as additional container services running in ACI (figure 17.3).

 Next, we also need to implement a message broker for relaying jobs between the
scheduler and the workers. Unfortunately, there are (to our knowledge) no managed
solutions in Azure that integrate well with Airflow for this purpose. As such, the easiest
approach is to run an open source service in ACI that can function as a message bro-
ker for Airflow. Open source tools such as RabbitMQ and Redis can be used for this
purpose.1

1 The availability of the storage services can be limited to the vnet using a combination of private endpoints and
firewall rules to provide an extra layer of security.

Private vnet

Airflow

webserver

(App service)

Airflow

scheduler

+ workers

(ACI)

Data storage

(Azure Blob)

Log storage

(Azure Blob)

Airflow metastore

(Azure SQL)

Internet

DAG storage

(Azure Fileshare)

Private

endpoint

Figure 17.2 Projecting our components onto a network layout with a private virtual network 
(vnet). The private vnet sequesters our internal resources (e.g., the metastore and scheduler 
service) from the public internet, protecting them from external access. The webserver is 
exposed to the internet via Azure App Service so that it can be accessed remotely. Integration 
with the vnet is arranged using a private endpoint so that the webserver can reach the 
metastore. Arrows indicate the direction of information flowing between the services. The 
storage services are not sequestered to the vnet here but can be if desired.1
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17.1.4 Further steps

Although this illustrates some basic deployment strategies for Airflow in Azure, we
should be careful to note that these are not production-ready. Similar to the AWS
designs, any production-ready setup will still need to take extra steps, such as setting
up proper firewalls and access controls. At the Airflow level, you should also consider
how you want to secure Airflow (e.g., using Airflow’s RBAC mechanism, etc.). 

 We also expect production deployments to have a robust approach for logging,
auditing, tracking metrics, and raising alerts if issues are encountered with any of the
deployed services. For this, we recommend looking at the corresponding services pro-
vided by Azure, including Azure Log Analytics, App Insights, and so on. 

17.2 Azure-specific hooks/operators
At the time of writing this book, Airflow has relatively few built-in hooks and operators
specific for Azure cloud services. This probably reflects a bias of the Airflow commu-
nity; however, it should be pretty straightforward to implement (and contribute) your

Private vnet

Airflow
webserver

(App service)

Airflow

scheduler (ACI)

Data storage

(Azure Blob)
Log storage

(Azure Blob)

Airflow metastore

(Azure SQL)

Internet

DAG storage

(Azure Fileshare)

Private
endpoint

Redis/RabbitMQ

message broker

Airflow

workers (ACI)

Figure 17.3 An alternative deployment based on the CeleryExecutor. The Celery-
Executor runs workers in separate compute processes, which are run as individual container 
instances on ACI. Additionally, a Redis or RabbitMQ instance is run in ACI to function as a 
message broker for passing tasks to the workers after they have been scheduled.
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own using the Azure Python SDK. Additionally, several services can be accessed using
more generic interfaces (e.g., ODBC, as we will see in the example use case), meaning
that Airflow can still interact well with Azure cloud services.

 Airflow’s Azure-specific hooks and operators (tables 17.1 and 17.2) are provided by
the Microsoft/Azure provider package.2 Several of these hooks and operators can be
used to interact with Azure’s different storage services (e.g., Blob, File Share, and Data
Lake Storage), with additional hooks providing access to specialized databases (e.g.,
CosmosDB) and container runtimes (e.g., Azure Container Service).

2 Can be installed in Airflow 2 using the apache-airflow-providers-microsoft-azure providers package
or in Airflow 1.10 using the backport package apache-airflow-backport-providers-microsoft-azure.

Table 17.1 An excerpt of some of the Azure-specific hooks

Service Description Hook Applications

Azure Blob Storage Blob storage service WasbHooka

 a Windows Azure Storage Blob.

Uploading/downloading 
files 

Azure Container 
Instances 

Managed service for 
running containers

AzureContainer-
InstanceHook

Running and monitor-
ing containerized jobs

Azure Cosmos DB Multi-modal database 
service 

AzureCosmosDBHook Inserting and retrieving 
database documents

Azure Data Lake 
Storage

Data lake storage for 
big-data analytics

AzureDataLakeHook Uploading/downloading 
files to/from Azure Data 
Lake Storage 

Azure File Storage NFS-compatible file 
storage service

AzureFileShareHook Uploading/downloading 
files

Table 17.2 An excerpt of some of the Azure-specific operators

Operator Service Description

AzureDataLakeStorageList-
Operator

Azure Data Lake Storage Lists files under a specific file path

AzureContainerInstances-
Operator

Azure Container Instances Runs a containerized task

AzureCosmosInsertDocument-
Operator

Azure Cosmos DB Inserts a document into a database 
instance

WasbDeleteBlobOperator Azure Blob Storage Deletes a specific blob
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17.3 Example: Serverless movie ranking 
with Azure Synapse
To get familiar with using some Azure services within Airflow, we’ll implement a small
movie recommender using several serverless services (similar to the AWS use case, but
now applied to Azure). In this use case, we’re interested in identifying popular movies
by ranking them based on their user average rating. By using serverless technologies
for this task, we hope to keep our setup relatively simple and cost-effective by not hav-
ing to worry about running and maintaining any servers but letting Azure take care of
this for us. 

17.3.1 Overview

Although there are probably many different ways to perform this kind of analysis in
Azure, we will focus on using Azure Synapse for performing our movie ranking, as it
allows us to perform serverless SQL queries using its SQL on-demand capability. This
means we only have to pay for the amount of data we process in Azure Synapse and
don’t have to worry about running the costs and maintenance of the compute resources
it uses.

 To implement our use case using Synapse, we need to perform the following steps:

1 Fetch ratings for a given month from our ratings API and upload the ratings
into Azure Blob Storage for further analysis. 

2 Use Azure Synapse to execute an SQL query that ranks our movies. The result-
ing list of ranked movies will be written back to Azure Blob Storage for further
downstream consumption.

This gives us the data process shown in figure 17.4. The astute reader will notice we
have one less step than we did for the AWS example using Glue and Athena. This is
because our Azure example will directly reference files on the blob storage when per-
forming the query (as we will see), instead of indexing them into a catalogue first (at
the cost of having to manually specify a schema in the query).

Ratings

API

Fetch ratings

into blob storage

Ratings

container

(Azure Blob)

Rankings

container

(Azure Blob)

Azure Synapse

(Serverless SQL)

Rank using

SQL query

Python

Figure 17.4 Overview of the data process involved in the serverless movie ranking 
use case. Arrows indicate data transformations performed in Airflow, marked by the 
corresponding Azure service used for performing the data transformation (where 
applicable).
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17.3.2 Setting up resources

Before building our DAG, we first need to create the required resources. We’ll do so
from within the Azure Portal (https://portal.azure.com), which you should be able to
access with a proper Azure subscription.

 In the portal, we’ll start by creating a resource group (figure 17.5), which rep-
resents the virtual container of our resources for this use case. Here we’ve named the
resource group “airflow-azure,” but in principle this can be anything you want.

After setting up the resource group, we can start creating an Azure Synapse work-
space, which is currently named “Azure Synapse Analytics” (workspaces preview) in
the Azure portal. To create a Synapse workspace, open the page of the service in the
portal and click Create Synapse workspace. On the first page of the creation wizard
(figure 17.6), select the previously created resource group and enter a name for your
Synapse workspace. Under the storage options, make sure to create a new storage
account and file system (choose any names you like).

 On the next page of the wizard (figure 17.7), we have the option to specify a user-
name and password for the SQL administrator account. Enter whatever you like, but
remember what you filled in (we’ll need these details when building our DAG).

 On the third page (figure 17.8), you also have the option of restricting network
access by deselecting “Allow connections from all IP addresses,” but don’t forget to
add your personal IP address to the firewall exemptions if you deselect this option.
Click Review + create to start creating the workspace.

 Now that we have our Synapse workspace and corresponding storage account, we
can start creating the containers (a kind of subfolder) that will hold our ratings and

Figure 17.5 Creating an Azure resource group to hold our resources

https://portal.azure.com
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Figure 17.6 First page of the wizard for creating a Synapse workspace. Make sure to specify the correct 
resource group and a name for your workspace. To set up the storage, click Create new for both the 
account and file system options under storage and enter a name for the storage account and file system.

Figure 17.7 Specifying security options for the Synapse workspace
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rankings data in the blob storage. To do so, open the storage account (if you lost it,
you should be able to find it back in your resource group), go to the Overview page
and click Containers. On the Containers page (figure 17.9), create two new contain-
ers, ratings and rankings, by clicking + Container and entering the corresponding
container name.

 Finally, to ensure we can access our storage account from Airflow, we need to
obtain an access key and secret. To get these credentials, click Access keys in the left

Figure 17.8 Specifying networking options for the Synapse workspace

Figure 17.9 Creating blob containers for holding our ratings and rankings data in the storage account
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panel of the (figure 17.10). Write down the storage account name and one of the two
keys, which we’ll pass as connection details to Airflow when implementing our DAG.

17.3.3 Building the DAG

Now that we have all of the required resources, we can start building our DAG. For the
first of two steps, we need to implement an operation that fetches data from our ratings
API and uploads them to Azure Blob Storage. The easiest way to implement this is to
combine the PythonOperator with the WasbHook from the Microsoft/Azure provider
package. This combination allows us to fetch the ratings using our own functions and
then upload the results to Azure Blob Storage using the hook.

import logging
from os import path
import tempfile

from airflow.operators.python import PythonOperator
from airflow.providers.microsoft.azure.hooks.wasb import WasbHook

from custom.hooks import MovielensHook

def _fetch_ratings(api_conn_id, wasb_conn_id, container, **context):
    year = context["execution_date"].year
    month = context["execution_date"].month

Listing 17.1 Uploading ratings using the WasbHook (dags/01_azure_usecase.py)

Figure 17.10 Obtaining the account name and key for accessing the blob storage account from Airflow
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    logging.info(f"Fetching ratings for {year}/{month:02d}")
    api_hook = MovielensHook(conn_id=api_conn_id)
    ratings = pd.DataFrame.from_records(                        B
        api_hook.get_ratings_for_month(year=year, month=month),
        columns=["userId", "movieId", "rating", "timestamp"],
    )    
    logging.info(f"Fetched {ratings.shape[0]} rows")

    with tempfile.TemporaryDirectory() as tmp_dir:              c
        tmp_path = path.join(tmp_dir, "ratings.csv")
        ratings.to_csv(tmp_path, index=False)

        logging.info(f"Writing results to 

             ➥ {container}/{year}/{month:02d}.csv")
        hook = WasbHook(wasb_conn_id)                           d
        hook.load_file(
            tmp_path, 
            container_name=container, 
            blob_name=f"{year}/{month:02d}.csv",
        )

fetch_ratings = PythonOperator(
    task_id="upload_ratings",
    python_callable=_upload_ratings,
    op_kwargs={
        "wasb_conn_id": "my_wasb_conn", 
        "container": "ratings"
    },
)

B Fetch ratings from the API using the MovielensHook from chapter 8 (code for the hook is available in 
dags/custom/hooks.py).

c Write ratings to a temporary directory.

d Upload the written ratings to Azure Blob using the WasbHook.

The WasbHook requires a connection ID that specifies which to use for connecting to
the storage account. This connection can be created in Airflow using the credentials
we obtained in the previous section, using the account name as the login and the
account key as password (figure 17.11). The code is pretty straightforward: we fetch
the ratings, write them to a temporary file, and upload the temporary file to the rat-
ings container using the WasbHook.

 For the second step, we need an operator that can connect to Azure Synapse, exe-
cute a query that generates our rankings, and write the results to the rankings con-
tainer in our storage account. Although no Airflow hook or operator provides this
kind of functionality, we can use the OdbcHook (from the ODBC provider package3) to
connect to Synapse over an ODBC connection. This hook then allows us to perform

3 Can be installed in Airflow 2 using the apache-airflow-providers-odbc provider package or in Airflow 1.10
using the backport package apache-airflow-backport-providers-odbc.
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the query and retrieve the results, which we can then write to Azure Blob Storage
using the WasbHook. 

 The actual ranking will be performed by the Synapse SQL query in listing 17.2.

RANK_QUERY = """
    SELECT movieId, AVG(rating) as avg_rating, COUNT(*) as num_ratings   B
    FROM OPENROWSET(                                                     c
        BULK
            'https://{blob_account_name}.blob.core.windows.net/
            ➥ {blob_container}/*/*.csv',
        FORMAT = 'CSV',
        PARSER_VERSION = '2.0',
        HEADER_ROW = TRUE,
        FIELDTERMINATOR =',',
        ROWTERMINATOR = '\n',
    )
    WITH (
        [userId] bigint,                                                 d
        [movieId] bigint,
        [rating] float,
        [timestamp] bigint
    ) AS [r]
    WHERE (                                                              e
        (r.filepath(1) < '{year}') OR

Listing 17.2 Synapse SQL query for ranking movies (dags/01_azure_usecase.py)

Storage account name

Storage account key

Name and type of the connection

Figure 17.11 Creating an Airflow connection for the Azure Blob Storage account, using the 
storage account name and key obtained from the Azure Portal
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        (r.filepath(1) = '{year}' AND r.filepath(2) <= '{month:02d}')
    )
    GROUP BY movieId                                                     f
    ORDER BY avg_rating DESC
"""

B Retrieve the movie ID, rating value, and date of each rating.

c Tell Synapse to look for our CSV data set in our blob storage account.

d Define the schema to use when reading the CSV data.

e Select all ratings up to the execution date based on partition file names.

f Group by movie ID to calculate the average rating per movie.

In this SQL query, the OPENROWSET statement tells Synapse to load the required data
set from our storage account (referenced by the URL) and that the data files are in a
CSV file format. Following OPENROWSET, the WITH statement tells Synapse what schema
to use for data read from the external data set so that we can ensure the data columns
have the correct types. Finally, the WHERE statement uses the different parts of the file
paths to ensure we only read data up to the current month, while the rest of the state-
ment performs our actual ranking (using the SELECT AVG, GROUP BY and ORDER BY
statements). 

NOTE In this case, Synapse has access to the storage account because we
placed our files in the storage account coupled to the Synapse workspace. If
you were to place the files in another storage account (not directly coupled to
the workspace), you need to make sure to either grant your Synapse work-
space’s identity access to the corresponding account or register the it with the
proper access credentials as an external data store in the workspace.

We can execute this query using the following function, which executes the query
using the OdbcHook,4 converts the rows in the result to a Pandas data frame and then
uploads the contents of that data frame to the blob storage using the WasbHook.

def _rank_movies(
   odbc_conn_id, wasb_conn_id, ratings_container, rankings_container, 

**context
):
    year = context["execution_date"].year
    month = context["execution_date"].month

    blob_account_name = WasbHook.get_connection(wasb_conn_id).login    B

    query = RANK_QUERY.format(                                         c
        year=year,

4 Note that this requires the proper ODBC drivers to be installed. This driver should already be installed in our
Docker image. If you’re not using our image, more details on how to install the drivers yourself are available
on the Microsoft website. Make sure to use the proper version for your operating system.

Listing 17.3 Executing the Synapse query using ODBC (dags/01_azure_usecase.py)
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        month=month,
        blob_account_name=blob_account_name,
        blob_container=ratings_container,
    )
    logging.info(f"Executing query: {query}")

    odbc_hook = OdbcHook(                                              d
        odbc_conn_id, 
        driver="ODBC Driver 17 for SQL Server",
    )   

    with odbc_hook.get_conn() as conn:
        with conn.cursor() as cursor:
            cursor.execute(query)                                      e
 
            rows = cursor.fetchall()                                   e
            colnames = [field[0] for field in cursor.description]

    ranking = pd.DataFrame.from_records(rows, columns=colnames)        f
    logging.info(f"Retrieved {ranking.shape[0]} rows")

    logging.info(f"Writing results to 
         ➥ {rankings_container}/{year}/{month:02d}.csv")
    with tempfile.TemporaryDirectory() as tmp_dir:
        tmp_path = path.join(tmp_dir, "ranking.csv")
        ranking.to_csv(tmp_path, index=False)                          g

        wasb_hook = WasbHook(wasb_conn_id)                             h
        wasb_hook.load_file(
            tmp_path,
            container_name=rankings_container,
            blob_name=f"{year}/{month:02d}.csv",
        )

B Retrieve the name of our blob storage account (same as the login name for the storage account).

c Inject run parameters into the SQL query.

d Connect to Synapse using the ODBC hook.

e Execute the query and retrieve the resulting rows.

f Convert the resulting rows into a pandas data frame.

g Write the result to a temporary CSV file.

h Upload the CSV file containing rankings to Blob storage.

Similar to the previous step, we can execute this function using the PythonOperator,
passing in the required connection references and container paths as arguments to
the operator. 

rank_movies = PythonOperator(
    task_id="rank_movies",
    python_callable=_rank_movies,
    op_kwargs={
        "odbc_conn_id": "my_odbc_conn",

Listing 17.4 Calling the movie ranking function (dags/01_azure_usecase.py)
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        "wasb_conn_id": "my_wasb_conn",
        "ratings_container": "ratings",
        "rankings_container": "rankings",
    },
)

Of course, we still need to provide the details for the ODBC connection to Airflow
(figure 17.12). You can find the host URL for your Synapse instance in the overview
page of the Synapse workspace in the Azure portal under “SQL on-demand endpoint”
(on-demand = serverless SQL). For the database schema, we’ll simply use the default
database (master). Finally, for the user login/password, we can use the username and
password we provided for our admin user when we created the workspace. Of course,
we only use the admin account here for the purpose of this demonstration. In a more
realistic setting, we recommend creating a separate SQL user with the required per-
missions and using that user to connect to Synapse.

All that remains it to combine these two operators into a DAG, which we’ll run on a
monthly interval to generate monthly movie rankings.

import datetime as dt
import logging

Listing 17.5 Building the overall recommender DAG (dags/01_azure_usecase.py)

Name and type of the connection

Address of the Synapse serverless endpoint

Name of the Synapse database schema

Name and password of your Synapse user

Figure 17.12 Creating an Airflow connection for the ODBC connection to Synapse. The corresponding 
user details should have been set when creating the Synapse workspace.
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from os import path
import tempfile

import pandas as pd

from airflow import DAG

from airflow.providers.microsoft.azure.hooks.wasb import WasbHook
from airflow.providers.odbc.hooks.odbc import OdbcHook
from airflow.operators.python import PythonOperator

from custom.hooks import MovielensHook

RANK_QUERY = ...

def _fetch_ratings(api_conn_id, wasb_conn_id, container, **context):
    ...

def _rank_movies(odbc_conn_id, wasb_conn_id, ratings_container,
        rankings_container, **context):
    ...

with DAG(
    dag_id="01_azure_usecase",
    description="DAG demonstrating some Azure hooks and operators.",
    start_date=dt.datetime(year=2019, month=1, day=1),    b
    end_date=dt.datetime(year=2019, month=3, day=1),
    schedule_interval="@monthly",
    default_args={"depends_on_past": True},               c
) as dag:
    fetch_ratings = PythonOperator(...)
    rank_movies = PythonOperator(...)
    upload_ratings >> rank_movies

b Set start/end dates to fit the ratings data set.

c Use depends_on_past to avoid running queries before past data has been loaded (which would give 
incomplete results).

With everything complete, we should finally be able to run our DAG in Airflow. If all
goes well, we should see our tasks loading data from the ratings API and processing
them in Synapse (figure 17.13). If you run into any problems, make sure that the paths
to the data and the access credentials for Azure Blob Storage and Synapse are correct.

17.3.4 Cleaning up

After you’re done with playing around with this example in Azure Synapse, you can
remove all the created resources by deleting the resource group we created in the
beginning of the use case (as this should contain all those resources). To do this,
open the Overview page of the resource group in the Azure portal and click Delete
resource group (figure 17.14). Confirm the deletion to start deleting all the underly-
ing resources.
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Figure 17.13 Successfully generating movie rankings using Azure Synapse in the movie ranking DAG

Figure 17.14 Cleaning up the created resources by deleting the corresponding resource group
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Summary
 Airflow can be deployed in Azure using services such as ACI and App Service

for running the scheduler and webserver processes, Azure File/Blob Storages
for storing files, and Azure SQL Database for the Airflow metastore.

 Airflow provides several Azure-specific hooks and operators that allow you to
integrate with different services with the Azure cloud platform.

 Some Azure services can be accessed using generalized hooks, such as the
ODBC hook, if they conform to these standardized protocols. 

 Using Azure-specific hooks and operators generally also requires you to config-
ure the required resources and access permissions in Azure and Airflow so that
Airflow is allowed to perform the required operations. 



Airflow in GCP
The last major cloud provider, Google Cloud Platform (GCP), is actually the best
supported cloud platform in terms of the number of hooks and operators. Almost
all Google services can be controlled with Airflow. In this chapter, we’ll dive into
setting up Airflow on GCP (section 18.1), operators and hooks for GCP services
(section 18.2), and the same use case as demonstrated on AWS and Azure, applied
to GCP (section 18.3).

 We must also note that GCP features a managed Airflow service named “Cloud
Composer,” which is mentioned in more detail in section 15.3.2. This chapter
covers a DIY Airflow setup on GCP, not Cloud Composer.

This chapter covers
 Designing a deployment strategy for GCP 

 An overview of several GCP-specific hooks and 
operators 

 Demonstrating how to use GCP-specific hooks 
and operators
412
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18.1 Deploying Airflow in GCP
GCP provides various services for running software. There is no one-size-fits-all approach,
which is why Google (and all other cloud vendors) provide different services for run-
ning software.

18.1.1 Picking services

These services can be mapped on a scale, ranging from fully self-managed with the most
flexibility, to managed completely by GCP with no maintenance required (figure 18.1).

On the left-hand side, we have Compute Engine, which gives you a virtual machine to
run any piece of software you desire. Compute Engine provides you complete free-
dom and control, which can be positive, but it also requires you to manage and config-
ure the virtual machine yourself. For example, if traffic to a service you’re running on
Compute Engine increases, it is up to you to scale vertically by creating a new VM with
a larger instance type or scale horizontally by configuring an autoscaling policy to cre-
ate more of the same instances.

 On the right-hand side, we have Cloud Functions, to which you can provide a func-
tion in one of the supported languages (Node.js, Python, Go, and Java at the time of
writing), for example, a Python function that returns the current time in a given time
zone. So, if you call the function with an argument, CEST, the function will return the
time for the CEST time zone. Functions handle small workloads and operate event-
based. Google manages your function (i.e., the underlying infrastructure) and will
scale the number of deployed functions automatically. If a high load is requested from
your function, Google will automatically scale up. Google handles all logging, moni-
toring, and the like; you only have to provide the function. If your use case fits the
characteristics of a function, it can greatly improve your productivity.

 It is not trivial to set up Airflow because of the shared storage it requires for storing
and sharing DAG files (mostly applies when running CeleryExecutor or Kubernetes-
Executor). This limits our options in GCP:

Compute engine App engine Cloud functionsKubernetes engine

• Virtual Machine
• Self-managed
• Complete control
• General purpose

• Function
• GCP managed
• No configuration
• Event-based

workloads

Figure 18.1 Overview of the different compute services available in the Google Cloud Platform
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 Cloud functions serve stateless event-based functions, which Airflow is not, and
therefore cannot be deployed on Cloud Functions.

 Running Airflow on App Engine might be technically possible but with a few
caveats: App Engine expects a single Docker container, while the minimum Air-
flow installation is already split between a webserver and a scheduler process. This
poses a challenge: typically, applications that expose something (e.g., a frontend
or REST API) are run on App Engine, which scales automatically based on the
load. Airflow does not fit this model, as it’s a distributed application by default.
The webserver could be a good candidate though to run on GAE.

The Airflow scheduler does not fit the App Engine model, so this leaves us
with two options: GCE and GKE. Kubernetes was already discussed in detail in
chapter 10.

 The Kubernetes Engine is a good fit for Airflow. Helm charts for deploying Air-
flow on Kubernetes are available, plus it provides abstractions for mounting
filesystems shared by multiple pods.

 The Compute Engine gives you complete freedom to run and configure your
instance. We can distinguish two flavors of the Compute Engine: a Linux-based
VM and a container-optimized OS (COS) VM. A COS system is ideal for run-
ning Docker containers, and therefore seems attractive from a deployment per-
spective but unfortunately poses an issue in combination with Airflow. Airflow
requires a filesystem for DAG storage (potentially shared between multiple
machines), for which storage accessible via NFS is a common solution. How-
ever, COS does not come with NFS libraries. While it might be technically possi-
ble to install these, this is not a simple task, so it’s easier to switch to a Linux-
based VM, which gives complete control.

For a shared file system, two (out of the many) options on GCP are as follows:

 Google Cloud Filestore (a GCP-managed NAS service)
 GCS mounted with FUSE

Shared file systems have long been a challenge, and each comes with pros and cons. If
possible, we prefer avoiding FUSE filesystems as they apply a file system–like interface
over something that was never intended to be a file system (e.g., GCS is an object
store), which comes with poor performance and consistency challenges, especially
when used by multiple clients.

 For other Airflow components, the number of options is less and thus easier. For
the metastore, GCP provides Cloud SQL, which can run both MySQL and Post-
greSQL. For the storage of logs, we’ll apply Google Cloud Storage (GCS), which is
GCP’s object storage service.

 When running on GCP, deploying on Google Kubernetes Engine (GKE) is prob-
ably the easiest approach (figure 18.2). GKE is Google’s managed Kubernetes ser-
vice, which provides an easy way to deploy and manage containerized software. The
other obvious option on GCP—running everything on Linux-based Compute Engine
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VMs—takes more work and time to get up and running as you have to configure
everything yourself. Google already provides a managed Airflow service named
Composer, but we will demonstrate how Airflow is deployed on GKE and can inte-
grate with other GCP services.

18.1.2 Deploying on GKE with Helm

Let’s start with getting GKE going. In this section, we aim to provide the basic com-
mands for getting Airflow up and running, so we skip various details that are often
required in a production setup, such as not exposing services on public IPs. The com-
mand in listing 18.1 will create a GKE cluster with a public endpoint.

Working with the gcloud cli
To tell Google to use a specific project, you can either configure a default with

gcloud config set project [my-project-id]

or add a flag to every command, like this one:

gcloud compute instances list --project [my-project-id]

For the gcloud commands shown, we do not display the --project flag and assume
you set a default or add the --project flag to the command.

Logs storage

(cloud storage)

Data storage

(cloud storage)

Airflow metastore

(cloud SQL)

Airflow Docker images

(container registry)
Airflow webserver/scheduler/workers

(Kubernetes engine)

Figure 18.2 Mapping Airflow components to GCP in a Kubernetes-based 
deployment of Airflow
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gcloud container clusters create my-airflow-cluster \
--machine-type n1-standard-4 \
--num-nodes 1 \
--region "europe-west4"

Then use the command in the following listing to connect your kubectl client with the
cluster.

gcloud container clusters get-credentials my-airflow-cluster \
--region europe-west4

On this cluster, we will deploy a fully operational Airflow installation using Helm, a pack-
age manager for Kubernetes. At the time of writing, a Helm chart is included in the Air-
flow repository on GitHub but not released via an official channel. We must therefore
download it to install. Check the Airflow documentation for the most recent details.

$ curl -OL https://github.com/apache/airflow/archive/master.zip    B
$ unzip master.zip
$ kubectl create namespace airflow                                 c
$ helm dep update ./airflow-master/chart                           d
$ helm install airflow ./airflow-master/chart –namespace airflow   e

NAME: airflow
LAST DEPLOYED: Wed Jul 22 20:40:44 2020
NAMESPACE: airflow
STATUS: deployed
REVISION: 1
TEST SUITE: None
NOTES:
Thank you for installing Airflow!

Your release is named airflow.

➥ You can now access your dashboard(s) by executing the following command(s) 
and visiting the corresponding port at localhost in your browser:

➥ Airflow dashboard:        kubectl port-forward svc/airflow-webserver 
8080:8080 --namespace airflow

B Download Airflow source code.

c Create a Kubernetes namespace for Airflow.

d Download specified versions of dependent Helm charts.

e Install the Airflow Helm chart, which will take some time.

The Helm chart in listing 18.3 installs a complete Airflow installation running in
Kubernetes. That means everything runs inside Kubernetes. Many parts are configu-
rable, but by default, it runs the KubernetesExecutor with a Postgres metastore, DAGs

Listing 18.1 gcloud command to create a GKE cluster

Listing 18.2 gcloud command to configure a kubectl config entry

Listing 18.3 Downloading and installing the Airflow Helm chart
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are baked into the Docker images, and the webserver username/password is “admin”/
“admin” (which you likely want to change). The webserver runs as a Kubernetes
ClusterIP service, which gives you a service inside your cluster that other applications
can access but is not accessible externally. To access it we can port forward to the pod.

kubectl port-forward svc/airflow-webserver 8080:8080 --namespace airflow

This makes the webserver accessible on http:/ /localhost:8080.
 DAGs can be added via two methods:

1 The default deployment method with the Helm chart is to build DAGs together
with the Airflow Docker image. To build a new image and update the Docker
image, run the following. 

helm upgrade airflow ./airflow-master/chart \
  --set images.airflow.repository=yourcompany/airflow \
  --set images.airflow.tag=1234abc

2 Or you can point to a Git repository and configure a Git-sync (https://github
.com/kubernetes/git-sync) sidecar container, which pulls in code from the Git
repository every X (default 60) number of seconds.

helm upgrade airflow ./airflow-master/chart \
  --set dags.persistence.enabled=false \
  --set dags.gitSync.enabled=true

For all details and configuration options, refer to the Airflow documentation.

18.1.3 Integrating with Google services

After running Airflow on GKE, we can view how to make more use of Google’s man-
aged services so that we don’t have to manage applications on Kubernetes ourselves.
We will demonstrate how to create a GCP load balancer to expose the webserver exter-
nally. To do so, we must change the service type of the webserver, which is a ClusterIP
service by default.

 A ClusterIP-type service can route requests to the correct pod but provides no exter-
nal endpoint to connect to, requiring a user to set up a proxy to connect to a service (fig-
ure 18.3, left). This is not user-friendly, so we want a different mechanism the user can
connect to directly without any configuration. There are various options for doing this,
and one of them is to create a Kubernetes service LoadBalancer (figure 18.3, right). The
service type is applied in chart/values.yaml, in the section “webserver.” Change the ser-
vice type from ClusterIP to LoadBalancer and apply the changed Helm chart.

Listing 18.4 Port forwarding to the Airflow webserver

Listing 18.5 Updating the deployed Airflow image with Helm

Listing 18.6 Configuring a Git-sync sidecar with the Airflow Helm chart

https://github.com/kubernetes/git-sync
https://github.com/kubernetes/git-sync
https://github.com/kubernetes/git-sync
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helm upgrade --install airflow ./airflow-master/chart --namespace airflow

GKE receives the request to apply changes on the GKE cluster and notices the change
from ClusterIP to LoadBalancer service. GKE integrates with various GCP services,
and one of them is a load balancer. When creating a Kubernetes LoadBalancer in
GKE, GCP will create a load balancer under the network services menu, serving traffic
to your GKE cluster (figure 18.4).

Selecting the newly created load balancer will show the address, which is now accessi-
ble externally (figure 18.5).

 In this screenshot, the Airflow webserver is now accessible on http://34.90.59
.14:8080.

Listing 18.7 Installing a new version of a Helm chart

GKE

Service

Pod Pod Pod

Proxy

Ingress controller

Pod Pod Pod

Ingress controller

Load balancer

GKE

GCP

ClusterIP service LoadBalancer service

Figure 18.3 Different access patterns for services running in Kubernetes

Figure 18.4 Creating a load balancer in the GCP console

http://34.90.59.14:8080
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Other components of the Airflow Helm installation can also be outsourced to GCP
services; however, the required work is more involved:

 The Postgres database can run on Cloud SQL.
 We can run our own images from Google Cloud Repository (GCR).
 We can set up remote logging to GCS (described in section 12.3.4).

18.1.4 Designing the network

The network layout is a personal choice, and the number of options is limitless. For
example, is it okay to have traffic going over the public internet and use external IPs,
or does security require us to route all traffic internally within GCP and only use inter-
nal IPs? We aim to provide a network layout to help you get started, which does not
(and cannot) fit everybody but can serve as a starting point. Using the components
mentioned gives the result shown in figure 18.6.

 As mentioned, Airflow is installed on GKE. The webserver can be exposed to the out-
side world via a load balancer. Cloud Storage is a globally available service that is not
restricted to a VPC. However, GCP does provide a service named VPC Service Controls
(VPC SC) to limit communications to selected services (including Cloud Storage) that
can only be accessed from within your VPC. The Cloud SQL database serving the Airflow
metastore cannot run in the same subnet as your own services. Google creates a fully
managed database for you in its own perimeter. Thus, a connection to the database must
be created either via the public internet or by peering your own VPC with Google’s VPC.

18.1.5 Scaling with the CeleryExecutor

Celery relies on a message broker to distribute tasks to workers. GCP offers a messag-
ing service named Pub/Sub; however, this is not supported by Celery. Thus, you are
limited to using the open source tools Celery does support: RabbitMQ or Redis. From
an architectural perspective, this won’t change figure 18.6 since these services can run
alongside the Airflow containers in GKE.

Address on which Airflow webserver
can be accessed externally

Figure 18.5 Identifying the external address of the load balancer in the GCP console
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By default, the Airflow Helm starts with the KubernetesExecutor. Luckily, it’s very
easy to configure the CeleryExecutor. Required components (e.g., Redis) are auto-
matically installed with one command.

$ helm upgrade airflow ./airflow-master/chart --set executor=CeleryExecutor

Release "airflow" has been upgraded. Happy Helming!
...

➥ You can now access your dashboard(s) by executing the following command(s) 
and visiting the corresponding port at localhost in your browser:

➥ Airflow dashboard:        kubectl port-forward svc/airflow-webserver 
8080:8080 --namespace airflow

➥ Flower dashboard:         kubectl port-forward svc/airflow-flower 
5555:5555 --namespace airflow                                   B

B The Celery Flower dashboard is installed for monitoring.

The number of Celery workers can be controlled manually with the Helm property
workers.replicas, which is set to 1 by default. It does not scale automatically. However,

Listing 18.8 Configuring the CeleryExecutor

GCP project

VPC

Cloud storage

Region

Private subnet

Airflow

on GKE

VPC

Region

Subnet

Cloud SQL

VPC network peering

Load balancer

Figure 18.6 Example GCP network layout with Airflow running on GKE, Cloud 
SQL for the metastore, and the Airflow webserver exposed via a load balancer
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there is a solution to do so, namely Kubernetes Event-Driven Autoscaling, better
known as KEDA.1 Based on a certain given condition, KEDA will automatically scale
the number of containers up or down (known as HPA, or horizontal pod autoscaling,
in Kubernetes), for example the workload on your Airflow setup. The Airflow Helm
chart provides settings to enable KEDA autoscaling and defines the load on Airflow
and corresponding workers as the following query on the Airflow metastore:

CEIL((RUNNING + QUEUED tasks) / 16)

For example, say we have 26 running tasks and 11 queued tasks: CEIL((26 + 11)/16)
= 3 workers. By default, KEDA queries the database every 30 seconds and changes the
number of workers if it differs from the current number of workers, enabling autoscal-
ing of Celery workers, as shown in figure 18.7.

1 The Celery and KEDA setup was first introduced by this blog post: https://www.astronomer.io/blog/the-keda-
autoscaler.
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Figure 18.7 Airflow running the CeleryExecutor with KEDA automatically scaling the number of Celery 
workers up and down depending on the workload. This setup only works when installed on Kubernetes.

https://www.astronomer.io/blog/the-keda-autoscaler
https://www.astronomer.io/blog/the-keda-autoscaler
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Enable the KEDA autoscaling using the Airflow Helm chart.

helm repo add kedacore https://kedacore.github.io/charts

helm repo update

kubectl create namespace keda

helm install \
  --set image.keda=docker.io/kedacore/keda:1.2.0 \
  ➥ --set image.metricsAdapter=docker.io/kedacore/keda-metrics-adapter:1.2.0 \
  --namespace keda \
  keda kedacore/keda

helm upgrade airflow ./airflow-master/chart \
  --set executor=CeleryExecutor \
  --set workers.keda.enabled=true \
  --set workers.persistence.enabled=false      B

B KEDA does not support Kubernetes StatefulSets, so it must be turned off.

So why would you prefer the Celery and KEDA setup over the KubernetesExecutor?
While both can scale horizontally, the Celery and KEDA setup is more desirable from
a performance perspective since it keeps a certain number of Celery workers up and
running, workers that immediately process new tasks arriving on the queue. However,
the KubernetesExecutor must create a new Airflow pod to run a given task, resulting
in startup overhead for every task.

 All settings mentioned are configurable; refer to the documentation for all details.
At the time of writing, the KEDA setup is considered experimental; refer to the Air-
flow documentation for the latest information.

18.2 GCP-specific hooks and operators
Many GCP services are covered by GCP-specific Airflow operators, hooks, sensors, and
so on, providing much greater coverage than for AWS and Azure. Due to their sheer
number, we refer you to the Google/Cloud provider package apache-airflow-
providers-google for a full overview of the available hooks and operators.

 The Google-related hooks don’t inherit from the airflow.hooks.BaseHook, but
from the airflow.providers.google.common.hooks.base_google.GoogleBaseHook class.
This base class provides the same authentication mechanism to the Google REST API
so that all derived hooks and operators using it don’t have to implement authentica-
tion. Three methods of authentication are supported:

1 By configuring an environment variable GOOGLE_APPLICATION_CREDENTIALS
(outside of Airflow) to the path of a JSON key file

2 By setting fields “Project id” and “Keyfile Path” in an Airflow connection of type
Google Cloud Platform

3 By providing the contents of a JSON key file to an Airflow connection of type
“Google Cloud Platform” in the field “Keyfile JSON”

Listing 18.9 Configuring the CeleryExecutor and autoscaling
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Upon execution of any GCP-related operator, a request will be sent to GCP, which
requires authentication. This authentication can be represented by a service account
in GCP, an account that can be used by an application (such as Airflow) instead of a
human. Airflow requires one of the three options to authenticate GCP with the given
service account. For example, say we want to allow Airflow to run BigQuery jobs. Let’s
create a service account that grants these permissions.

 First, in the GCP console, browse to Service Accounts (figure 18.8).

Figure 18.8 Creating a service account in the GCP console
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Click Create Service Account and provide a name, for example, “run-bigquery-jobs.”
Next, provide the BigQuery Job User role, which holds permissions to run BigQuery
jobs (figure 18.9).

After adding the role, click Continue to advance to the next screen, where we can cre-
ate a key. Click Create Key and you will be given two options to download a key file.
JSON is the recommended method, so select it and click Create to download a JSON
file holding the key (figure 18.10).

 The just-downloaded JSON file holds a few values that can be used to authenticate
with GCP.

$ cat airflow-pipelines-4aa1b2353bca.json
{
  "type": "service_account",
  "project_id": "airflow-pipelines",
  "private_key_id": "4aa1b2353bca412363bfa85f95de6ad488e6f4c7",
  ➥ "private_key": "-----BEGIN PRIVATE KEY-----\nMIIz...LaY=\n-----END 

PRIVATE KEY-----\n",
  "client_email": "run-bigquery-jobs@airflow-pipelines.iam...com",
  "client_id": "936502912366591303469",
  "auth_uri": "https://accounts.google.com/o/oauth2/auth",
  "token_uri": "https://oauth2.googleapis.com/token",
  "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/...",
  "client_x509_cert_url": "https://...iam.gserviceaccount.com"
}

Listing 18.10 Contents of a service account JSON key

Figure 18.9 Adding the appropriate BigQuery permissions to your service account
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Keep this file safe and secure. Anybody with access to it can authenticate to GCP and
use the granted permissions. Let’s provide it to Airflow so that we can run a BigQuery
job. Given the three options, we can provide the key in three ways:

1 By setting an environment variable, GOOGLE_APPLICATION_CREDENTIALS.

export GOOGLE_APPLICATION_CREDENTIALS=/path/to/key.json

Note this sets the credentials globally, and all applications authenticating with
Google will read this JSON key.

2 By configuring an Airflow connection (figure 18.11).
3 By providing the contents of the JSON file to an Airflow connection (figure 18.12).

All three options will authenticate. Note that the JSON key is specific to a single
project. Using option 1 will set the key globally on your system: all applications con-
necting with Google will authenticate using this key and use the same permissions.
Option 2 also points to the file location of the JSON key but from an Airflow con-
nection. This way you can provide different connection IDs to different tasks, using

Listing 18.11 Setting Google credentials using an environment variable

Figure 18.10 Creating and downloading the access key
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different sets of permissions between tasks, and possibly also connecting to different
GCP projects. The difference between option 2 and 3 is that with option 3 your
JSON key is stored only in Airflow and not as a file on your filesystem; this can be
desirable, but if there are other applications on your system sharing the same key,
go for option 2.

 
 
 
 

Specify the
GCP project.

Specify the path
to the JSON key.

Figure 18.11 Creating an Airflow connection using the access key file
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18.3 Use case: Serverless movie ranking on GCP
Let’s look back at the use case previously applied to AWS and Azure. How would it work
on GCP? Many of the cloud services can be mapped against each other (table 18.1).

Table 18.1 Comparing similar services on AWS, Azure, and GCP

AWS Azure GCP

S3 Blob Storage GCS

Glue Synapse Dataflow

Athena Synapse BigQuery

Provide the complete
key JSON to the
“Keyfile JSON” field.

Select “Google Cloud”
to configure additional
GCP-specific fields.

Figure 18.12 Creating an Airflow connection using the access key JSON
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The services mentioned here provide comparable functionality but are not identical.
They can be used for similar purposes but differ in various features and details. For
example, AWS Glue is a managed Apache Spark service plus the metadata store. GCP
Dataflow is a managed Apache Beam service. Both Spark and Beam are aimed at pro-
cessing big data but do so in different ways. For our use case, they will both do the job.

18.3.1 Uploading to GCS

Similar to chapters 16 and 17, the first part of the workflow fetches ratings from our
ratings API and uploads these to GCS, Google’s object storage service. Although most
GCP services can be managed by an Airflow operator, there is obviously no operator
for communicating with our custom API. While we could technically split up the work
by first extracting ratings data, writing these to a local file, and then uploading the file
to GCS in a second step using the LocalFilesystemToGCSOperator, for conciseness
we will perform this action in one task. The only component from Airflow we can
apply here is the GCSHook for performing actions on GCS.

import datetime
import logging
import os
import tempfile
from os import path

import pandas as pd
from airflow.models import DAG
from airflow.operators.python import PythonOperator
from airflow.providers.google.cloud.hooks.gcs import GCSHook

from custom.hooks import MovielensHook

dag = DAG(
   "gcp_movie_ranking",
   start_date=datetime.datetime(year=2019, month=1, day=1),
   end_date=datetime.datetime(year=2019, month=3, day=1),
   schedule_interval="@monthly",
   default_args={"depends_on_past": True},
)

def _fetch_ratings(api_conn_id, gcp_conn_id, gcs_bucket, **context):
   year = context["execution_date"].year
   month = context["execution_date"].month

   logging.info(f"Fetching ratings for {year}/{month:02d}")

   api_hook = MovielensHook(conn_id=api_conn_id)
   ratings = pd.DataFrame.from_records(
       api_hook.get_ratings_for_month(year=year, month=month),
       columns=["userId", "movieId", "rating", "timestamp"],
   )

Listing 18.12 DAG fetching ratings and uploading to GCS
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   logging.info(f"Fetched {ratings.shape[0]} rows")

   with tempfile.TemporaryDirectory() as tmp_dir: 
       tmp_path = path.join(tmp_dir, "ratings.csv")                       B
       ratings.to_csv(tmp_path, index=False)

       # Upload file to GCS.
       logging.info(f"Writing results to ratings/{year}/{month:02d}.csv")
       gcs_hook = GCSHook(gcp_conn_id)                                    c
       gcs_hook.upload(                                                   d
           bucket_name=gcs_bucket,                                        e
           object_name=f"ratings/{year}/{month:02d}.csv",                 f
           filename=tmp_path,
       )

fetch_ratings = PythonOperator(
   task_id="fetch_ratings",
   python_callable=_fetch_ratings,
   op_kwargs={
       "api_conn_id": "movielens",
       "gcp_conn_id": "gcp",
       "gcs_bucket": os.environ["RATINGS_BUCKET"],
   },
   dag=dag,
)

B First extract and write results to a local file.

c Initialize a connection to GCS.

d Upload the local file to GCS.

e The GCS bucket to which the file will be uploaded

f The GCS key to which the data will be written

If all succeeds, we now have data in a GCS bucket, shown in figure 18.13.

Figure 18.13 Results of a 
successful run of the initial 
DAG, with ratings being 
uploaded into the bucket, in 
Google Cloud Storage
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18.3.2 Getting data into BigQuery

After uploading the data to GCS, we will load the data into BigQuery so that we can
query it. While BigQuery can deal with external data, it is somewhat restricted in
options when the data is partitioned, especially when creating external tables. It is best
is to load the data into BigQuery internally. There are several Airflow operators related
to operations on BigQuery; the GCSToBigQueryOperator is specifically for loading data
stored on GCS into BigQuery.

➥ from airflow.providers.google.cloud.transfers.gcs_to_bigquery import 
GCSToBigQueryOperator

import_in_bigquery = GCSToBigQueryOperator(
   task_id="import_in_bigquery",
   bucket="airflow_movie_ratings",
   source_objects=[
       "ratings/{{ execution_date.year }}/{{ execution_date.month }}.csv"
   ],
   source_format="CSV",
   create_disposition="CREATE_IF_NEEDED",   B
   write_disposition="WRITE_TRUNCATE",      c
   bigquery_conn_id="gcp",
   autodetect=True,                         d
   destination_project_dataset_table=(
       "airflow-pipelines:",
       "airflow.ratings${{ ds_nodash }}",   e
   ),
   dag=dag,
)

fetch_ratings >> import_in_bigquery

B Create the table if it doesn’t exist.

c Overwrite partition data if it already exists.

d Attempt to autodetect the schema.

e Value after the $ symbol defines the partition to write to, called “partition decorator.”

This produces the second part of this DAG (figure 18.14).

Listing 18.13 Importing partitioned data from GCS into BigQuery

Figure 18.14 DAG uploading and 
importing data in GCP BigQuery
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As you can see, we define a source (file in GCS bucket) and target (BigQuery table
partition), but there are more configurations. For example, the create and write dis-
positions define the behavior in case no table exists or the partition already exists,
respectively. Their values (CREATE_IF_NEEDED and WRITE_TRUNCATE) might seem to
come out of the blue. The GCP-related Airflow operators, bluntly said, provide conve-
nience wrappers around the underlying request to Google. They provide you, as a
developer, an interface to call the underlying system while using Airflow’s features
such as variables that can be templated. But arguments such as create_disposition
are specific to GCP and propagated directly to the request. As such, the only way to
know their expected values is to carefully read the Airflow documentation or GCP
documentation, or to inspect the source code as a last resort.

 After running this workflow, we can inspect the data in BigQuery (figure 18.15).

As you can see on the right, the data was loaded successfully. However, as we can see
on the left, the schema autodetection (which we set to True), did not manage to auto-
matically infer the schema, which is evident from the column names “string_field_0,”
“string_field_1,” and so on. While the schema autodetection does the job most of the
time, there are no guarantees about the schema inference working correctly. In this
situation, we know the structure of the data will not change. So, it is safe to provide the
schema with the request.

➥ from airflow.providers.google.cloud.transfers.gcs_to_bigquery import 
GCSToBigQueryOperator

import_in_bigquery = GCSToBigQueryOperator(
   task_id="import_in_bigquery",
   bucket="airflow_movie_ratings",
   source_objects=[

Listing 18.14 Importing data from GCS into BigQuery with schema

Figure 18.15 Inspecting imported data in BigQuery
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       "ratings/{{ execution_date.year }}/{{ execution_date.month }}.csv"
   ],
   source_format="CSV",
   create_disposition="CREATE_IF_NEEDED",
   write_disposition="WRITE_TRUNCATE",
   bigquery_conn_id="gcp",
   skip_leading_rows=1,                        B
   schema_fields=[                             c
       {"name": "userId", "type": "INTEGER"},
       {"name": "movieId", "type": "INTEGER"},
       {"name": "rating", "type": "FLOAT"},
       {"name": "timestamp", "type": "TIMESTAMP"},
   ],
   destination_project_dataset_table=(
       "airflow-pipelines:",
       "airflow.ratings${{ ds_nodash }}”,
   ),
   dag=dag,
)

B Skip the header row.

c Manually define the schema.

Now inspecting the BigQuery schema not only shows us the correct schema but also
displays a nicely formatted timestamp (figure 18.16).

18.3.3 Extracting top ratings

Lastly, we want to compute the top ratings in BigQuery and store the results. Neither
BigQuery nor Airflow provide an out-of-the-box solution for this. While we can run
queries and export complete tables, we cannot export a query result directly. The
workaround is to first store a query result in a new table, export the table, and then
delete the intermediate table to clean up.

Figure 18.16 Inspecting imported data in BigQuery with a predefined schema
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from airflow.providers.google.cloud.operators.bigquery import
BigQueryExecuteQueryOperator, BigQueryDeleteTableOperator

➥ from airflow.providers.google.cloud.transfers.bigquery_to_gcs import 
BigQueryToGCSOperator

query_top_ratings = BigQueryExecuteQueryOperator(
   task_id="query_top_ratings",
   destination_dataset_table=(
       "airflow-pipelines:",
       "airflow.ratings_{{ ds_nodash }}",                   B
   ),
   sql="""SELECT 
movieid, 
AVG(rating) as avg_rating, 
COUNT(*) as num_ratings
FROM airflow.ratings
WHERE DATE(timestamp) <= DATE("{{ ds }}")
GROUP BY movieid
ORDER BY avg_rating DESC
""",                                                        c
   write_disposition="WRITE_TRUNCATE",
   create_disposition="CREATE_IF_NEEDED",
   bigquery_conn_id="gcp",
   dag=dag,
)

extract_top_ratings = BigQueryToGCSOperator(
   task_id="extract_top_ratings",
   source_project_dataset_table=(
       "airflow-pipelines:",
       "airflow.ratings_{{ ds_nodash }}",                   d
   ),
   destination_cloud_storage_uris=(
       "gs://airflow_movie_results/{{ ds_nodash }}.csv"     e
   ),
   export_format="CSV",
   bigquery_conn_id="gcp",
   dag=dag,
)

delete_result_table = BigQueryTableDeleteOperator(
   task_id="delete_result_table",
   deletion_dataset_table=(
       "airflow-pipelines:",
       "airflow.ratings_{{ ds_nodash }}",                   f
   ),
   bigquery_conn_id=”gcp”,
   dag=dag,
)

➥ fetch_ratings >> import_in_bigquery >> query_top_ratings >> 
extract_top_ratings >> delete_result_table

Listing 18.15 Exporting BigQuery query results via an intermediate table
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B BigQuery query result destination table

c SQL query to execute

d BigQuery table to extract

e Extract destination path

f BigQuery table to delete

In the Airflow webserver, the result looks like figure 18.17.

Using the ds_nodash context variable, we managed to string together a series of tasks
performing various actions on BigQuery. Within each DAG run, the value of ds_nodash
remains the same and can thus be used to connect task results while avoiding overrid-
ing them by the same task at different intervals. The result is a bucket filled with CSVs
(figure 18.18).

On the BigQuery side, if we run multiple DAG runs simultaneously, multiple intermedi-
ate tables will be created. These are conveniently grouped by BigQuery (figure 18.19).

 The last task in this DAG cleans up the intermediate result table. Note the opera-
tion of querying BigQuery, extracting results, and deleting the intermediate table is
now split over three tasks. No operation exists to perform this in one task, not in
BigQuery and not in Airflow. Now, say extract_top_ratings fails for some reason—
then we’d be left with a remainder in the form of a BigQuery table. BigQuery pricing is
composed of multiple elements, including the storage of data, so beware when leaving
remainders, as this could induce costs (as on any cloud). Once you’ve finished every-
thing, remember to delete all resources. In Google Cloud, this is simply done by delet-
ing the corresponding project (assuming all resources live under the same project).

Figure 18.17 The complete DAG for downloading ratings and uploading and processing using GCP 
BigQuery

Figure 18.18 Results are exported 
and stored as CSVs named with the 
corresponding datetime on GCS.
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Under the menu IAM & Admin  Manage Resources, select your project and click
Delete.

 After clicking Shut Down, your project is removed. After approximately 30 days,
Google removes all resources, although no guarantees are given and some resources
might be deleted (much) sooner than others.

Summary
 The easiest way to install and run Airflow in GCP is on GKE, using the Airflow

Helm chart as a starting point.
 Airflow provides many GCP-specific hooks and operators that allow you to inte-

grate with different services in the Google Cloud Platform, installed with the
apache-airflow-providers-google package.

 The GoogleBaseHook class provides authentication to GCP, allowing you to focus
on the service details when implementing your own GCP hooks and operators.

 Using GCP-specific hooks and operators usually require you to configure the
required resources and access permissions in GCP and Airflow so that Airflow is
allowed to perform the required operations.

Figure 18.19 BigQuery groups tables with equal suffixes. When running multiple DAG runs simultaneously, this 
could result in multiple intermediate tables.



appendix A
Running code samples

This book comes with an accompanying code repository on GitHub (https://
github.com/BasPH/data-pipelines-with-apache-airflow). The repository holds the
same code as demonstrated in this book, together with easily executable Docker
environments so that you can run all examples yourself. This appendix explains
how the code is organized and how to run the examples.

A.1 Code structure
The code is organized per chapter, and each chapter is structured the same. The
top level of the repository consists of several chapter directories (numbered 01–18),
which contain self-contained code examples for the corresponding chapters. Each
chapter directory contains at least the following files/directories:

■ dags—Directory containing the DAG files demonstrated in the chapter
■ docker-compose.yml—File describing the Airflow setup needed for running

the DAGs
■ README.md—Readme introducing the chapter examples and explaining

any chapter-specific details on how to run the examples

Where possible, code listings in the book will refer to the corresponding file in the
chapter directory. For some chapters, code listings shown in the chapters will corre-
spond to individual DAGs. In other cases (particularly for more complex exam-
ples), several code listings will be combined into one single DAG, resulting in a
single DAG file. 

 Other than DAG files and Python code, some examples later in the book (espe-
cially the cloud chapters 16, 17, and 18) require extra supporting resources or con-
figuration to run the examples. The extra steps required to run these examples will
be described in the corresponding chapter and the chapter’s README file. 
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A.2 Running the examples
Each chapter comes with a Docker environment that can be used for running the cor-
responding code examples. 

A.2.1 Starting the Docker environment

To get started with running the chapter examples, run inside the chapter directory:

$ docker-compose up --build

This command starts a Docker environment that contains several containers required
for running Airflow, including the following containers:

■ Airflow webserver
■ Airflow scheduler
■ Postgres database for the Airflow metastore

To avoid seeing the output of all three containers in your terminal, you can also start
the Docker environment in the background by using

 $ docker-compose up --build -d

Some chapters create additional containers, which provide other services or APIs
needed for the examples. For example, chapter 12 demonstrates the following moni-
toring services, which are also created in Docker to make the examples to be as realis-
tic as possible: 

■ Grafana
■ Prometheus
■ Flower
■ Redis

Fortunately, running all these services will be taken care of for you by the details in
the docker-compose file. Of course, don’t hesitate to dive into the details of this file if
you’re interested.

A.2.2 Inspecting running services

Once an example is running, you can check out which containers are running using
the docker ps command:

$ docker ps
CONTAINER ID       IMAGE                            ... NAMES
d7c68a1b9937       apache/airflow:2.0.0-python3.8   ... chapter02_scheduler_1
557e97741309       apache/airflow:2.0.0-python3.8   ... chapter02_webserver_1
742194dd2ef5       postgres:12-alpine               ... chapter02_postgres_1

By default, docker-compose prefixes running containers with the name of the contain-
ing folder, meaning that containers belonging to each chapter should be recognizable
by their container names.
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 You can also inspect the logs of the individual containers using docker logs:

$ docker logs -f chapter02_scheduler_1

➥ [2020-11-30 20:17:36,532] {scheduler_job.py:1249} INFO - Starting the 
scheduler

➥ [2020-11-30 20:17:36,533] {scheduler_job.py:1254} INFO - Processing each 
file at most -1 times

➥ [2020-11-30 20:17:36,984] {dag_processing.py:250} INFO - Launched 
DagFileProcessorManager with pid: 131

These logs should hopefully be able to provide you with valuable feedback if things
go awry.

A.2.3 Tearing down the environment

Once you’re done running an example, you can exit docker-compose using CTRL+C.
(Note that this isn’t needed if you’re running docker-compose in the background.) To
fully teardown the Docker environment, you can run the following command from
the chapter directory:

  $ docker-compose down -v

In addition to stopping the various containers, this should also take care of removing
any Docker networks and volumes used in the example.

 To check if all containers have indeed been fully removed, you can use the follow-
ing command to see any containers that have been stopped but not yet deleted:

  $ docker ps -a

If you’re anything like us, this might still show a list of containers that you’ll want to
remove. You can remove containers one by one using the following command:

  $ docker rm <container_id>

where the container_id is obtained from the list of containers shown by the ps com-
mand. Alternatively, you can use the following shorthand to remove all containers:

  $ docker rm $(docker ps -aq)

Finally, you can also remove any unused volumes previously used by these containers
using

  $ docker volume prune

However, we urge you to use caution when using this command, as it may result in
inadvertent data loss if you end up discarding the wrong Docker volumes.
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Package structures

Airflow 1 and 2

Most of this book was based on Airflow 1. Just before the release of this book, Air-
flow 2 was released, and we decided to update all code for Airflow 2. 

 One of the most involved changes are the new providers packages in Airflow 2.
Many modules were removed from the core Airflow and are now installed via a sep-
arate “providers” package in order to shrink the core Airflow package. In this
appendix, we list all Airflow imports used in the book and their paths in both Air-
flow 1 and Airflow 2.

B.1 Airflow 1 package structure
In Airflow 1, a split was made between “core” components (operators/hooks/
sensors/etc.) and “contrib” components, for example airflow.operators.python
_operator.PythonOperator and airflow.contrib.sensors.python_sensor.Python
Sensor.

 This was a historic artifact from the time Airflow was developed at Airbnb,
where the organization of components in “core” and “contrib” made sense within
Airbnb. When the Airflow project gained traction as an open source project, the
split between core and contrib became a gray area and a frequent point of discus-
sion in the community. Throughout the development of Airflow 1, modules that
originated in the contrib package were kept in contrib to avoid breaking changes.

B.2 Airflow 2 package structure
With Airflow 2, the community finally reached a point where it could allow break-
ing changes and thus decided to restructure the Airflow package to create a struc-
ture that suited the global scale of the project it now operates in. One other
439
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common source of annoyance was the large number of dependencies Airflow requires
to be installed.

 Therefore, the community decided to strip the Airflow project into separate projects:

■ A “core” project, containing only a few generic operators, hooks, and such.
■ Other components that can be installed via separate packages, allowing devel-

opers to choose which components are installed while maintaining a manage-
able set of dependencies. These additional packages are named “providers.”
Each providers package is named apache-airflow-providers-[name], for exam-
ple apache-airflow-providers-postgres.

All components now contained in a providers package are removed from the core of
Airflow. For example, the Airflow 1 class airflow.hooks.postgres_hook.Postgres-
Hook is not contained anymore in Airflow 2. To add it, install

pip install apache-airflow-providers-postgres

and import airflow.providers.postgres.operators.postgres.PostgresOperator.

NOTE If you wish to prepare your DAGs for a smooth transition from Airflow
1 to Airflow 2, each providers package also exists in a “backports” form. These
packages hold the Airflow 2 structure, but all components are compatible
with Airflow 1. For example, to use the new postgres providers structure in
Airflow 1, use

pip install apache-airflow-backport-providers-postgres

Table B.1 lists all Airflow imports made throughout code examples in this book, show-
ing the paths in both Airflow 1 and  2, and if applicable, the additional providers pack-
age to install in Airflow 2.

Table B.1 Airflow imports

Airflow 2 import path
Airflow 2 additional 

package
Airflow 1 import path

airflow.providers.amazon.aws
.hooks.base_aws.AwsBaseHook

apache-airflow-
providers-amazon

airflow.contrib.hooks.aws_hook
.AwsHook

airflow.providers.microsoft
.azure.hooks.wasb.WasbHook

apache-airflow-
providers-
microsoft-azure

airflow.contrib.hooks.wasb_hook
.WasbHook

kubernetes.client.models
.V1Volume

kubernetes airflow.contrib.kubernetes
.volume.Volume

kubernetes.client.models
.V1VolumeMount

kubernetes airflow.contrib.kubernetes
.volume_mount.VolumeMount
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airflow.providers.amazon
.aws.operators.athena.AWS-
AthenaOperator

apache-airflow-
providers-amazon

airflow.contrib.operators.aws_
athena_operator.AWSAthena-
Operator

airflow.providers.google
.cloud.operators.bigquery
.BigQueryExecuteQueryOperator

apache-airflow-
providers-google

airflow.contrib.operators
.bigquery_operator.BigQuery-
Operator

airflow.providers.google
.cloud.operators.bigquery
.BigQueryDeleteTableOperator

apache-airflow-
providers-google

airflow.contrib.operators
.bigquery_table_delete_operator
.BigQueryTableDeleteOperator

airflow.providers.google
.cloud.transfers.bigquery_
to_gcs.BigQueryToGCSOperator

apache-airflow-
providers-google

airflow.contrib.operators
.bigquery_to_gcs.BigQueryTo-
CloudStorageOperator

airflow.providers.google
.cloud.transfers.local_to_gcs
.LocalFilesystemToGCSOperator

apache-airflow-
providers-google

airflow.contrib.operators.file_
to_gcs.FileToGoogleCloudStorage
Operator

airflow.providers.google
.cloud.transfers.gcs_to_
bigquery.GCSToBigQueryOperator

apache-airflow-
providers-google

airflow.contrib.operators.gcs_
to_bq.GoogleCloudStorageToBig-
QueryOperator

airflow.providers.cncf
.kubernetes.operators.kuberne
tes_pod.KubernetesPodOperator

apache-airflow-
providers-cncf-
kubernetes

airflow.contrib.operators.kuber
netes_pod_operator.Kubernetes-
PodOperator

airflow.providers.amazon.aws
.operators.s3_copy_object
.S3CopyObjectOperator

apache-airflow-
providers-amazon

airflow.contrib.operators.s3_
copy_object_operator.S3Copy-
ObjectOperator

airflow.providers.amazon.aws
.operators.sagemaker_endpoint
.SageMakerEndpointOperator

apache-airflow-
providers-amazon

airflow.contrib.operators
.sagemaker_endpoint_operator
.SageMakerEndpointOperator

airflow.providers.amazon.aws
.operators.sagemaker_training
.SageMakerTrainingOperator

apache-airflow-
providers-amazon

airflow.contrib.operators
.sagemaker_training_operator
.SageMakerTrainingOperator

airflow.sensors.filesystem
.FileSensor

airflow.contrib.sensors.file_
sensor.FileSensor

airflow.sensors.python
.PythonSensor

airflow.contrib.sensors.python
_sensor.PythonSensor

airflow.DAG airflow.DAG

airflow.exceptions.Airflow-
SkipException

airflow.exceptions.AirflowSkip-
Exception

airflow.hooks.base_hook.Base-
Hook

airflow.hooks.base_hook.Base-
Hook

Table B.1 Airflow imports (continued)

Airflow 2 import path
Airflow 2 additional 

package
Airflow 1 import path
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airflow.providers.postgres
.hooks.postgres.PostgresHook

apache-airflow-
providers-postgres

airflow.hooks.postgres_hook
.PostgresHook

airflow.providers.amazon.aws
.hooks.s3.S3Hook

apache-airflow-
providers-amazon

airflow.hooks.S3_hook.S3Hook

airflow.models.BaseOperator airflow.models.BaseOperator

airflow.models.Connection airflow.models.Connection

airflow.models.DAG airflow.models.DAG

airflow.models.Variable airflow.models.Variable

airflow.operators.bash.BashOp
erator

airflow.operators.bash_operator
.BashOperator

airflow.operators.dagrun_
operator.TriggerDagRun-
Operator

airflow.operators.dagrun_
operator.TriggerDagRunOperator

airflow.providers.docker
.operators.docker.Docker-
Operator

apache-airflow-
providers-docker

airflow.operators.docker_
operator.DockerOperator

airflow.operators.dummy_
operator.DummyOperator

airflow.operators.dummy_
operator.DummyOperator

airflow.providers.http
.operators.http.SimpleHttp-
Operator

apache-airflow-
providers-http

airflow.operators.http_
operator.SimpleHttpOperator

airflow.operators.latest_
only.LatestOnlyOperator

airflow.operators.latest_only_
operator.LatestOnlyOperator

airflow.providers.postgres
.operators.postgres.Postgres-
Operator

apache-airflow-
providers-postgres

airflow.operators.postgres_
operator.PostgresOperator

airflow.operators.python
.PythonOperator

airflow.operators.python_
operator.PythonOperator

airflow.utils airflow.utils

airflow.utils.decorators
.apply_defaults

airflow.utils.apply_defaults

airflow.utils.dates airflow.utils.dates

airflow.utils.decorators
.apply_defaults

airflow.utils.decorators.apply_
defaults

Table B.1 Airflow imports (continued)

Airflow 2 import path
Airflow 2 additional 

package
Airflow 1 import path
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Prometheus

metric mapping

This appendix holds a mapping for metrics from StatsD format to Prometheus for-
mat, as explained in chapter 12. It is also contained in the accompanying GitHub
repository (https://github.com/BasPH/data-pipelines-with-apache-airflow), where
it is demonstrated using the Prometheus StatsD exporter. The StatsD exporter
takes StatsD metrics (provided by Airflow) and exposes these in a format that Pro-
metheus can read. However, some conversions are not efficient or in line with
Prometheus’s naming conventions. Therefore, this mapping explicitly maps Air-
flow’s StatsD metrics to Prometheus metrics. Due to the nature of Airflow being an
open source project, this mapping can be subject to change.

mappings:

- match: "airflow.dag_processing.total_parse_time"
 help: Number of seconds taken to process all DAG files
 name: "airflow_dag_processing_time"

- match: "airflow.dag.*.*.duration"
 name: "airflow_task_duration"
 labels:
   dag_id: "$1"
   task_id: "$2"

- match: "airflow.dagbag_size"
 help: Number of DAGs
 name: "airflow_dag_count"

Listing C.1 Prometheus StatsD exporter mapping for Airflow metrics
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- match: "airflow.dag_processing.import_errors"
 help: The number of errors encountered when processing DAGs
 name: "airflow_dag_errors"

- match: "airflow.dag.loading-duration.*"
 help: Loading duration of DAGs grouped by file. If multiple DAGs are found 

in one file, DAG ids are concatenated by an underscore in the label.
 name: "airflow_dag_loading_duration"
 labels:
   dag_ids: "$1"

- match: "airflow.dag_processing.last_duration.*"
 name: "airflow_dag_processing_last_duration"
 labels:
   filename: "$1"

- match: "airflow.dag_processing.last_run.seconds_ago.*"
 name: "airflow_dag_processing_last_run_seconds_ago"
 labels:
   filename: "$1"

- match: "airflow.dag_processing.last_runtime.*"
 name: "airflow_dag_processing_last_runtime"
 labels:
   filename: "$1"

- match: "airflow.dagrun.dependency-check.*"
 name: "airflow_dag_processing_last_runtime"
 labels:
   dag_id: "$1"

- match: "airflow.dagrun.duration.success.*"
 name: "airflow_dagrun_success_duration"
 labels:
   dag_id: "$1"

- match: "airflow.dagrun.schedule_delay.*"
 name: "airflow_dagrun_schedule_delay"
 labels:
   dag_id: "$1"

- match: "airflow.executor.open_slots"
 help: The number of open executor slots
 name: "airflow_executor_open_slots"

- match: "airflow.executor.queued_tasks"
 help: The number of queued tasks
 name: "airflow_executor_queued_tasks"

- match: "airflow.executor.running_tasks"
 help: The number of running tasks
 name: "airflow_executor_running_tasks"
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