Cantier[®] Making factories smarter

Execution • IIoT • Intelligence

Test Intern

Malles. Key Performance Indicators

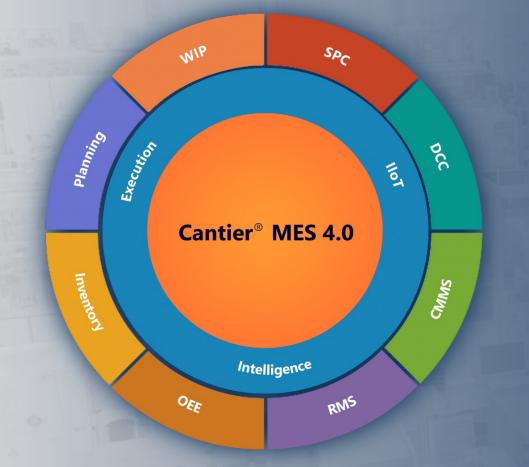
Execution • **IIoT** • **Intelligence**

Provider of <u>Next Generation</u> Manufacturing Execution System, <u>Cantier® MES 4.0</u> unifies Execution, IIoT & Intelligence capabilities like Manufacturing Intelligence, AR, VR, MES Edge, Edge Analytics in a <u>single highly</u> <u>configurable and scalable suite.</u>

FOCUS INDUSTRIES

Automotive

Aerospace


Ŀe

Food & Beverages

Sugar & Ethanol

2

SMART Factory Solution

We offer a refreshing new take on an integrated, modular, flexible, convergent & scalable NextGen MES 4.0 Solution.

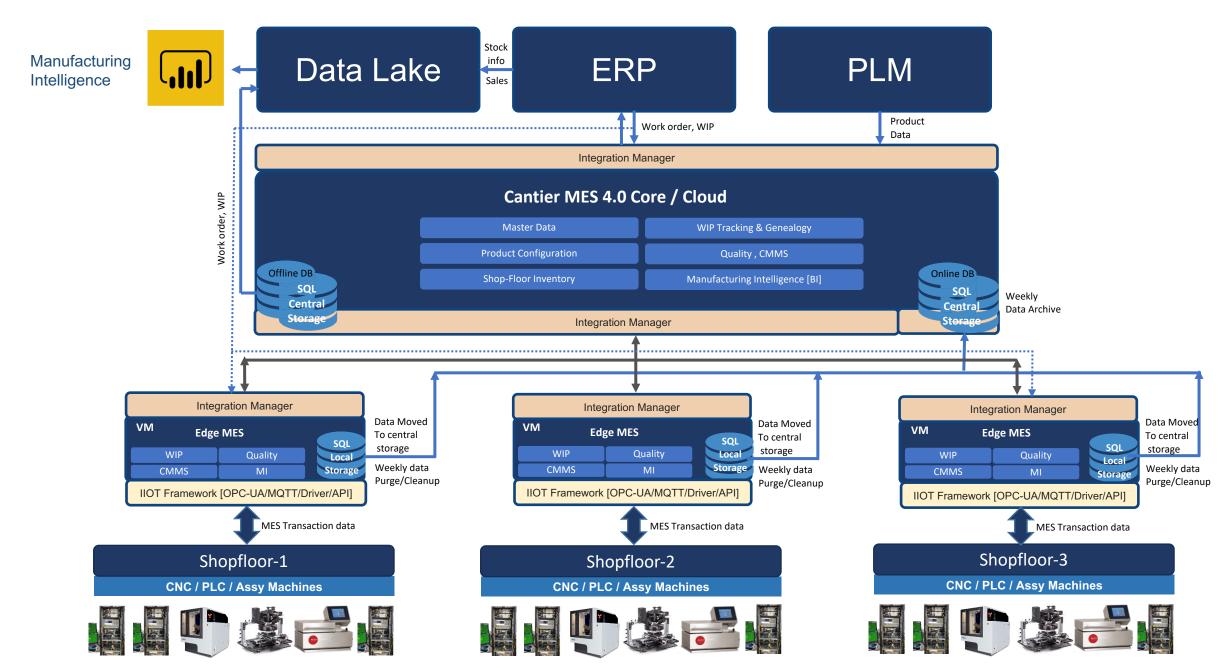
Our world-leading federated platform helps to gain full benefits of Industrial Automation, IIOT Edge Analytics, MES, AR/VR, Digital Twin and Manufacturing Intelligence.

You can collaborate in an orchestrated and intelligent way across Production Planning, WIP Traceability, Quality and Maintenance for setting up the foundation for a world-class Smart Factory with optimum TCO.

Modular industry specific functions

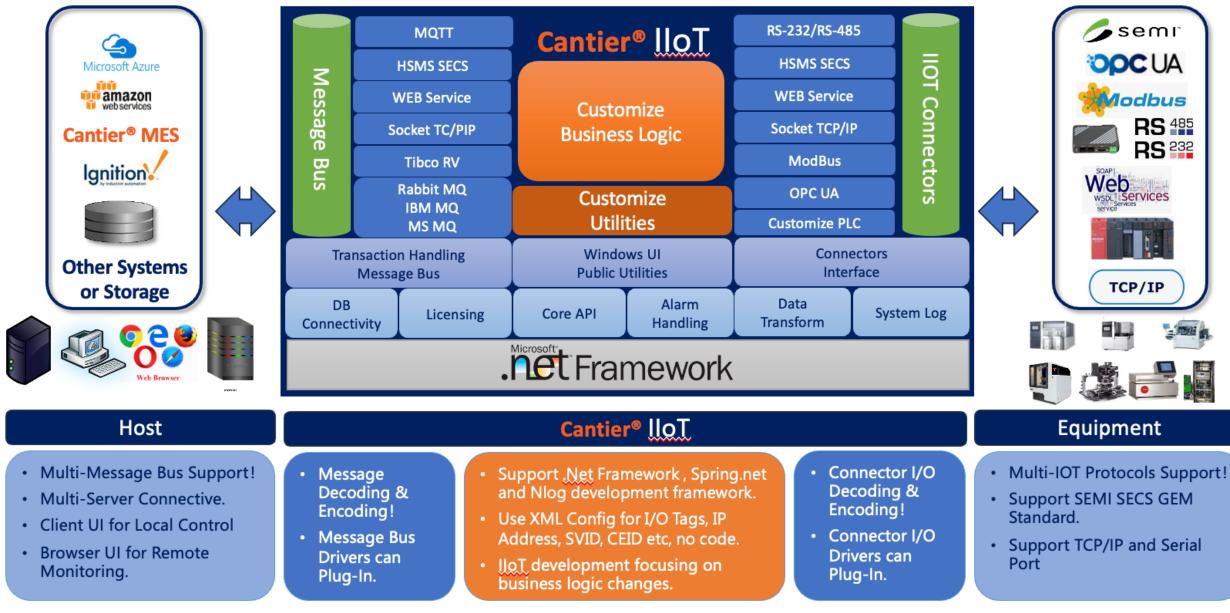
Fast and flexible

implementation



Advanced future ready features Cost-effective & easy-to-use

Cantier[®] MES X.0 Solution


MES Foundation	Transactional Platform with Task Flow & Micro Services	Master Data Management	Product Configuration	Edge Deployment Management	
WIP & Shop Floor Control	Production Execution, Track and Trace & Genealogy	Operator Certification & Skill Set Mapping	Instruction & Recipe Management	Production twin with Co-pilot	
Inventory	Inventory Management & Optimization	Location Tracking & Analytics	In-factory dispatching	In-factory dispatching	
Quality	Incoming/Outgoing Quality Control	Statistical Process Control (SPC)	Non-Conformance Management (NCM)	Product Quality Management (PQM) – CAPA, RCA)	Yield Management with Root Cause Finding
Maintenance	Equipment Maintenance Management (CMMS)	Corrective Maintenance with worker guidance	Fault Detection with equipment SPC	Predictive & Prescriptive Maintenance	Equipment Maintenance twin with Co-pilot
KPI Monitoring	Production & Performance Monitoring with OEE	Resource effectiveness monitoring	Sustainable Index tracking and publishing	Virtual Factory twin with Co-pilot	
Integration	Enterprise Integration Manager (SAP/Cloud)	3 rd party API packaging for transactional integration	Hypergraph for enterprise knowledge integration		
ΙΙΟΤ	llOT Connectivity Controller	OPC UA, SECS/GEM Compliant	Metadata Catalog	Secured Private Edge	 Digital Enablement Digital Thread
Reports	Manufacturing Intelligence	Trigger/time based agents	Blockchain-protected Traceability Publishing		Digital Twin

Cloud/Edge Architecture

Cantier[®] IIoT Architecture

INDUSTRY RECOGNITION & CLIENTS

With proven efficacy and scalability, we service prominent global manufacturers across critical industries

aws

Google Cloud

 \mathbf{C}

ORACLE

SAP

© CANTIER SYSTEMS - 2023

CASE STUDIES

CASE STUDY

Electronics Industry

Littelfuse

Business Case and Challenges

- To support their Industry 4.0 Transformation Journey without scraping old machines, not major replacement capex investments, and solution needs established across their Factories.
- Most of these machines are PLC based such as Allen Bradly, GE Fanuc, etc., and Industrial PCs some of them as 45+ old machines to connect and collect data in the shop-floor process flow
- More than a week to come-up with the Root Cause Analysis (RCA) Report,, as a results lesser OEE, MTBF, MTBA and MTTR which hits bottom line in company

Solution Approach

- Cantier MES 4.0 connects 450 machines through IIoT Gateway to establish real-time communications.
- Cantier Intelligence solution provides accurate OEE Dashboards with drill down capabilities.
- Maintenance KPIs MTTR, MTBF, MTBA to minimize downtime
- Machine Learning on Predictive Maintenance and Quality

- MTTR improvement 17%
- MTBF improvement 15%
- OEE improvement 7%
- Overall Productivity Improvement 10%
- Successfully connected 45+ years machines to provide the live data feed to MES 4.0
- All of this achieved within 3 months
- ROI achieved in shorter period and solved the problem with negligible cost

Breakthrough KPI Improvements

Littelfuse[®]

Area	KPI	2019 (pre-MES)	2020	2021	Q1 2022	2022 YE <u>Proi</u>	% Improvement from 2019
	OEE	59%	64%	79%	78%	80%	36%
	UPDT (ave hours per day)	5.6	4.5	3.0	3.1	3.0	39%
Assembly	MTTR (Minutes)	69	51	35	35	35**	49%
	FOY (KUS)	32%	37%	66%	66%	68%	112%
	OUTPUT (Millions)	472 (54 machines)	415 (54 machines)	633 (54 machines)	170 (56 machines)	750 (59 machines)	45%
	OEE	80%	81%	85%	85.2%	85.2%	6%
	UPDT (ave hours per day)	3.4	1.6	1.0	0.9	0.9	74%
Test	MTTR (Minutes)	16	16	14	13.7	13	19%
	Output (Millions)	433 (65 machines)	378 (64 machines)	576 (70 machines)	157 (71 machines)	650 (74 machines)	32%

© CANTIER SYSTEMS - 2023

CASE STUDY – Establishing World Class Smart Mega Factory

High Tech Precision Machining

Greenfield Mega plant

Business Case and Challenges

- Implement Enterprise MES as the foundation for Smart Manufacturing across design/production/tool room/quality facilities with low latency & secured connectivity towards WIP Traceability, OEE, Preventive Process & Product quality & Asset maintenance
- Shop Floor IIOT & Intelligence
- Agile implementation with scalability,
- Ability to handle proprietary interfaces & protocols

Solution Approach

- Cantier MES 4.0 is being implemented by connecting and collecting data from 3500 machines through IIoT Edge Computing Systems to establish real-time communications for phase 1 This will be extended in Phase 2 for another 5500 machines
- WIP module with full Track and Trace with Error proofing with accurate Dashboards and drill down capabilities being implemented
- Maintenance KPIs MTTR, MTBF, MTBA to minimize downtime will made available by implementation CMMS module
- SPC module for monitoring and closed loop control of selected in-process quality parameters
- Machine Learning to be implemented on Predictive Maintenance and Quality

- Core-Edge Architecture for high performance & scalability
- Machine Connectivity using FOCAS Gateway- Proven Scalable & Cost-Effective Solution for CNC machines
- Agility to deal with unique requirements
- Readiness to interface with proprietary protocols for critical machine communication

CASE STUDY – Connecting Multiple Machines for OEE, CMMS and Traceability

Business Case and Challenges

- Manual data collection across multiple machines for OEE computation which is laborious and inefficient
- Need to create a central corporate data and visualizing capability for managing and monitoring the performances of plant

Solution Approach

- Cantier MES 4.0 is being implemented by connecting and collecting data from multiple machines to establish real-time communications
- WIP module with full Track and Trace with Error proofing with accurate Dashboards and drill down capabilities being implemented
- Maintenance KPIs MTTR, MTBF, MTBA to minimize downtime will be made available by implementation CMMS module
- SPC module for monitoring and closed loop control of selected in-process quality parameters
- Machine Learning to be implemented on Predictive Maintenance and Quality

- Rapid configuration capability of the Cantier 4.0 solution has enabled the Requirement Mapping to simple and cost-effective
- Seamless integration of factory device data with Canter MES 4.0 modules

CASE STUDY

Cantier[®] MAKING FACTORIES SMARTER

Automotive (INDIA)

Leading Tier 1 Manufacturer of Tyres

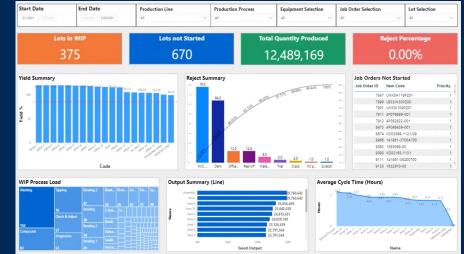
Business Case and Challenges

- Comply with immediate end customer needs for Product Traceability and Genealogy
- Accelerate Industry 4.0 Transformation Journey leveraging old machines with desperate control systems and solution needs across multiple factories through minimal capex investments,
- Create a central corporate data lake and visualizing capability for managing and monitoring the performances of multiple plants

Solution Approach

- Cantier MES 4.0 is being implemented by connecting and collecting data from 250 machines through IIoT Edge Computing Systems to establish real-time communications for the phase 1 for one of the plants for the Tyre Building to Dispatch process. This will be extended in Phase 2 for Raw Material to Tyre Building stage.
- WIP module with full Track and Trace with Error proofing with accurate Dashboards and drill down capabilities being implemented
- Maintenance KPIs MTTR, MTBF, MTBA to minimize downtime will made available by implementation CMMS module
- SPC module for monitoring and closed loop control of selected in-process quality parameters
- Machine Learning to be implemented on Predictive Maintenance and Quality

- Robust configuration capability of the Cantier 4.0 solution has enabled the Requirement Mapping simple and cost effective
- Seamless integration of factory device data with Canter MES 4.0 modules tested with leading IIOT Edge Computing solution provider
- Project on schedule and within budget through well established Agile Application Management processes


CASE STUDY

Cantier[®] MAKING FACTORIES SMARTER

Metal Precision

Business Case and Challenges

- Convert the Paper Based Manual System to a Digital Manufacturing of steel form / assembled parts, semi-finished assemblies for electronic machinery, Office Automation and other precision equipment
- Centralize Supply Chain Management across manufacturing units & Automate Shop-floor Planning, WIP Traceability, Quality & Maintenance

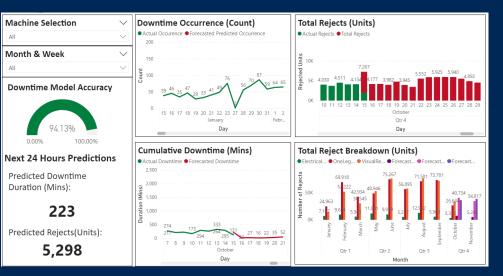
Solution Approach

- Connecting Equipment for automated data collection
- Implementation of Supply Chain Management with focus on Sales, Purchasing & Warehouse operations
- Implementation of Shop Floor management with focus on Inventory, Planning, Production, Quality and Maintenance

Benefits

 Cost reduction, Better equipment utilization, Better process control, Improved Shop Floor Inventory & Operations visibility and Reduced Scrap & Waste

Process	Improvement
SO	75%
PR/PO	70%
MRP/MPS	90%
JO / Travel Lot Card	70%
Material Issuance	60%
DR/SI	60%
RR / RTS	70%


Cantier[®] MAKING FACTORIES SMARTER

CASE STUDY

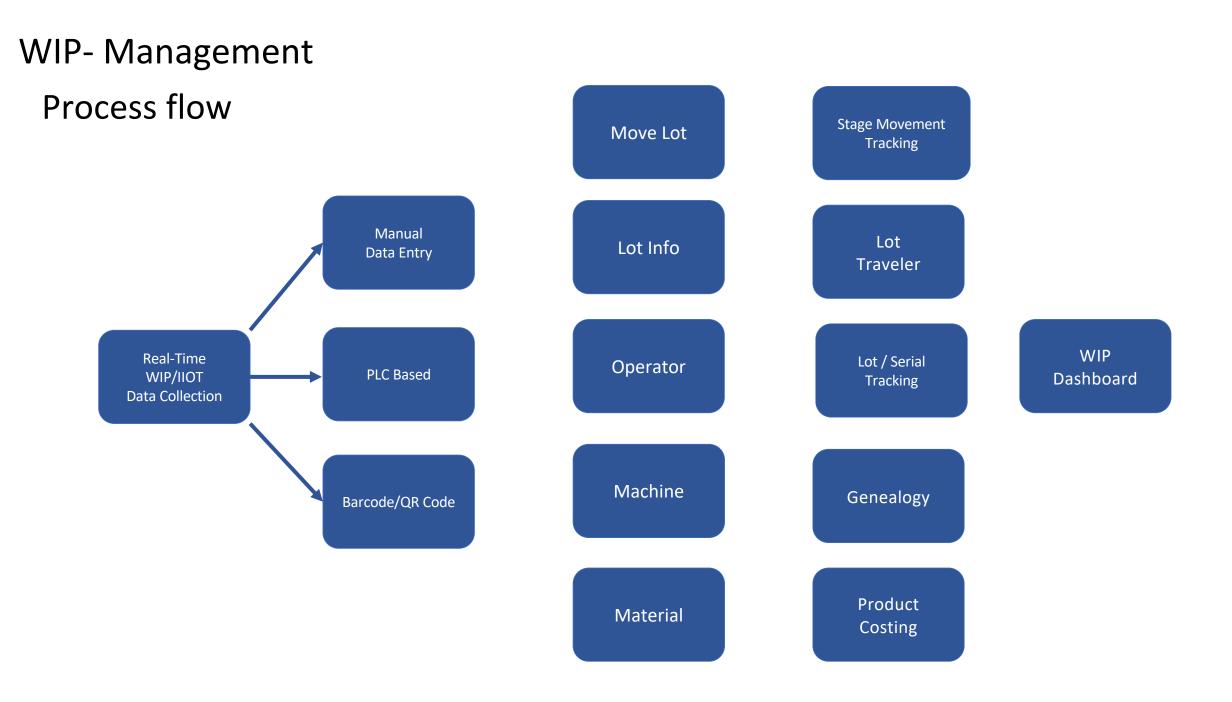
Metal Precision & Assembly

Business Case

- Convert the Paper Based Manual System to a Digital Manufacturing Setup.
- To Centralize Supply Chain across their Factories
- To Automate their Shop-floor Planning, WIP Traceability, Quality & Maintenance.

Project Scope

- Supply Chain Implementation: Sales, Purchasing & Warehouse Management
- Plant Floor management: Shop floor Inventory, Planning, Production, Quality and Maintenance
- Equipment Connectivity


Solution Approach

- Implemented Cantier MES core functions for Shop floor Inventory, Production, Quality, and Maintenance.
- Implemented Cantier ERP for their Financial & Supply Chain to replace their paper-based setup
- Interfacing with their Equipment for Data Collection.

- Real-Time Daily Production Dashboards
- Productivity Increase due to decision making based on real-time information
- Improved Visibility of the Shop Floor Inventory & Operations
- Reduction of Scrap & Waste
- Reduced Down-time

Cantier® MES 4.0

WIP Tracking & Shop Floor Control

Cantier MES4.0

< E

Work-In-Progress

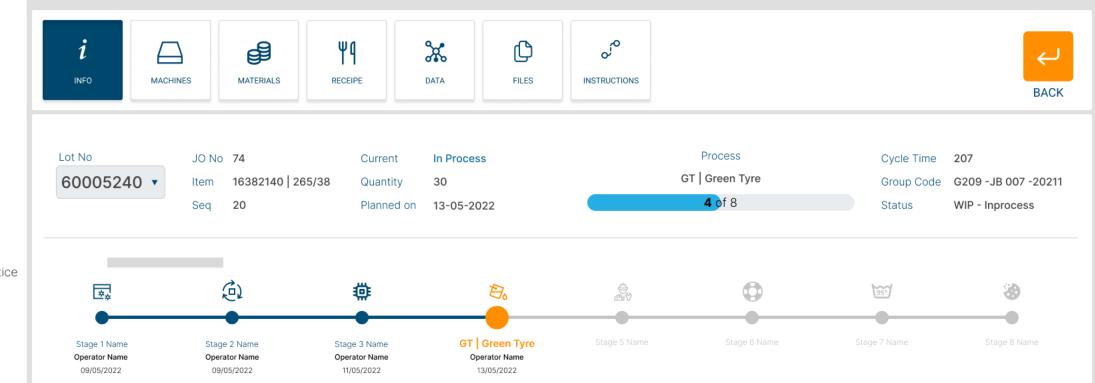
- WIP Setup
- WIP Transcations
- Job Orders
- Job Orders Upload
- Lot List
- Move Lot
- Shop Floor Console
- Throughput Monitor
- Advance Change Notice
- Change Order
- WIP Packing
- WIP Reports
- Quality ManagementCMMS

Shop Floor > Work-In-Progress > WIP Transcations > Move Lot									
In Que	eue	10	Items	In Process 15 Iten	Completed	09 Items	On Hold)3 _{Items}	
Search	n								
Select				ໍ່≻ ຼືອ≣ SCAN			Q SEARCH	ADVANCED	
Lots l	List JO No	Bin	Lot No	Item	MOVE IN Sequence	TRACK IN GROUP Process	UNGROUP TRACK Status	K OUT MOVE OUT	
	35	•	60005240	136504750 215/7SR15LT XA1 TT	30	PGT Painted Green Tyre	WIP	13 - 12 - 2021	
	35	•	60005240	136504750 215/7SR15LT XA1 TT	30	PGT Painted Green Tyre	WIP	13 - 12 - 2021	
	35	٠	60005240	136504750 215/7SR15LT XA1 TT	30	PGT Painted Green Tyre	In-Queue	13 - 12 - 2021	
	35	٠	60005240	136504750 215/7SR15LT XA1 TT	30	PGT Painted Green Tyre	In-Queue	13 - 12 - 2021	
	35	•	60005240	136504750 215/7SR15LT XA1 TT	30	PGT Painted Green Tyre	On-Hold	13 - 12 - 2021	
	35	•	60005240	136504750 215/7SR15LT XA1 TT	30	PT Painted Tyre	WIP	13 - 12 - 2021	
	35	٠	60005240	136504750 215/7SR15LT XA1 TT	30	PT Painted Tyre	WIP	13 - 12 - 2021	
	35	•	60005240	136504750 215/7SR15LT XA1 TT	30	PGT Painted Green Tyre	Completed	13 - 12 - 2021	
	35	•	60005240	136504750 215/7SR15LT_XA1 TT	30	PT Painted Tyre	WIP	13 - 12 - 2021	

COMPANY

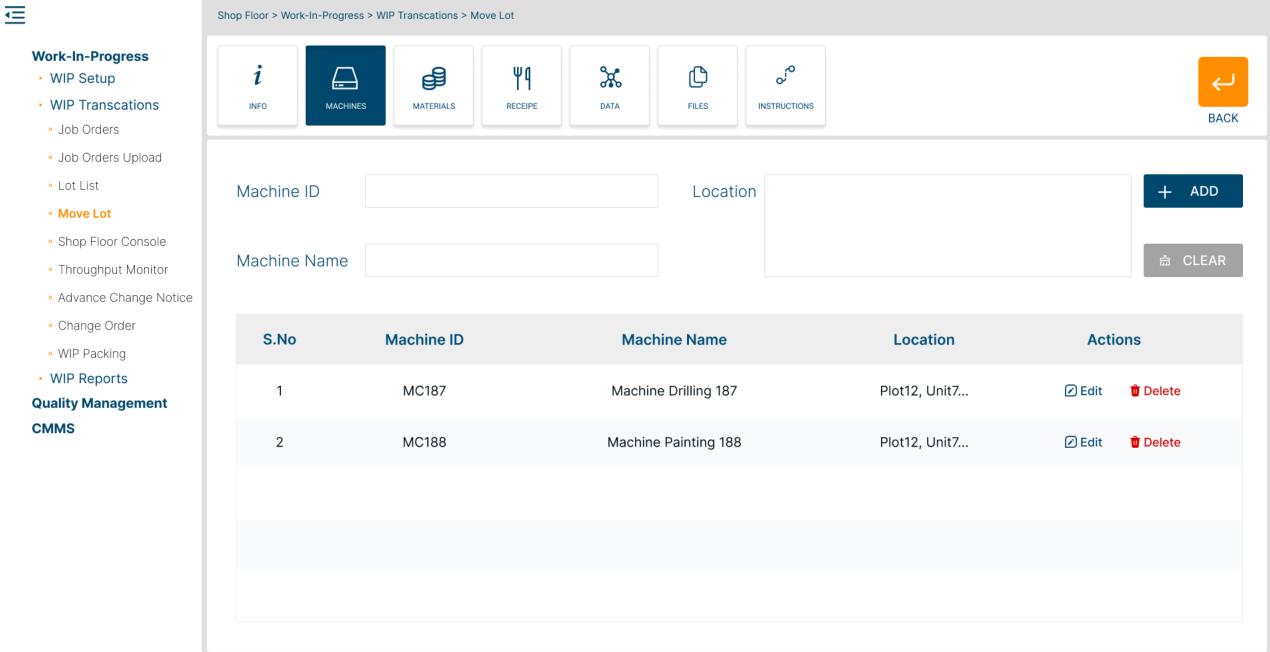
Deepak Pachiannan Production Operator conce has evoired

Cantier MES4.0



Work-In-Progress

Shop Floor > Work-In-Progress > WIP Transcations > Move Lot


- WIP Setup
- WIP Transcations
- Job Orders
- Job Orders Upload
- Lot List
- Move Lot
- Shop Floor Console
- Throughput Monitor
- Advance Change Notice
- Change Order
- WIP Packing
- WIP Reports

Quality Management CMMS

Cantier MES4.0

WIP Traceability & Genealogy

n

 \equiv

Cantier[®] MES 4.0

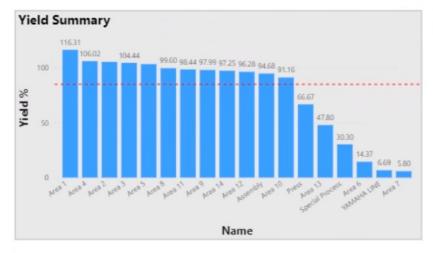
● ABC Manufacturing Inc. 🕣

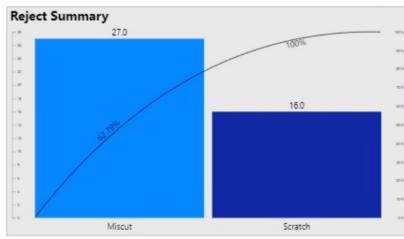
	ABC Man	ufacturing	LOT TRAVEL CARD)-H	IV 7620 95 kV BIL.6.1			
	TH OF: Augu		DAT	E:	8/19/2020										
CUST	OMER					LOT NU	IMBER JO	-HV 762	0 95 1	V BIL.6.1	1		-	DIEG	
PART	NUMBER	HV 7620 95	kV BIL			CUSTO	MER J.O.	NUMBER	JO-	HV 7620	95 kV		SIGNATO	RIES	
PART	NAME	HV 7620 95	5 kV BIL												
MATE	ERIAL INFORMATIC	N										PPCM	AREHOUS	E	
	MATERIAL	8	CHECK (WAREH STA	IOUSE	RECEIVE (OPERA		VERIFIED				ERIAL LOT				
SiFe	Silicon Steel (SiFe) (2	25 KG)								DP-0025		PROD	UCTION SL	JPERVISOR	
Cu-Al	Copper-Aluminum (Cu-Al) (10 KG)								DP-0026					
												LEADN	AN IN CHA	ARGE	
PROC	CESS INFORMATIO	I													
PROC			1		QUANTITY	(1	
No.	Process	Machine	IN	OUT	Reject		ime in/ me Out	DAT	E	SHIFT	OPER	ATOR	QC	REMARK	
1	CORE CUTTING	CUT-MAC-001	1	1	0		6:33 AM 0:32 AM	08/19/ 08/19/			Ca	irol			
2	CORE STACKING	STACK-MAC- 001	1	1	0		0:32 AM 1:09 AM	08/19/20 C 08/19/20		Ca	irol				
3	COIL WINDING	WIND-MAC-001	1	1	0		1:09 AM 1:37 AM	08/19/20 08/19/20			Carol				
4	ASSEMBLY		1	1	0		1:37 AM 1:58 AM	08/19/20 08/19/20		Ca	irol				
5	TEST		1	1	0		1:58 AM 2:20 AM	08/19/20					Carol		

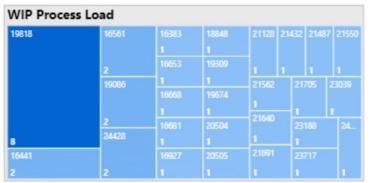
Product Costing

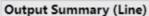
☆ Cantier[®] MES 4.0

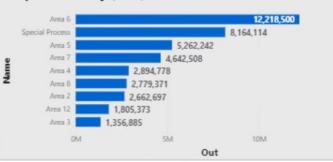
e ABC Manufacturing Inc. ∋

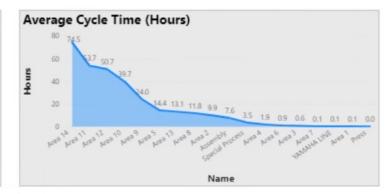

		Product Costing													
				Standard Co	st		Standard	Units	Produced		Actual C	ost		Actual	
	FG Product Code	Operation / Process	Material Cost	Process Cost	Labor Cost	Total Cost	Cost / Unit	Qty	UOM	Material Cost	Process Cost	Labor Cost	Total Cost	Cost / Unit	Variance
	77100-0K530		0	2,180.74	433.07	2,613.81	87. <mark>1</mark> 3	30	PCS	0	3,582.04	960.72	4,542.76	151.43	(1,928
		HOTWASH	0	271.2	39.37	310.57				0	173.7	25.21	198.90		
		SPOT/TACK WELDING	0	33.9	39.37	73.27				0	172.8	200.62	373.37		
		SEAM WELDING	0	308.1	39.37	347.47				0	210.9	26.94	237.74		
		LEAK TESTING 1	0	135.6	39.37	174.97				0	176.7	51.31	228.02		
		DRY OFF OVEN	0	135.6	39.37	174.97				0	182.7	53.06	235.83		
		MASKING	0	67.8	39.37	107.17				0	491.7	285.59	777.40		
		PAINTING	0	237.3	39.37	276.67				0	626.1	103.85	729.83		
		BAKING / UNLOADING	0	135.6	39.37	174.97				0	144.3	41.94	186.39		
		ASSEMBLY	0	482.7	39.37	522.11				0	825	67.28	892.25		
		LEAK TEST 2	0	135.6	39.37	174.97				0	72.3	20.99	93.30		
		FINAL INSPECTION	0	237.3	39.37	276.67				0	505.8	83.92	589.73		
ľ	77100-0K530-L		0	101.70	39.37	141.07	4.70	30	PCS	0	104.30	40.38	144.68	4.82	(
		SPOT WELD NO.2	0	101.7	39.37	141.07				0	104.4	40.38	144.68		
ľ	77100-0K530-U		0	661.65	196.85	858.50	28.62	30	PCS	0	780.05	235.87	1,015.91	33.86	(15)
		PROJECTION WELD NO.1	0	101.7	39.37	141.07				0	105.3	40.73	145.93		
		PROJECTION WELD NO.2	0	101.7	39.37	141.07				0	102.6	39.68	142.17		
		PROJECTION WELD NO.3	0	203.4	39.37	242.77				0	204.3	39.54	243.85		
		SPOT WELD NO.1	0	135	39.37	174.37				0	135.3	39.43	174.63		
		PIPE SCREWING	0	120	39.37	159.22				0	232.8	76.49	309.34		


AR Feature – Digital Work Instruction

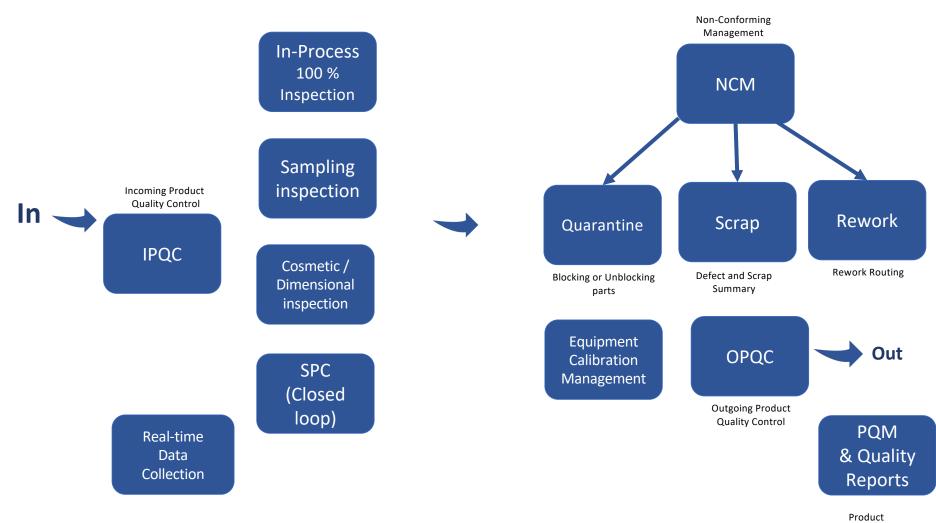

 \equiv


		Work	-In-Progres	s Dashboar	d				
End Date	Production Line		Production Process		Equipment Selection	6.°	Lot Selection		
05/10/2020 31/01/2021	All	~	All	~	All	~	All	~	
in WIP	Lots not	Started		Total C	Quantity Produce	d	Reject Perce	ntage	
38		76			47,334,775				
	05/10/2020 31/01/2021	in WIP Lots not	End Date Production Line 05/10/2020 31/01/2021 In WIP Lots not Started	End Date Production Line Production Pr 05/10/2020 31/01/2021 All All in WIP Lots not Started	End Date Production Line Production Process 05/10/2020 31/01/2021 All All In WIP Lots not Started Total C	in WIP Lots not Started Total Quantity Produce	End Date Production Line Production Process Equipment Selection all all all all all	End Date Production Line Production Process Equipment Selection Lot Selection all all all all all all all	





Description	Out	Reject Count
PLATE CAC DRIVE	1,100	
ASE_CONTUPPER Progressive	49,252	
ASSY PLATE RIGHT	700,102	27
ASSY RDOOR STOPPER PLATE	4,284	
ASSY_CST_TRAY_PLATE_CENTE R	2,040	
ASSY-CASE-CONTROLLER	102,519	
ATTACHMENT UNIT;LCU;PH;2	3,906	
BALANCE,WEIGHT;C;PH	118,250	
BASE	0	
BASE ASSY	527	
BOT BAS ASSY	215	
BOTTOM PLATE L	3,456	



× ۲ ×

Quality Management

Quality Management

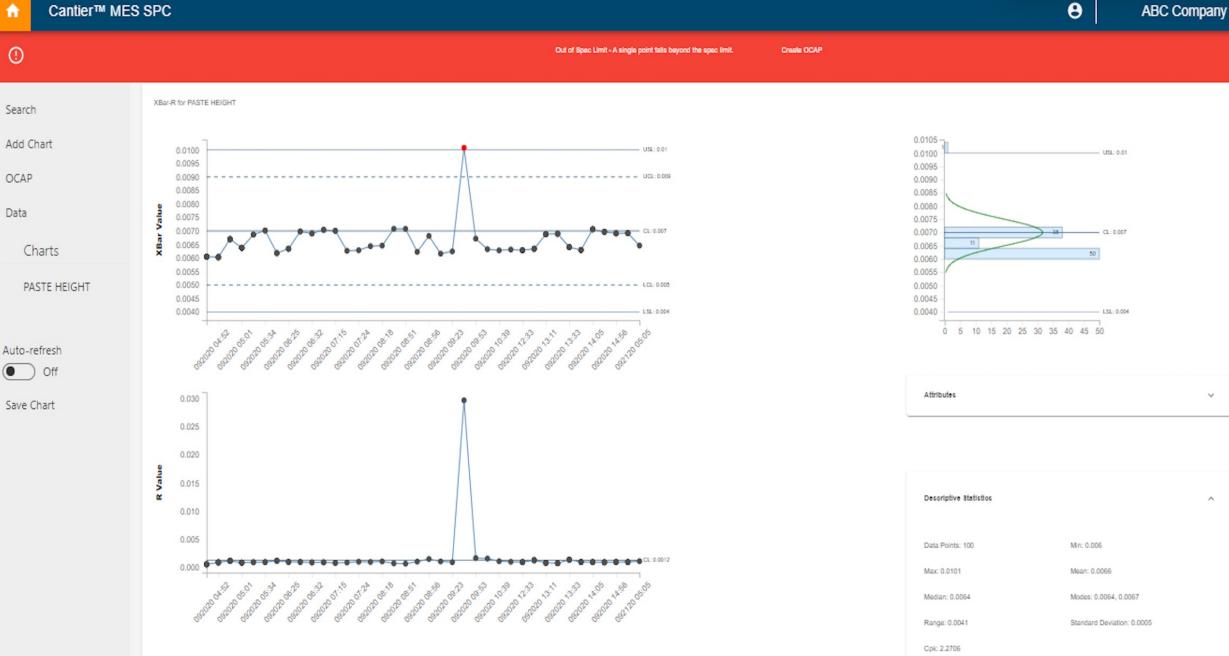
QMS IPQC : Inspection

Q

Quality Management > Quality Control > 100% Inspection

QC				Stage	Stage
ial Number Scan	60 29			Date	Date
				Shift	Shift
rial Number		Batch	Job Order	Total Inspection	0
rial Number		Batch	Job Order	WIP	0
m		Line	Machine No.		
m		Line	Machine No.	OK Quantity	0 0%
evious Route		Next Route	Group Code & Quantity	NOT OK Quant	ity 0 0%
evious Route		Next Route	Group Code & Quantity	Rework	0 0%
DEFECT DATA COLLECTION					PASSED
Show All Defects				Ν	IC Number
Defect Grade		Location	•]		IC Number
				CLEAR	te-Inspection
Line Remarks					

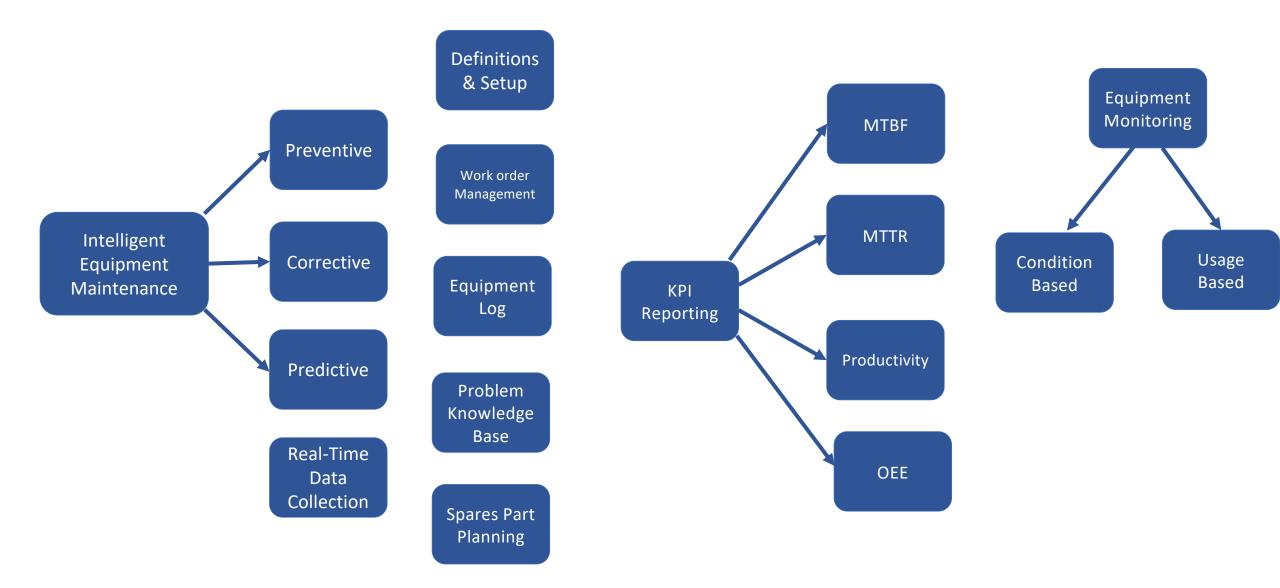
-


Statistical Process Control (SPC)

XBar-R for Tensile Strength

 \vdash

ABC Company


≡

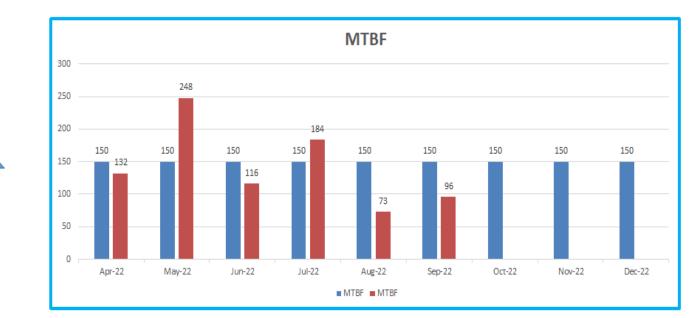
۸

CMMS & OEE

CMMS

Process flow

CMMS & OEE



CMMS & OEE MTBF

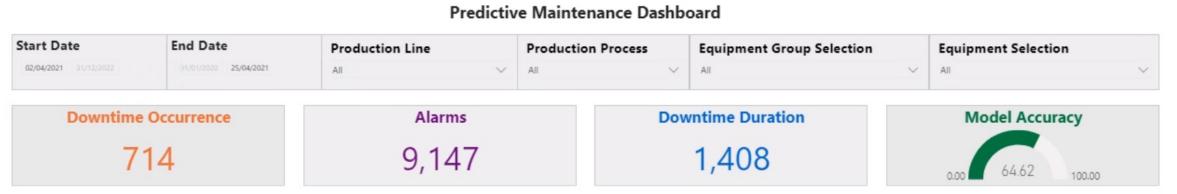
✓ CMMS

0 0 D

Mean Time Between Failure(MTBF)

	Apr-22	May-22	Jun-22	Jul-22	Aug-22	Sep-22	Oct-22	Nov-22	Dec-22
TARGET	150	150	150	150	150	150	150	150	150
ACTUAL	132	248	116	184	73	96			

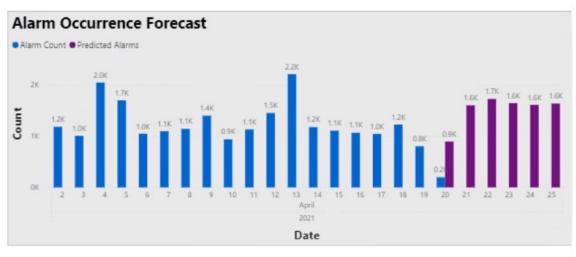
CMMS & OEE OEE – Group Level


CMMS & OEE OEE – Plant Level

PLA	NT ВМ	V BLOO	K BM-1	~ LI	NE Line-2	\sim	STAGE CNC-1	-1	~	START DAT	E 06,	/01/2023 6:30:0	00 am	END I	DATE	07/03/2023 12	47:54 am		
	BM1L2C1F01	BM1L2C1F02	BM1L2C1F03	BM1L2C1F04	BM1L2C1F05	BM1L2C1F06	BM1L2C1F07	BM1L2C1F08	BM1L2C1F09	BM1L2C1F10	BM1L2C1F11	BM1L2C1F12	BM1L2C1F13	BM1L2C1F14	BM1L2C1F15	BM1L2C1F16	BM1L2C1F17	BM1L2C1F18	BM1L2C1F19
OEE%	70	71	70	69	69	69	69	69	60	67	68	69	67	68	67	68	68	69	68
PER%	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
AVL%	70	71	70	69	69	69	69	69	60	67	68	69	67	68	67	68	68	69	68
QUA%	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
UPH	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
FPY%	61	59	59	60	58	56	53	52	54	55	55	56	57	56	57	57	56	56	55
тс	3306	3166	3093	3098	3199	2856	3087	2928	3049	2884	3122	3141	3104	2903	3020	3093	3040	3018	2876
	BM1L2C1F20	BM1L2C1F21	BM1L2C1F22	BM1L2C1F23	BM1L2C1F24	BM1L2C1F25	BM1L2C1F26	BM1L2C1F27	BM1L2C1F28	BM1L2C1F29	BM1L2C1F30	BM1L2C1F31	BM1L2C1F32	BM1L2C1F33	BM1L2C1F34	BM1L2C1F35	BM1L2C1F36	BM1L2C1F37	BM1L2C1F38
OEE%	68	67	67	66	67	68	65	65	68	68	68	68	68	67	66	66	66	67	66
PER%	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
AVL%	68	67	67	66	67	68	65	65	68	68	68	68	68	67	66	66	66	67	66
QUA%	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
UPH	3	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
FPY%	52	52	53	51	54	52	54	54	56	56	57	55	55	53	53	52	53	47	42
тс	2646	2939	2975	2886	2908	2777	3058	2746	3082	3058	3099	2921	2987	2784	2718	2678	2761	2722	2879
	BM1L2C1F39	BM1L2C1F40	BM1L2C1F41	BM1L2C1F42	BM1L2C1F43	BM1L2C1F44	BM1L2C1F45	BM1L2C1F46	BM1L2C1F47	BM1L2C1F48	BM1L2C1F49	BM1L2C1F50	BM1L2C1F51	BM1L2C1F52	BM1L2C1F53	BM1L2C1F54	BM1L2C1F55	BM1L2C1F56	
OEE%	66	66	67	67	0	67	66	65	65	45	47	45	46	44	0	0	0	0	
PER%	100	100	100	100	0	100	100	100	100	100	100	100	100	100	0	0	0	0	
AVL%	66	66	67	67	68	67	66	65	65	45	47	45	46	44	0	0	0	0	
QUA%	100	100	100	100	0	100	100	100	100	100	100	100	100	100	0	0	0	0	
UPH	4	4	4	3	0	4	3	4	4	31	34	40	34	34	0	0	0	0	
FPY%	43	43	54	52	0	49	49	48	51	30	33	39	34	33	0	0	0	0	
тс	3003	2687	2932	2651	0	2676	2632	2762	2832	23468	25984	30763	26070	25745	0	0	0	0	

ā 🔨

ŵ


 \equiv

Downtime Occurrence Forecast

Total Downtime Predicted Downtime Duration

Downtime Causes Breakdown

Top 10 Alarm Breakdown

Downtime Breakdown

Name	Predicted Downtime	Predicted Alarms	Predicted Downtime Duration
Assembly	76.36	758	329.41
Area 2	25.43	1851	329.29
Area 1	249.30	2295	265.76
Press	323.44	1226	250.69
Area 8	36.63	2985	232.79
Total	711.16	9115	1,407.93

2

Locations

Offices

SINGAPORE (HQ) | INDIA | MALAYSIA UNITED STATES | PHILIPPINES

Global Presence with Partners

CHINA | THAILAND | INDONESIA | VIETNAM AUSTRALIA | RUSSIA | EUROPE

www.cantier.com