
advanced
v e r s i o n
c o n t r o l
P O C K E T G U I D E

All you need t o know abou t
b r anch ing , me rg ing and DVCS

www.plasticscm.com

Introduction0

Version control plays a key role in software development, and it is
specially relevant for agile teams.

It is the cornerstone for best practices such us continuous
integration, continuous delivery and devops.

Only using version control teams can implement the “collective
code ownership” and enforce the concept of being “always ready
to ship”.

There is one feature that makes all modern version control
systems (Git, Mercurial, Plastic SCM) stand out from the previous
generations: they excel on branching and merging.

The goal of this guide is to become a powerful tool for the expert
developer by explaining the key concepts to master the most
relevant merge techniques. Mastering branching and merging is
the way to master version control.

Plastic SCM Team – Boecillo– October 2014
www.plasticscm.com/company/team

2-way merge1

Many “arcane” version control systems were only capable of running
2-way merges (SVN, CVS). And that’s the reason why most developers
fear merging.

All merges are manual in a 2-way merge and that’s why they’re slow,
boring and error-prone.

Consider the following scenario:
“Did I add the line 70? Or did you delete it?”
There is no way to figure it out!
And this will happen for every single change if you merge using a
2-way merge tool. It is boring for a few files, painful for a hundred
and simply not doable for thousands.

Find out more:
http://www.drdobbs.com/tools/three-way-merging-a-look-under-the-hood/240164902

30 Print(“hello”);

51 for i = 1 to 10

70

Y
Yours

30 Print(“hello”);

51 for i = 1 to 10

70 Print(result);

M
Mine

3-way merge2

All modern version controls (Git, Hg, Plastic SCM) feature
improved merge tracking and enable 3-way merging.

3-way merge doesn’t only compare “your copy to mine”. It also
uses the “base” (a.k.a. common ancestor) to find out “how the
code was before our changes”.
This changes everything! Now 99% of the merges will be
automatic: no manual intervention required!

When you compare to the “base” conflicts are solved this way:
• Line 30 - automatic – it will just keep yours.
• Line 70 - automatic – just keep mine (I added the line).
• Line 51 – manual – the user has to decide how to write the “for

loop”: loop from 1 to 10? 1 to 5? 1 to 20? Or maybe write
something else?

Find out more:
http://www.drdobbs.com/tools/three-way-merging-a-look-under-the-hood/240164902

30 Print(”hello”);

70

Y
Yours

30 Print(”bye”);

70

B
Base

30 Print(”bye”);

70 Print(result);

M
Mine

51 for i = 1 to 10 51 for i = 1 to 5 51 for i = 1 to 20

merge contributors3

When you merge between two branches you always deal with
merge contributors:

• The developer needs to merge “17” and “18” and the result of the
merge will be placed on branch “release-52”.

• The version control calculates the “common ancestor” of “17” and
“18”. In our scenario the common ancestor (or base) is the
changeset “11”.

• The version control will launch the 3-way merge tool for each file in
conflict. The conflicts will be found comparing “17” and “18” to “11”.

Once the merge is done the version control will create a “merge
link” (the green arrow between “17” and “result”) that will be used
to calculate the common ancestor in upcoming merges.

base

main

10 1311

12 1715

release-52

task090

14 16 18 R

destination
(“yours”) result

Source
(“theirs”)

merge tool layout patterns4

Almost all merge tools (Araxis, Xmerge, BeyondCompare, KDiff3)
use one of the following patterns to handle the merge
contributors:

They can use a “4 panel” layout as follows:

Or they can use a “3 panel” layout displaying “yours” and “result”
together.

Once you understand this, merge tools won’t have secrets for
you! :-)

Result
R

Source
S

Theirs

Base
B

Base

Destination

Yours

D

Source
S

Theirs

Base
B

Base

Destination

Yours / Result

D

ResultR

cherry pick5

How can we apply the fix of changeset “16” to the 3.0 branch?

We can’t just merge “16” to “17” because then we’d apply all
changes before “16” in branch 5.0 to 3.0. This would basically turn
3.0 into 5.0 which is definitely not what we want.

We just want to apply the “patch” of “16”, the changes made on
“16” to the 3.0 branch.

This operation is known as “Cherry Pick”.

development v5.0

10 13 15 16 1811

12 1714

maintenance 3.0

branch cherry pick6

This is just a slightly modified “cherry pick” that allows you to
apply a “branch level patch”: it will get the changes made on the
branch but won’t take also the parent changes.

The merge in the figure takes the (4,8] interval: changesets “5”, “7”
and “8” will be ‘cherry picked’ but not 2 and 4 as would happen
with a regular merge.

resultmain destination

1 3 6 9

main / task01

main / task01 / task02

2 4

5 7 8

source

main

1 3 6 9

main / task01

main / task01 / task02

2 4

5 7 8

source

interval merge7

result

It is yet another way to run a cherry pick. This time the developer
selects the beginning and end of the merge interval. This way he
chooses exactly what needs to be picked to merge.

The scenario in the figure will get the changes inside interval (4, 8],
which means only “5”, “7” y “8” will be taken.

main destination

1 3 6 9

main / task01

2 4 5 7 8

source

subtractive merge8

It is very powerful but you need to handle it with care.
It is very important to understand it is not just a “revert”.
You shouldn’t find yourself using subtractives on a regular basis:
it is just a tool for special situations.

Look at the figure and consider we need to delete the change
done by changeset “92” but keeping “93”, “94” and “95”.

We can’t just revert to “92” since we’d lose “93”, “94” and “95”.

What subtractive does is the following: 96=91–92+93+94+95.

It is an extremely powerful tool to “disintegrate” tasks, but you
really need to know what you’re doing.

main

90 91 92 93 94 95 96

DVCS9

DVCS (distributed version control system) is the concept that
took the industry by storm in the last decade.

Thanks to the new breed of tools: Git, Mercurial and our
beloved Plastic SCM, version control is no longer considered a
commodity and it is now seen as a competitive advantage.

With DVCS, teams don’t depend anymore on a single central
repository (and central server) since now there can be many
clones and changes are “pushed and pulled” among them. In
the case of Plastic SCM, there can be even partial clones.

Now teams working away from the head office don’t have to
suffer slow connections anymore, solving one of the classic
issues in globally distributed development.

DVCS brings freedom and flexibility to design the repository and
server structure.

Learn more about the history of version control:
http://www.plasticscm.com/version-control-history.html

San Francisco

developer 1

London

developer 2
push / pull

solving distributed conflicts10

What happens when two developers work on the same branch on
different repository clones? How will they reconcile the concur-
rent changes?

The figure below explains it step by step:

LOCATION A - REPO A LOCATION B - REPO B

1 0 1 2 3 0 1 2 3

Initial situation: a branch replicated at two different locations.

2 0 1 2 3 4 0 1 2 3 4 5 6

Developers at the two locations make changes on the same branch.

3 0 1 2 3 4

5 6

Location A replicates the repository at location B,
How will the conflicts be solved?

4 The replicated changesets can’t be directly placed at the end of the branch
so they’re correctly to their partners.
A “subbranch” is created, like a parallel branch inside, reflecting what
actually happened.

5 0 1 2 3 4 7

5 6

A regular merge can be run to reconcile the changes replicated from the
repository at Location B

Códice Software started in 2005 to develop Plastic SCM – a high
performance distributed version control system for really
advanced teams.

200 sprints and more than 600 releases later, Plastic SCM helps
teams in more than 20 countries build better software. Teams in
well-known companies like Microsoft, Samsung, Pantech, HP,
Mapfre, DHL and TellTale. They all have something in common:
they need the best branching and merging system, high perfor-
mance, high scalability and distributed development.

Videogame studios around the world are currently switching to
Plastic SCM because it is the only DVCS able to handle huge files,
locks and combine centralized and distributed development.

Maybe the code of your favorite videogame is already controlled
by Plastic SCM... :-)

Back in 2013 we released SemanticMerge,
the world’s first 3- way merge tool able to
“understand your code”.
www.semanticmerge.com

If you want to learn more about
branching and merging and Plastic SCM,
take a look at “the merge machine”.
www.plasticscm.com/mergemachine/index.html

about us11

Parque Tecnológico de Boecillo
Edificio Centro, 103
47151 Valladolid - SPAIN

sales@codicesoftware.com
support@codicesoftware.com

