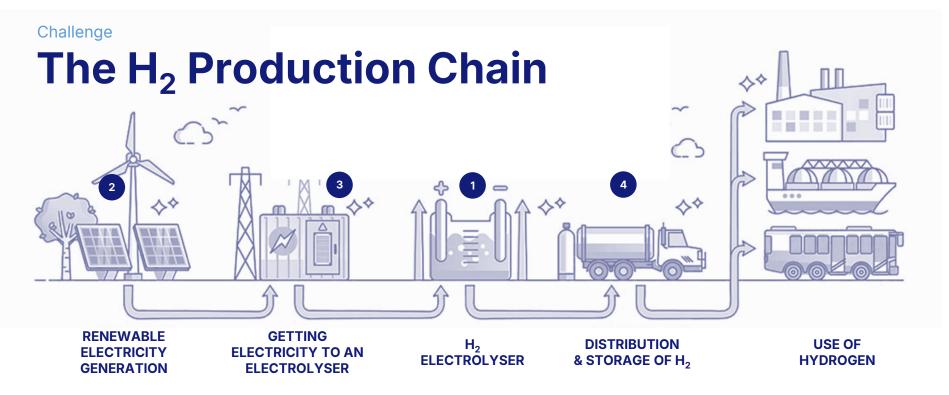
O CibusCell

SaaS for production & optimization of Green Hydrogen

Enabling the Green Hydrogen Revolution through Software & Al

Co-funded by the European Union

Microsoft Managed Partner



O CibusCell

P

Breen H	₂ is in dem	nand \$1.4Tr	but compared to conventional H ₂ ,		
	\$642Bn	51.411 600 Mio t	expen produ	sive to Jce	۲
\$11Bn	170 Mio t		З€/kg	4 €/kg	8 €/kg
41 Mio t			Conventional	Low Carbon	Renewable
today	2030	2050	P	Ф	P
 Surging Demand: hydrogen demand sixfold by 2050. 	d is set to rise Billion	I Investments : 3.5 \$ are being poured into hydrogen projects.	R		
 Climate Goals: 70 rely on Green Hyc net-zero targets. 	drogen for sustain	Production : Produced nably using renewable y sources.			

Green hydrogen production mainly occurs through **electrolysis**, a process in which water is split into hydrogen and oxygen.

2 The electricity required to procuce Green Hydrogen comes from renewable sources like wind or solar energy. 3 However, **electricity costs remain high**, and fluctuations in energy availability due to **weather conditions** affect process efficiency.

Transporting, storing and using hydrogen in various industries presents further challenges, especially in cost control and efficient resource utilization.

Cibuscell's SaaS & Al can help to optimize the entire process & improve the economic viability of hydrogen production.

OCibusCell

Platform

Complete Suite for H₂ Invest, Production & Optimization

Sizing & Costing of H₂ Plants

- Customizable Plant Design enables users to model plant configurations tailored to specific production goals, including capacity, technology selection, and site conditions.
- Detailed Cost Analysis provides a breakdown of CAPEX, OPEX, and lifecycle costs with time-series insights into operational expenses.
- Scenario Planning and Optimization allows comparison of multiple scenarios to identify the most cost-efficient dimensions of H₂ Production based on demand assumptions.
- Integrated Value Chain Insights incorporates upstream and downstream data to align plant sizing and costing with hydrogen production, storage, and off-take requirements.

H₂ Production Optimization

- Connect the hydrogen value chain end-to-end in a business process
- Access the real time electricity market prices & weather data
- **Monitor** an hourly view of current production across your locations and location clusters
- **Optimize production** for the next 24 hrs with realtime recommendations leveraging machine learning
- Expand data from other hydrogen value chains into one view
- Collaborate to connect the value chain with all coupled sectors & allow everyone to collaborate with one tool such as MS Teams

Financial Simulation & Optimization

- Optimize CAPEX and OPEX with the real data
- **Check** the revenue of electricity and H₂ production per hour
- **Monitor** the saved amount of CO2 emissions & corresponding gained value per hour
- **Simulate** the production plan over a period of 5 days to make the right business decision
- Analyse hydrogen production & price
- Monitor data to scale any certification process

🔿 CibusCell

Platform

Reducing H₂ costs with our SaaS & Al

Al helps to adjust production to maximize output when energy prices are low and minimize it during peak costs.

This can reduce energy consumption by at least 30%.

Supply Chain

Our SaaS can help plan & efficiently utilize raw material deliveries to avoid shortages and overcapacity. That way supply always aligns with current production needs.

Reducing storage costs and increasing flexibility by (3-4%).

OPEX / Personnel

Predictive maintenance solutions, powered by AI, utilize historical & real-time data to needs before issues arise

Thus, lowering operational costs significantly (3-4%).

Al-powered automation continuously monitors the process, detecting deviations in real-time.

This reduces waste and saves resources (3-4%).

Up to 40% reduction in costs **Software-Optimized** Hydrogen

H₂ Investment Planning

Optimized investment planning for H₂ Production

Dimensioning of future H₂ Plants

.√.	

Leverage different input parameters

H2 Demand ©	Energy Demand ©	Investment Budget	Energy Supplied ©
٥٥٥٥	* <u>*</u> *	<u></u>	*
_	\rightarrow \rightarrow	\rightarrow	Wind Plant Solar Plant Hydro Plant
 Specify your technical input 	parameters for dimensioning the H2 plant		
	parameters for dimensioning the H2 plant		

Software-based support for the optimal design of your hydrogen plants.

Investment scenarios for your business planning

Full reports of future H₂ production scenarios

Concrete and transparent results for investment decisions and subsequent planning steps.

Transparent assumptions for the cost calculation of H_2 production and storage.

PDF of the calculated results for internal investment and management decisions.

Business Value for early H₂ Investment Planning

Solving the CapEx vs. OpEx dilemma

Large CapEx (Electrolyser & H₂ Storage): fewer operating hours to leverage most cheap electricity prices, **decrease** of expenses on electricity as main **OpEx** driver

Smaller CapEx: need for more operating hours, risking to suffer from high electricity costs (**large OpEx**)

Gaining insights on future operational costs (OpEx)

Calculate different scenarios of **electricity sourcing**:

- Spot market electricity, e.g. European Energy Exchange (EEX) **day-ahead** prices
- Electricity power purchase agreements (PPAs)
- Own renewable energy sources, e.g. wind or solar park

Sizing H₂ Production optimally according to energy demands

Simulate H₂ Production operations with dynamic CibusCell optimization. Gain insights on how **dynamic electricity sourcing** reduces operational costs while meeting your estimated energy demands.

Software optimization right from the start

Explore how **24/7 production optimization** can be achieved for your future H_2 plant. Get to know a full **digitalization concept** for your H_2 production. Identify technical requirements and potential next steps together with CibusCell.

Start now and reduce risks of your investment in H₂

H₂ Investment Planning: Scope & Results

From 2 hours

Up to 2 days

- Recording the status quo of your energy supply
 Predefined electricity prices (EEX)
 Use of templates for
- electrolyzer & storage sizing
- PDF of the calculated results for internal investment and management decisions

Price: 800€

- Design Thinking workshop
- Evaluation of electricity supply contracts
- Calculation of different
 variants of your H₂
 production incl. transparent
 CAPEX & OPEX calculations
- Creation of a digitalization concept for optimized operational management of your future H₂ plant

Price: 7.990€

Next Step: CibusCell Optimization

Setup hydrogen operating system

Implement system design (electrolyser, storage, off-take streams, etc.)

Model training for optimization

Implementation of **analytical** and visualisation requirements

🔿 CibusCell

Hydrogen Project Example

A major project to promote hydrogen technology and the energy transition in Lower Saxony, Germany.

- Hydrogen cycle at an OGE operating site; production of hydrogen by local electrolysis
- Use of the generated H_2 for on-site heat supply (boiler feed) renewable power generation & Mobility
- Partnerships / Collaborations with Uniper
- This is 1 of 53 locations that could be producing & supplying Hydrogen.

KRUH2 Gas Compressor **Station**

OCibusCell

24h live data of KRUH2's H₂ Production

2

q

Current Month 15h

Sensor Data Last Undated

11:30

2

4

Dia Date

04.10.2024

OVERVIEW

The main dashboard of the digital twin shows:

KRUH2

-) OGE

OVERVIEW

OPTIMIZE

() ABOUT

SETTING

SIMULATE

S FINANCIAL OVERVIEW

O CibusCell

A map view of the hydrogen production site

H2 Production in Krummhörn (Digital Twin)

Greeen Energy Management ⁽⁾

/alues are based on data of the current hos

154.44

Kq

18.00

Kg

Weekly Overview

Hydrogen Storace

30

30

V Senaor Date

O Krummhörn +

1

A collection of real-time data from all connected hardware points

Fuel Cell – Heat Supply

\odot **OPTIMIZE**

Next **Day Plan** of Hydrogen **Production Electrolyser Production Schedule**

Production Optimization of H₂ in real-time with optimal electrolyser usage

30

Selected Plan: ML Bas

372.60

 \odot

30

KRU(H)

OGE

Live Client Info

Today's Electricity Price

Live Client Info: OGE / KRUH2

KRUH2

5

6

Cloud to Device option

CibusCell manually

Optimized electricity

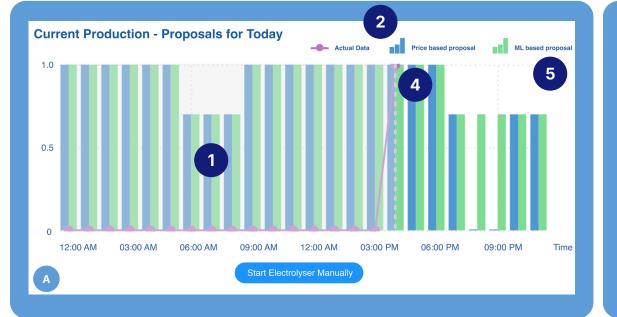
conditions

to start the electrolyser via

procurement considering

3

4


User can decrease and increase the H₂ production via **Threshold Slider easily**

H₂ Production based on High

Price and I ow Priced Threshold

OCibusCell

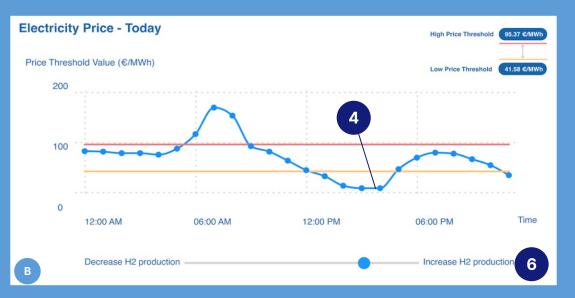
Al tells you when to produce H₂

Optimized Electrolyser

utilization with intermittent

Three Different Electrolyser

Production Schedules (Actual


Data, Price based Proposal, ML

renewables with optimal

efficiencies

based Proposal.

2

Live Client Info: OGE / KRUH2

Savings of more than €1 per kg of H₂.

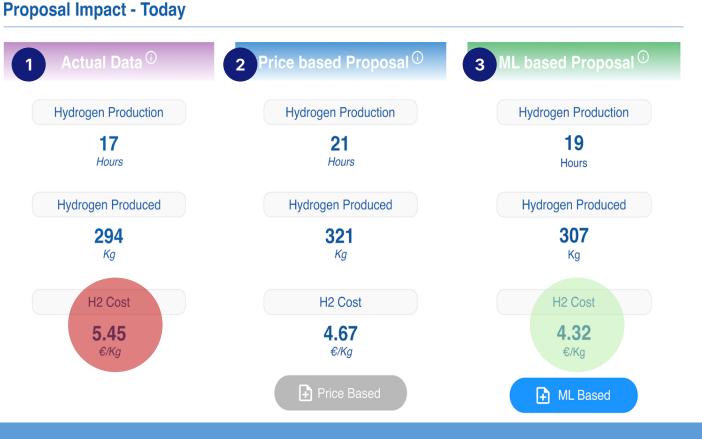
12

Showing 3 different production proposals and their impact on the H_2 production and Costs per KG of H_2 :

Compare H₂ **production scenarios**

2

3


KRUH2

Production based on actual Data

Production based on Electricity Price

Machine Learning based Proposal

The latter optimizes OGE's operations by analysing weather, electricity prices, demand patterns, and hardware performance.

OCibusCell

Review & monitor H₂ production

O CibusCell

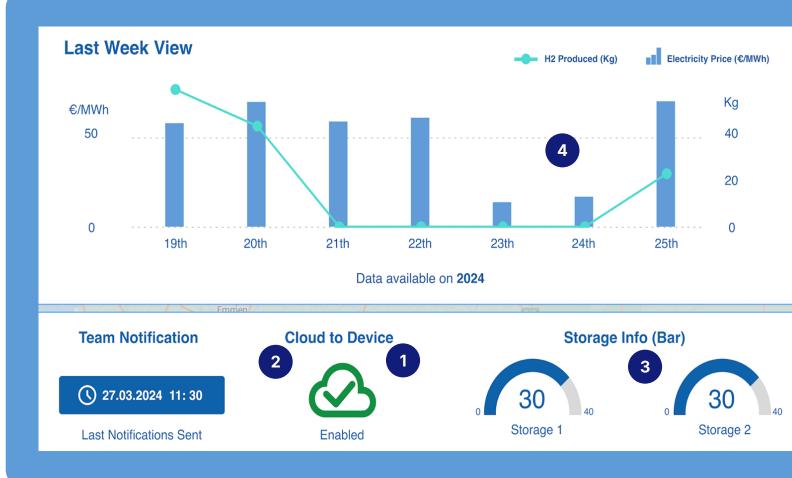
Cloud to Device enables full automation of hydrogen production reducing OPEX and personnel for decentralized sites

2

3

4

1


MS Teams Notifications allow decentralized teams to always know what is going on

Optimization of H₂ storage and demand management

Also shows how much H₂ was produced per day and according to which electricity price

Cloud to Device CibusCell allows to run the value chain fully automated.

Live Client Info: OGE / KRUH2

Attractive SaaS Pricing (per plant site / 3 years)

O CibusCell

Marcus Ruebsam

marcus.ruebsam@cibuscell.com

www.cibuscell.com

Phone: +49 160 904 323 50