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ABSTRACT

Rising antibiotic resistance inflicts a heavy burden on healthcare, both clinically and economically. Owing to the
time required to obtain culture and sensitivity test results, quite often the clinicians rely on their experience and
static clinical guidelines to prescribe antibiotics. Such empirical treatment often fails to account for patient-specific
attributes and changes in the antibiotic resistance patterns with time and location. The aim of this study was to
analyze the patient and hospital specific features regarding their prognostic relevance to treat bacterial infections
of patients in the intensive care units (ICUs). We performed a single-center retrospective cohort analysis across
25526 positive cultures recorded in MIMIC-III critical care database. We retrieved a number of clinically relevant
relationships from association analysis between patient factors and bacterial strains. For instance, higher elapsed
time from patient admission to sample collection for culture showed strong association with blood stream infection
caused by Enterococcus faecium, Pseudomonas aeruginosa, and Staphylococcus, indicating that these infections
are possibly hospital acquired. To predict antibiotic sensitivity at the level of individual patients we developed an
ensemble of machine learning algorithms. The model provided superior prediction accuracy (about 87%) and area
under the ROC curve (around 0.91 on an average) for the four most common sample types as compared to a
number of off-the-shelf techniques. We demonstrate the predictive power of commonly recorded patient attributes
in personalised prediction of antibiotic efficacy.

Introduction

The aggravating loss of antibiotic activity as a result of the dispersal of resistant genes among micro-organisms
has become a global health challenge and a threat to humankind. Antibiotic resistance inflicts a heavy burden on
healthcare both clinically and economically, with 23,000 and 25,000 estimated annual deaths respectively in the
United States and in Europe as well as increasing length of stay and morbidity. Reports suggest a projected annual
death toll touching ten million worldwide by 20501–3. In the United States alone, the annual cost associated with
antimicrobial resistance has been estimated to be $55 billion4. Intensive Care Units (ICUs) in hospitals are often
considered to be the epicenter of development, acceleration, and proliferation of drug-resistant microorganisms5, 6.
Critically ill patients in ICU are particularly vulnerable to infections due to their exposure to multiple invasive
procedures. These include mechanical ventilation, tracheal intubation, vascular access etc. which, in turn, leads to
compromised defense mechanism of anatomical barriers, impairment of protective mechanisms such as cough reflex
by sedative drugs, and the frequent impairment of the immune response induced by trauma, surgery, and sepsis7.
According to a dated multi-center study (conducted in 1992) in Europe, around 20% to 30% of ICU admissions had
reported an incidence of nosocomial infection8. A more recent study (conducted in 2007) involving 1265 ICUs from
75 countries reported the presence of hospital-acquired infections in about 50% of ICU patients9.

In today’s world of rapidly growing antimicrobial resistance (AMR), optimal antibiotic prescription is crucial
in critical care settings10. Frequently used broad-spectrum antibiotics are among the primary drivers of rising
AMR. Reports suggest that 30% to 60% of the antibiotics prescribed in ICUs are unnecessary, inappropriate, or



suboptimal11–13. Epidemiological studies have demonstrated a direct relationship between antibiotic consumption
and the emergence/propagation of several resistant strains in ICUs11–14. Nosocomial infections, caused by multi-drug
resistant (MDR) organisms, are more prevalent in ICUs as compared to other departments8. Infection caused by
MDR organisms often result in much worse clinical outcomes compared to their susceptible counterparts15. Such
outcomes have also been linked with delay in the administration of right antibiotics16.

In the presence of clinical symptoms, detection of the pathogen via culture remains the gold standard for
diagnosing the majority of the bacterial infections including urinary tract infection (UTI) and bloodstream infection
(BSI)16–18. Culture and Sensitivity (C & S) report provides definitive evidence of a particular infection in a subjected
specimen19, 20. C & S reports also cite antimicrobial susceptibility of the individually tested drugs through Minimum
Inhibitory Concentration (MIC) values. Generation of a C & S report typically takes around 24 to 72 hours. In its
absence, physicians rely on their perception about the clinical presentation of the specific cases and other available
clinical guidelines21. Such approaches could potentially disregard patient-specific attributes and the temporal
changes in the antimicrobial resistance patterns22. Appropriate choice of empiric antibiotic must balance out the
objective to minimize the prescription of broad-spectrum antimicrobial agents and give a broader spectrum of
coverage across various bacterial strains23. It has been shown that inappropriate empiric therapy is associated with
poorer outcomes with longer length of stay, increased health-care costs, higher morbidity, and mortality24.

Numerous studies have suggested appraisal of pathogen etiology in a localized setting as the ideal basis of
empiric therapy25–27. We performed a retrospective study to correlate antibiotic resistance to a broad range of
patient-specific factors such as gender, comorbidities, site of infection, the events of past hospitalization, and previous
antibiotic usage. These factors show significant non-monotonic associations with the efficacy of the antibiotics.
We used patient information and culture data of 11496 patients from the Medical Information Mart for Intensive
Care III (MIMIC-III, data collected between 2001 and 2012) critical care database28. We first analyzed the bacterial
prevalence and susceptibility patterns across bacteria-antibiotic pairs. Further, we presented a statistical approach
unraveling the complex landscape of association between various patient-related features and the bacterial species.
This analysis provided us with a comprehensive set of clinically relevant relationships. Finally, we explored the
potency of various concerned patient factors to predict the susceptibility of bacteria to specific antibiotics. To this
end, we developed an ensemble of machine learning models for personalized antibiotic susceptibility prediction that
yielded a high overall accuracy, compared to some of the existing best practice methods.

Results

Overview of the data
MIMIC-III is a publicly available database consisting of de-identified Intensive Care Unit (ICU) patient data from
Beth Israel Deaconess Medical Center (BIDMC) in Boston, Massachusetts from 2001 to 201228. This comprehensive
healthcare data includes detailed information of patients’ demographics, admission details, laboratory tests, vital
signs, medications, microbiology procedures, and mortality to name a few. From the total C & S reports of 11496
patients, we only considered the positive cultures for the current study. Subsequently, we found 27625 unique culture
isolates. We illustrated the bacterial distribution and susceptibility patterns for most frequently occurring bacteria
including Staphylococcus aureus, Escherichia coli, Enterococcus, and Pseudomonas aeruginosa in Fig 1a and Fig 1b
respectively. We mainly considered the top four types of sample for this study. We found that the most frequently
collected four samples were sputum, urine, blood, and pus swab. From the diagnoses table, we captured 18 different
comorbidities namely ‘endocrine, nutritional and metabolic diseases, and immunity disorders’, ‘diseases of the blood
and blood-forming organs’, ‘mental disorders’, ‘diseases of the nervous system and sense organs’, ‘diseases of the
circulatory system’, ‘diseases of the genitourinary system’, ‘symptoms, signs, and ill-defined conditions’, ‘external
causes of injury and supplemental classification’, ‘infectious and parasitic diseases’, ‘diseases of the musculoskeletal
system and connective tissue’, ‘injury and poisoning’, ‘neoplasms’, ‘diseases of the respiratory system’, ‘diseases of
the skin and subcutaneous tissue’, ‘diseases of the digestive system’, ‘congenital anomalies’, ‘certain conditions
originating in the perinatal period’, and ‘complications of pregnancy, childbirth, and the puerperium’ while excluding
‘Factors Influencing Health Status And Contact With Health Services’. We showed the distribution of four specimens
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mentioned above along with other samples combined in Fig 2a. We regarded each admission a separate instance and
plotted the distribution of the 18 aforementioned comorbidities along with cases with no comorbidity associated in
the patient demography in Fig 2b. We gave the detailed description of variables retained after extraction and feature
engineering in Table 1.

Antibiotic resistance patterns
We focused primarily on BSI cases and illustrated the heatmap of resistance patterns for the same in Fig 3. According
to the data of blood samples, except for extensively used drugs such as penicillin (15.64% sensitive cases), oxacillin
(28.4% sensitive cases), ampicillin (46.28% sensitive cases), erythromycin (27.24% sensitive cases), clindamycin
(44.87% sensitive cases), levofloxacin (42.51% sensitive cases) most of the drugs used were quite effective in
terms of bacterial sensitivity. Carbapenems such as imipenem and meropenem worked effectively with 96.24%
and 96.36% sensitive cases against gram -ve bacteria. Notably, in 100% of the cases (total 1739) different strains
of Staphylococcus species turned out to be sensitive to vancomycin. We attached the heatmaps of resistance
patterns for all infection data in Figure S3 (Supplementary Methods) and other frequently occurring infections
in Figure S4 (Supplementary Methods). There we clearly observed differences in bacterial prevalence as well as
antibiotic-bacteria pairwise resistance rates for individual sample and entire data.

Factors influencing bacterial infections
In the current study, we explored the association of different patient-related factors with the bacterial strains by
using multinomial logistic regression for blood sample data. We presented the coefficients of regression in Fig 4. We
reproduced the results of similar analysis for sputum, urine, and pus swab sample data in Figure S5 (Supplementary
Methods).

We observed that Enterococcus faecium and interval of more than 5 days had the highest positive association
with mean coefficient value ∼ 1.84. Next, we noticed that Beta-hemolytic Streptococcus, group B and Escherichia
coli are more likely to cause infections in patients of age 0−15 years as compared to patients belonging to other age
groups with mean coefficients 1.75 and 1.74 respectively. The bacteria being Enterococcus faecalis, ‘diseases of
the respiratory system’ had a positive coefficient ∼ 1.17 on an average. Furthermore, 3−5 days after a patient’s
admission into hospital, Serratia marcescens was found to have a higher infection rate, represented by the strong
positive mean coefficient value of 1.04. We also noted that incidents of Pseudomonas aeruginosa were positively
correlated with interval greater than 5 days and ‘endocrine, nutritional and metabolic diseases, and immunity
disorders’ with mean coefficients 1.02 and 0.93 respectively. Staphylococcus also had positive association (mean
coefficient value ∼ 0.92) with interval more than 5 days. On the other hand, Staphylococcus had strong negative
correlation (mean coefficient value −0.66) with ‘diseases of the digestive system’. Staphylococcus epidermidis
infections were much less frequent in females compared to males supported by mean coefficient value −0.63. We
put the complete list of regression coefficients down in Table S1 (Supplementary Methods).

Personalized prediction of antibiotic resistance
We tested the performance of our proposed approach with the demographic, clinical, and microbiology data extracted
from MIMIC-III database after data cleaning, variable selection and baseline model choice. We randomly split the
data of each type of specimen namely urine, sputum, blood, and pus swab into 70% for training and 30% for testing
repeatedly for 100 times and calculated means and standard deviations of different performance measures to evaluate
our model (Fig 5). We compared the performances of different models using metrics such as accuracy (Fig 5a),
precision, recall, F1 score (Fig 5b), Cohen’s kappa score (Fig 5c), area under curve (AUC) of receiver operating
characteristic (ROC) (Fig 5d) to name a few. We gave the complete comparison of different baseline models and our
ensemble model in Table S2 (Supplementary Methods). We observed that our ensemble model outperformed the
other models experimented in almost all aspects. We achieved an average accuracy of 85.8%, 87.03%, 86.28%, and
89.17% over 100 iterations for urine, sputum, blood, and pus swab samples respectively. The next best model for
those samples attained 83.59%, 86.11%, 84.93%, and 88.82% accuracy respectively. We also yielded mean kappa
scores of 0.58 (urine) , 0.71 (sputum), 0.69 (blood), and 0.77 (pus swab). Mean AUC values for ROC corresponding
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to urine, sputum, blood, and pus swab samples came out to be 0.88, 0.92, 0.92, and 0.94 respectively.
We also plotted the ROC curve after splitting the data randomly into 70% and 30% for training and testing as

shown in Fig 6 for four most prevalent sample types namely urine, sputum, blood, and pus swab. Our model yielded
AUC values of 0.88, 0.93, 0.93, and 0.95 for urine, sputum, blood, and pus swab samples respectively in those
instances.

Discussion

Advances in machine learning, coupled with training on large electronic health records and hospital integrated
system datasets, have the ability to disrupt the areas of diagnosis and prognosis in emergency medicine29, 30. In the
space of bacterial infection, retrospective analyses of etiology and descriptive studies have been reported in regular
intervals31–33. However, collective and methodical applications of predictive modeling is yet to be extensively
implemented in the field of empiric treatment via antimicrobial sensitivity analysis barring a few interesting
attempts34, 35. Also the data used in the existing studies were not publicly available. Therefore, we could not validate
their claim or compare our approach against the models applied in such studies. We looked at a wide range of
variables comprising patient conditions, demographic information, previous culture history to predict susceptibility
of specific bacterial species against antibiotics at a personalized level. The indiscriminate use of antibiotics has
evidently resulted in increasing resistance of bacteria and subsequently rendered many of the standard treatment
options ineffective. Rapid emergence of new strains of resistant bacteria made treatment of infections and monitoring
of bacterial resistance substantially unpredictable. Inherent delay associated with producing C & S reports often
prompts the doctors to treat the patient empirically without processing any culture. Also, in many developing
and backward countries cultures are not ordered considering the economic burden of negative cultures. Our aim
is to bring down inappropriate prescription and cognitive load of the physicians in such scenario. By means of
heatmaps showing bacteria-antibiotic pairwise resistance pattern and relative bacterial prevalence given patient
factors, data visualization can help physicians inferring bacterial prevalence and their corresponding resistance
not only in care type or ward level (e.g. ICU) but also in patient level. The proposed data-driven antimicrobial
susceptibility test (AST) can be used to generate highly accurate patient-specific predictive antibiograms. In absence
of the culture report, these predictive antibiograms can aid clinicians in complex, data-backed decision making while
recommending antibiotics.

Blood stream infection is one of the most critical and prevalent infectious diseases. Moreover, BSI management is
often suggested as a performance indicator for antimicrobial stewardship programs in healthcare facilities. Therefore,
we chose to perform most of our statistical analysis using blood sample data only. We developed a novel statistical
approach to discover the association between patient factors and incidence of infections caused by specific bacterial
species. We found several interesting clinically relevant relationships, which corroborate or enhance our present
understanding of the causes of infections. These associations can be used by antibiotic stewardship teams to
implement hospital-specific guidelines in a scientific manner. Although we observed that for a large number of
patient factors, we could not infer any association. In such a scenario, the presence of additional data might allow us
to make more inferences that are statistically significant. Moreover, identifying the presence of a bacterial strain in
patient level might help stewardship team to track the bacterium with more granularity. This will in turn help them
implementing measures to curb the spread of infection within the hospital against present alarming situations as
reported by David and colleagues.36 We observed that infections caused by Enterococcus faecium, Pseudomonas
aeruginosa, and Staphylococcus are more common in patients with increased interval between admission and sample
collection dates, indicating that these infections are probably hospital acquired. Past studies also suggested that
bloodstream infections due to Pseudomonas aeruginosa and Enterococci are usually hospital acquired37. According
to our analysis, Escherichia coli and group-B streptococcus infections were prevalent in patients of 0−15 years of
age. Earlier investigations mentioned infection due to group-B streptococcus and Escherichia coli as a major cause
of neonatal sepsis38. This corroborates our findings.

With the off-the-shelf machine learning models we did not do particularly well except for decision tree in terms
of performance and calibration. Therefore, we formulated a new approach which gave us a significant delta jump
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in accuracy from the existing classifiers yielding approximately 87% accuracy on an average across all test cases.
Receiver operating characteristic (ROC) curve is a graphical representation of true positive rate (TPR) or sensitivity
and false positive rate (FPR) or (1 - specificity) on y and x axes for varying cut-off points of test values. The area
under the curve (AUC) is an effective measure of model validity which lies between 0 and 1 with a higher score
indicating better performance. Therefore we concluded that the overall performance of the custom ensemble model
on the test sets of different types of specimen (e.g. ROC-AUC in case of blood sample data: 0.92) was better
than either of decision tree, kNN, gradient boosting, and AdaBoost (corresponding AUC: 0.87, 0.87, 0.83, and
0.81 respectively). Our model was able to calibrate to different prevalence of bacteria and their corresponding
susceptibilities (sensitive or resistant) throughout the hospital for different infection types in the bootstrapped test
sets.

Still, our current model has several limitations in terms of generalization, prospective study and variable
selection. Our model is trained on the data from a single hospital which is not validated to be generalizable to
multiple healthcare settings. The database did not contain any information about nosocomial infections or other
factors contributing to the healthcare associated infections such as intubation or ventilation leading to infection.
Documentation of whether the patients had religiously taken the prescribed antibiotics in the duration of their
treatment was not available too. Even with a handful of commonly recorded patient information, our model was
found to be accurate enough for being considered as a decision support system. As a continuation of our study we
plan to prospectively examine the impact of our current model on future predictions and reduction of diagnostic error
to subsequently improve the efficacy. We will also evaluate the effectiveness of the predictive power of our model in
reducing inappropriate prescriptions and antibiotic consumption. We also intend to utilize bacteria-antibiotic pair
susceptibility patterns in reference laboratories for a more comprehensive study in community acquired infections.

Methods

Extraction of relevant variables
For this study, we collected the data generated by microbiology laboratory from MICROBIOLOGYEVENTS table
in MIMIC-III database along with the patients’ demographic and admission details from PATIENTS table and
ADMISSIONS table respectively. We merged the table containing microbiology results for the patients detected
with positive cultures and the table with patient details through a left outer join. Patient data obtained from the three
tables mentioned can be categorized as follows: a. De-identified Patient identity - patient id, admission id; b. Patient
demography - age and gender; c. Admission details - admission date, admission type; d. Patient condition - existing
comorbidities as per the diagnosis, device information (e.g. Catheter insertion). For the cases with no reported
comorbidity, we maintained a separate category and same for patients with no device associated before sample
collection. Culture-related details extracted from the MICROBIOLOGYEVENTS table consisted of the name of
the specimen or sample sent for culture, date and time of sending the sample for culture, the name of the bacteria
grown on culture, antibiotic name, and susceptibility to the tested antibiotics. We derived few other variables from
the available patient information including the number of previous admissions, the interval between admission and
sample collection in days. For capturing the comorbidities, we used the DIAGNOSES_ICD table of the MIMIC-III
database. We extracted the ICD-9 codes available for each admission as identified by patient id and admission id.
We eventually ended up with 6984 unique ICD codes with quite sparse data. Numbers of comorbidities associated
with each admission ranged from 0 to 39 while the average was 11. To tackle the sporadic feature of comorbidities
associated, we only extracted the first three digits of the ICD codes for all except ‘Supplementary Classification Of
External Causes Of Injury And Poisoning’ where the codes start with an ‘E’39. We then further merged them into 19
different categories as given in ICD-9 data website.

Resistance pattern across bacteria and association analysis of bacteria
For each bacteria-antibiotic pair, we computed the rate of resistance on the entire data. Since the bacterial prevalence
can vary across infection sites and sample types, we also performed the same pairwise analysis for each type of
sample. In overall and sample wise analyses, we only retained the bacteria-antibiotic pairs with at least 30 tests
available on entire data and sample specific data respectively.
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We used multinomial logistic regression to calculate the relationship between bacteria and the explanatory
variables (patient data). Multinomial Regression uses a softmax estimator to estimate the probability of each class
(see Eq (1)). We denote x(i) to be the vector of predictors and Y (i) to be the bacteria for the ith patient sample. The
coefficient vectors θks capture the relationship between the set of input variables and the probability of observing
an infection due to bacteria k. We obtained the coefficient vectors using sklearn.linear_model.LogisticRegression
method, which employs newton− cg as the solver.

P(Y (i) = k) =
exp(θ T

k x(i))

∑
K
j=1 exp(θ T

j x(i))
(1)

We computed the 95% confidence intervals of the coefficients by using bootstrap. If the confidence intervals included
zero, we refrained from concluding any association. In the remaining cases, we reported either positive or negative
associations. We did this analysis for each type of sample separately focusing primarily on blood sample.

Prediction of antibiotic sensitivity at patient level
We used a stacked ensemble method to predict patient-specific antibiotic susceptibilities. We tried to capture as many
different kinds of baseline models as possible to build the ensemble so that we can generalize and enhance model
performance. However addition of each new model is associated with increased time and structural complexity. So
we tried to minimize choosing models with correlated prediction errors. We started with tree-based models such as
decision tree and random forest, boosting algorithms like adaptive and gradient boosting as well as other diverse
classifiers namely k-nearest neighbors (kNN), naive bayes, and logistic regression. We greedily picked the models
whose prediction errors are relatively uncorrelated on an average with other models. We illustrated the correlation
matrix of prediction errors for all base learners in Fig 7 corresponding to blood sample data. As evident from the
correlations shown in Fig 7, we greedily picked up decision tree, gradient and adaptive boosting, naive Bayes, and
kNN as our baseline models for this case. We have added the correlation matrices of prediction errors corresponding
to other specimens in Figure S1 (Supplementary Methods). Finally we used a gradient boosting classifier as a meta
learner to combine the predictions of the selected base learners. The complete structure of the ensemble model for
blood sample data is given in Fig 8.

Only data available during a patient admission until the time of culture along with previous admission information
were used as prediction variables. To do away with missing or incomplete data, we did a complete case analysis. A set
of 8 variables (age, gender, number of previous admissions, sample collection interval, list of comorbidities, devices
inserted, specimen, and antibiotic) was selected through subject matter expert (clinician) knowledge and extensive
literature review. We preferred expert opinion and literature review based selection over automated variable selection
techniques to deal with accountability and user acceptance of features used in prediction. After preprocessing of raw
data, we devised our binary classification algorithm to train our classifier for predicting susceptibility of the bacteria
(resistant or sensitive) to the administered antibiotic. We classified intermediate levels of resistance as resistant to
exclude possible inappropriate use of antibiotics with less efficacy. We executed this in a bacteria agnostic manner to
use our prediction before sample is collected or sent for culture. Vis-à-vis, we created the data to be used for training
and testing by label encoding and randomly splitting the data into 70% for training and 30% for held-out testing
and evaluation. We repeated this process 100 times to obtain mean and standard deviation of different evaluation
metrics for final model selection. We have attached the diagram of complete step wise procedure in Figure S2
(Supplementary Methods). We repeated the whole process for each type of specimen or sample and reported results
for top four samples.
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Variables Variable Type and Description

Demographic Gender
Categorical/Nominal
(2 categories)

Male: 12650 samples
Female: 10414 samples

Age Continuous Computed at the time of admission

Admission
Details

Number of Previous
Admissions

Integer-valued
Number of times patient was previously
admitted before current admission

Sample Collection
Interval

Integer-valued
Interval in days between admission
and sample collection

Patient
Condition

Existing
Comorbidities

Categorical/Nominal

No comorbidity associated or one of 18 different
comorbidities among ‘endocrine, nutritional
and metabolic diseases, and immunity disorders’,
‘diseases of the blood and blood-forming
organs’, ‘mental disorders’, ‘diseases of the
nervous system and sense organs’, ‘diseases
of the circulatory system’, ‘diseases of the
genitourinary system’, ‘symptoms, signs, and
ill-defined conditions’, ‘external causes of injury
and supplemental classification’, ‘infectious
and parasitic diseases’, ‘diseases of the musculo-
skeletal system and connective tissue’, ‘injury and
poisoning’, ‘neoplasms’, ‘diseases of the respiratory
system’, ‘diseases of the skin and subcutaneous
tissue’, ‘diseases of the digestive system’, ‘congenital
anomalies’, ‘certain conditions originating in the
perinatal period’, and ‘complications of pregnancy,
childbirth, and the puerperium’

Device Inserted Categorical/Nominal

No device inserted or one of 9 different devices
(Hepatic Hunt Tips, CVL, Chest Tube, Abscess
CHG, Catheter, Thoracostomy Tube, ABD Port,
PEG, Arterial Line) inserted

Culture
Details

Type of
Sample sent

Categorical/Nominal 27 types of specimen sent for culture

Organism
present

Categorical/Nominal 115 different organisms

Antimicrobial
tested

Categorical/Nominal 30 different antimicrobial tested

Bacterial
sensitivity

Categorical/Nominal
Sensitive (S): 1313845 tests
Resistant (R): 546858 tests
Intermediate (I): 73533 tests

Table 1. Detailed description of variables extracted and created for retrospective analysis. Patient
demographic, clinical conditions, admission details and culture details across all positive cultures were collected
which comprises of several categorical, continuous and integer-valued variables.
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Figure 1. Bacterial distribution and susceptibility patterns for topmost bacteria. The percentages of
prevalence for top 10 bacteria have been shown in Fig 1a and Fig 1b corresponds to a sunburst plot displaying
overall susceptibility patterns of topmost few bacteria.

(a) Percentage prevalence of most frequent pathogens

(b) Overall susceptibility patterns for top bacteria 11/18



Figure 2. Distribution of specimens collected and comorbidities associated in patient population. Fig 2a
shows the percentages of particular frequently collected samples or specimens and Fig 2b shows count of patient
admissions with specific comorbidities.

(a) Percentage of specimens collected

(b) Counts of patients with certain comorbidities 12/18



Figure 3. Antibiotic vs bacteria pairwise resistance rate in MIMIC-III data for blood sample. Each entry in
the matrix denotes the ratio of number of resistance cases over total number of cases when the corresponding
antibiotic in the column is tested against the bacteria in the row. The blank vacant entries refer to the cases when the
antibiotic is never tested against the bacteria as per the data.
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Figure 4. Coefficient plot of multinomial logistic regression on bacteria over several factors in blood
sample data. The darker the red color gradient, the stronger the positive association between the corresponding
bacteria and explanatory variables. Similarly with darker blue shade, stronger negative correlation is illustrated. The
greyed out boxes implicates statistically insignificant associations.
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Figure 5. Performance measures for different classifiers over 100 iterations of 70-30 random split.
Accuracy, F1 score, kappa score, and area under curve (AUC) for receiver operating characteristics (ROC) were
calculated for all five top performing models: ensemble, decision tree, kNN with Hamming distance, Adaptive
Boosting (AdaBoost) and Gradient Boosting on randomly split 30% test data. Fig 5a, Fig 5b, Fig 5c, and Fig 5d
show sample wise accuracy, F1 score, kappa score, and AUC respectively.

(a) Sample wise accuracy of different models (b) Sample wise F1 scores of different models

(c) Sample wise kappa scores of different models (d) Sample wise AUC for ROC curve of different models
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Figure 6. Sample specific ROC curves for ensemble model with 70-30 split. For our ensemble model with 5
base learners and gradient boosting meta learner, the receiver operating characteristic curve was plotted by training
on randomly split 70% training dataset and testing on the remaining 30% test dataset. Fig 6a, Fig 6b, Fig 6c, and
Fig 6d show sample wise ROC curves with AUC values for urine, sputum, blood, and pus swab respectively.

(a) ROC curve for urine sample data (b) ROC curve for sputum sample data

(c) ROC curve for blood sample data (d) ROC curve for pus swab sample data
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Figure 7. Correlation matrix of prediction errors for different baseline models corresponding to blood
sample data. Prediction errors on randomly split 30% test data have been calculated for decision tree, adaptive
boosting, gradient boosting, naive Bayes, logistic regression and kNN model for certain 70-30 data split to produce
the correlation matrix.
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Figure 8. Complete structure of ensemble model. The baseline models were chosen focusing on minimizing
prediction error correlation. Gradient Boosting classifier was used as a meta learner for combining the predictions of
base learners.

18/18


	References

