
Contents

 Azure IoT Central documentation
 Overview

 What is Azure IoT Central
 Tour of the UI
 Develop devices
 Recent updates

 June 2020 new and updated features
 June 2020 UI and documentation updates
 May 2020 jobs and metrics updates
 May 2020 dashboard updates
 April 2020 new features
 April 2020 updates
 March 2020

 Quickstarts
 1. Create a new application
 2. Add a simulated device
 3. Configure rules and actions
 4. Monitor your devices

 Tutorials
 Get connected

 Connect a device (Node.js)
 Connect a device (Python)
 Connect a Plug and Play (preview) device
 Create a gateway device template
 Connect an IoT Edge device

 Stay connected
 Create a device group

 Transform
 Create a rule

file:///T:/seec/scjw/azure/iot-central/core/index.json
https://azure.microsoft.com/en-us/updates/azure-iot-central-feature-updates-june-2020/
https://azure.microsoft.com/en-us/updates/azure-iot-central-ui-documenation-updates-june-2020/
https://azure.microsoft.com/updates/azure-iot-central-jobs-and-metrics-feature-updates-may-2020/
https://azure.microsoft.com/updates/azure-iot-central-may-2020-dashboard-updates/
https://azure.microsoft.com/updates/azure-iot-central-april-2020-new-features/
https://azure.microsoft.com/updates/azure-iot-central-april-2020-updates/
https://azure.microsoft.com/updates/azure-iot-central-march-2020-updates/

 Explore the IoT Central APIs
 Concepts

 Architecture
 What are application templates?
 What are device templates?
 Device connectivity
 Connect IoT Edge devices

 How-to guides
 Get connected

 Set up a device template
 Prepare and connect an MXChip IoT DevKit
 Prepare and connect an Azure Sphere DevKit
 Prepare and connect a RuuviTag device
 Prepare and connect a Rigado Cascade 500
 Connect other IoT clouds

 Stay connected
 Monitor device connectivity using Azure CLI
 Version device template
 Manage your devices
 Configure rules
 Analyze your device data
 Add tiles to your dashboard
 Create Azure IoT Central personal dashboards
 Run a job

 Transform
 Export data to destinations in Azure
 Create webhooks on rules
 Use workflows to integrate with other services
 Connect Azure Monitor action groups on rules
 Create custom rules
 Create custom analytics with Databricks
 Visualize your data in Power BI

https://docs.microsoft.com/learn/modules/manage-iot-central-apps-with-rest-api/

 Administration
 Manage your application

 Change application settings
 Manage users and roles
 Manage your bill
 Customize application UI
 Export your application
 Monitor application health
 About your application

 Manage from other places
 Manage from the Azure portal
 Manage from Azure CLI
 Manage from Azure PowerShell
 Manage programmatically
 Manage from CSP portal

 Personalize application
 Manage your personal preferences
 Toggle live chat

 Reference
 Azure CLI

 Resources
 Support and help options
 Industry application templates

 Retail
 Energy
 Government
 Healthcare

 Azure IoT services
 IoT Hub
 IoT Hub Device Provisioning Service
 IoT Central
 IoT Edge

https://docs.microsoft.com/cli/azure/azure-cli-reference-for-IoT
https://docs.microsoft.com/azure/iot-fundamentals/iot-support-help
https://docs.microsoft.com/azure/iot-hub
https://docs.microsoft.com/azure/iot-dps
https://docs.microsoft.com/microsoft-iot-central/
https://docs.microsoft.com/azure/iot-edge

 IoT solution accelerators
 IoT Plug and Play
 Azure Maps
 Time Series Insights

 Azure IoT SDKs
 IoT Service SDKs
 IoT Device SDKs

 IoT Central API reference
 Customer data requests
 Supported browsers
 Azure IoT Central (legacy templates)

https://docs.microsoft.com/azure/iot-accelerators
https://docs.microsoft.com/azure/iot-pnp
https://docs.microsoft.com/azure/azure-maps
https://docs.microsoft.com/azure/time-series-insights
https://docs.microsoft.com/azure/iot-hub/iot-hub-devguide-sdks#azure-iot-service-sdks
https://docs.microsoft.com/azure/iot-hub/iot-hub-devguide-sdks#azure-iot-device-sdks
https://docs.microsoft.com/rest/api/iotcentral/
https://docs.microsoft.com/previous-versions/azure/iot-central/core/overview-iot-central

What is Azure IoT Central?
5/19/2020 • 7 minutes to read • Edit Online

Personas

Create your IoT Central application

IoT Central is an IoT application platform that reduces the burden and cost of developing, managing, and

maintaining enterprise-grade IoT solutions. Choosing to build with IoT Central gives you the opportunity to focus

time, money, and energy on transforming your business with IoT data, rather than just maintaining and updating a

complex and continually evolving IoT infrastructure.

The web UI lets you monitor device conditions, create rules, and manage millions of devices and their data

throughout their life cycle. Furthermore, it enables you to act on device insights by extending IoT intelligence into

line-of-business applications.

This article outlines, for IoT Central:

The typical personas associated with a project.

How to create your application.

How to connect your devices to your application

How to manage your application.

Azure IoT Edge capabilities in IoT Central.

How to connect your Azure IoT Edge runtime powered devices to your application.

The IoT Central documentation refers to four personas who interact with an IoT Central application:

A solution builder is responsible for defining the types of devices that connect to the application and

customizing the application for the operator.

An operator manages the devices connected to the application.

An administrator is responsible for administrative tasks such as managing user roles and permissions within the

application.

A device developer creates the code that runs on a device or IoT Edge module connected to your application.

As a solution builder, you use IoT Central to create a custom, cloud-hosted IoT solution for your organization. A

custom IoT solution typically consists of:

A cloud-based application that receives telemetry from your devices and enables you to manage those devices.

Multiple devices running custom code connected to your cloud-based application.

You can quickly deploy a new IoT Central application and then customize it to your specific requirements in your

browser. You can start with a generic application template or with one of the industry-focused application

templates for Retail, Energy, Government, or Healthcare.

As a solution builder, you use the web-based tools to create a device template for the devices that connect to your

application. A device template is the blueprint that defines the characteristics and behavior of a type of device such

as the:

Telemetry it sends.

Business properties that an operator can modify.

Device properties that are set by a device and are read-only in the application.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/iot-central/core/overview-iot-central.md

 Create device templates

Customize the UI

Manage your devices

Properties, that an operator sets, that determine the behavior of the device.

This device template includes:

A device capability model that describes the capabilities a device should implement such as the telemetry it

sends and the properties it reports.

Cloud properties that aren't stored on the device.

Customizations, dashboards, and forms that are part of your IoT Central application.

IoT Plug and Play (preview) enables IoT Central to integrate devices without you writing any embedded device

code. At the core of IoT Plug and Play (preview), is a device capability model schema that describes device

capabilities. In an IoT Central application, device templates use these IoT Plug and Play (preview) device capability

models.

As a solution builder, you have several options for creating device templates:

Import a device capability model from the Azure Certified for IoT device catalog and then add any cloud

properties, customizations, and dashboards your IoT Central application needs.

Design the device template in IoT Central and then implement its device capability model in your device code.

Create a device capability model using Visual Studio code and publish the model to a repository. Implement

your device code from the model, and connect your device to your IoT Central application. IoT Central finds the

device capability model from the repository and creates a simple device template for you.

Create a device capability model using Visual Studio code. Implement your device code from the model.

Manually import the device capability model into your IoT Central application and then add any cloud

properties, customizations, and dashboards your IoT Central application needs.

As a solution builder, you can use IoT Central to generate code for test devices to validate your device templates.

If you're a device developer, see IoT Central device development overview for an introduction to implementing

devices that use these device templates.

As a solution builder, you can also customize the IoT Central application UI for the operators who are responsible

for the day-to-day use of the application. Customizations that a solution builder can make include:

Defining the layout of properties and settings on a device template.

Configuring custom dashboards to help operators discover insights and resolve issues faster.

Configuring custom analytics to explore time series data from your connected devices.

As an operator, you use the IoT Central application to manage the devices in your IoT Central solution. Operators do

tasks such as:

Monitoring the devices connected to the application.

Troubleshooting and remediating issues with devices.

Provisioning new devices.

As a solution builder, you can define custom rules and actions that operate over data streaming from connected

devices. An operator can enable or disable these rules at the device level to control and automate tasks within the

application.

With any IoT solution designed to operate at scale, a structured approach to device management is important. It's

not enough just to connect your devices to the cloud, you need to keep your devices connected and healthy. An

operator can use the following IoT Central capabilities to manage your devices throughout the application life cycle:

https://docs.microsoft.com/en-us/azure/iot-pnp/overview-iot-plug-and-play
https://aka.ms/iotdevcat

Dashboards

Rules and actions

Jobs

Integrate with other services

Build custom IoT solutions and integrations with the REST APIs

Administer your application

Pricing

Built-in dashboards provide a customizable UI to monitor device health and telemetry. Start with a pre-built

dashboard in an application template or create your own dashboards tailored to the needs of your operators. You

can share dashboards with all users in your application, or keep them private.

Build custom rules based on device state and telemetry to identify devices in need of attention. Configure actions to

notify the right people and ensure corrective measures are taken in a timely fashion.

Jobs let you apply single or bulk updates to devices by setting properties or calling commands.

As an application platform, IoT Central lets you transform your IoT data into the business insights that drive

actionable outcomes. Rules, data export, and the public REST API are examples of how you can integrate IoT Central

with line-of-business applications:

You can generate business insights, such as determining machine efficiency trends or predicting future energy

usage on a factory floor, by building custom analytics pipelines to process telemetry from your devices and store

the results. Configure data exports in your IoT Central application to export telemetry, device property changes, and

device template changes to other services where you can analyze, store, and visualize the data with your preferred

tools.

Build IoT solutions such as:

Mobile companion apps that can remotely set up and control devices.

Custom integrations that enable existing line-of-business applications to interact with your IoT devices and data.

Device management applications for device modeling, onboarding, management, and data access.

IoT Central applications are fully hosted by Microsoft, which reduces the administration overhead of managing

your applications. Administrators manage access to your application with user roles and permissions.

https://docs.microsoft.com/en-us/learn/modules/manage-iot-central-apps-with-rest-api/

Quotas

Known issues

Next steps

You can create IoT Central application using a 7-day free trial, or use a standard pricing plan.

Applications you create using the free plan are free for seven days and support up to five devices. You can

convert them to use a standard pricing plan at any time before they expire.

Applications you create using the standard plan are billed on a per device basis, you can choose either

Standard 1 or Standard 2 pricing plan with the first two devices being free. Learn more about IoT Central

pricing.

Each Azure subscription has default quotas that could impact the scope of your IoT solution. Currently, IoT Central

limits the number of applications you can deploy in a subscription to 10. If you need to increase this limit, contact

Microsoft support.

Continuous data export doesn't support the Avro format (incompatibility).

GeoJSON isn't currently supported.

Map tile isn't currently supported.

Array schema types aren't supported.

Only the C device SDK and the Node.js device and service SDKs are supported.

IoT Central is currently available in the United States, Europe, Asia Pacific, Australia, United Kingdom, and Japan

locations.

You cannot use the Custom application (legacy) application template in the United Kingdom and Japan

locations.

Device capability models must have all the interfaces defined inline in the same file.

Support for IoT Plug and Play is in preview and is only supported only in selected regions.

Now that you have an overview of IoT Central, here are some suggested next steps:

Understand the available Azure technologies and services for creating IoT solutions.

Familiarize yourself with the Azure IoT Central UI.

Get started by creating an Azure IoT Central application.

Learn more about IoT Plug and Play (preview).

Learn how to Connect an Azure IoT Edge device.

Learn more about Azure IoT technologies and services.

If you're a device developer and want to dive into some code, the suggested next step is to Create and connect a

client application to your Azure IoT Central application.

https://aka.ms/iotcentral-pricing
https://azure.microsoft.com/support/options/
https://docs.microsoft.com/en-us/azure/iot-pnp/overview-iot-plug-and-play
https://docs.microsoft.com/en-us/azure/iot-fundamentals/iot-services-and-technologies
https://docs.microsoft.com/en-us/azure/iot-pnp/overview-iot-plug-and-play
https://docs.microsoft.com/en-us/azure/iot-fundamentals/iot-services-and-technologies

Take a tour of the Azure IoT Central UI
7/21/2020 • 5 minutes to read • Edit Online

IoT Central homepage

This article introduces you to the Microsoft Azure IoT Central UI. You can use the UI to create, manage, and use an

Azure IoT Central solution and its connected devices.

As a solution builder, you use the Azure IoT Central UI to define your Azure IoT Central solution. You can use the UI

to:

Define the types of device that connect to your solution.

Configure the rules and actions for your devices.

Customize the UI for an operator who uses your solution.

As an operator, you use the Azure IoT Central UI to manage your Azure IoT Central solution. You can use the UI to:

Monitor your devices.

Configure your devices.

Troubleshoot and remediate issues with your devices.

Provision new devices.

The IoT Central homepage page is the place where you can learn more about the latest news and features available

on IoT Central, create new applications, and see and launch your existing application.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/iot-central/core/overview-iot-central-tour.md
https://aka.ms/iotcentral-get-started

Create an application
In the Build section you can browse the list of industry-relevant IoT Central templates to help you get started

quickly, or start from scratch using a Custom app template.

Launch your application

Navigate your application

To learn more, see the Create an Azure IoT Central application quickstart.

You can launch your IoT Central application by going to the URL that you or your solution builder choose during

app creation. You can also see a list of all the applications you have access to in the IoT Central app manager.

Once you're inside your IoT application, use the left pane to access the different areas. You can expand or collapse

the left pane by selecting the three-lined icon on top of the pane:

https://aka.ms/iotcentral-apps

NOTE

Search, help, theme, and support

The items you see in the left pane depend on your user role. Learn more about managing users and roles.

Dashboard displays your application dashboard. As a solution builder, you can customize the global dashboard

for your operators. Depending on their user role, operators can also create their own personal dashboards.

Devices enables you to manage your connected devices - real and simulated.

Device groups lets you view and create logical collections of devices specified by a query. You can save this query

and use device groups through the application to perform bulk operations.

Rules enables you to create and edit rules to monitor your devices. Rules are evaluated based on device telemetry

and trigger customizable actions.

Analytics lets you create custom views on top of device data to derive insights from your application.

Jobs enables you to manage your devices at scale by running bulk operations.

Device templates is where you create and manage the characteristics of the devices that connect to your

application.

Data expor t enables you to configure a continuous export to external services - such as storage and queues.

Administration is where you can manage your application's settings, customization, billing, users, and roles.

IoT Central lets administrators to jump back to IoT Central's app manager.

The top menu appears on every page:

NOTE

Dashboard

Devices

To search for device templates and devices, enter a Search value.

To change the UI language or theme, choose the Settings icon. Learn more about managing your application

preferences

To sign out of the application, choose the Account icon.

To get help and support, choose the Help drop-down for a list of resources. You can get information about your

application from the About your app link. In an application on the free pricing plan, the support resources

include access to live chat.

You can choose between a light theme or a dark theme for the UI:

The option to choose between light and dark themes isn't available if your administrator has configured a custom theme for

the application.

The dashboard is the first page you see when you sign in to your Azure IoT Central application. As a solution

builder, you can create and customize multiple global application dashboards for other users. Learn more

about adding tiles to your dashboard

As an operator, if your user role allows it, you can create personal dashboards to monitor what you care

about. To learn more, see the Create Azure IoT Central personal dashboards how-to article.

Device groups

Rules

The explorer page shows the devices in your Azure IoT Central application grouped by device template.

A device template defines a type of device that can connect to your application.

A device represents either a real or simulated device in your application.

To learn more, see the Monitor your devices quickstart.

Device group are a collection of related devices. A solution builder defines a query to identify the devices that are

included in a device group. You use device groups to perform bulk operations in your application. To learn more,

see the Use device groups in your Azure IoT Central application article.

Analytics

Jobs

The rules page lets you define rules based on devices' telemetry, state, or events. When a rule fires, it can trigger

one or more actions - such as sending an email, notify an external system via webhook alerts, etc. To learn, see the

Configuring rules tutorial.

The analytics lets you create custom views on top of device data to derive insights from your application. To learn

more, see the Create analytics for your Azure IoT Central application article.

Device templates

Data export

The jobs page lets you run bulk device management operations on your devices. You can update device properties,

settings, and execute commands against device groups. To learn more, see the Run a job article.

The device templates page is where a builder creates and manages the device templates in the application. A device

template specifies devices characteristics such as:

Telemetry, state, and event measurements

Properties

Commands

Views

The solution builder can also create forms and dashboards for operators to use to manage devices.

To learn more, see the Define a new device type in your Azure IoT Central application tutorial.

Administration

Next steps

Data export enables you to set up streams of data, such as telemetry, from the application to external systems. To

learn more, see the Export your data in Azure IoT Central article.

The administration page allows you to configure and customize your IoT Central application. Here you can change

your application name, URL, theming, manage users and roles, create API tokens, and export your application. To

learn more, see the Administer your Azure IoT Central application article.

Now that you have an overview of Azure IoT Central and are familiar with the layout of the UI, the suggested next

step is to complete the Create an Azure IoT Central application quickstart.

IoT Central device development overview
7/21/2020 • 4 minutes to read • Edit Online

Types of device

Standalone device

Gateway device

Edge device

This article applies to device developers.

An IoT Central application lets you monitor and manage millions of devices throughout their life cycle. This

overview is intended for device developers who implement code to run on devices that connect to IoT Central.

Devices interact with an IoT Central application using the following primitives:

Telemetry is data that a device sends to IoT Central. For example, a stream of temperature values from an

onboard sensor.

Properties are state values that a device reports to IoT Central. For example, the current firmware version of the

device. You can also have writable properties that IoT Central can update on the device.

Commands are called from IoT Central to control the behavior a device. For example, your IoT Central

application might call a command to reboot a device.

A solution builder is responsible for configuring dashboards and views in the IoT Central web UI to visualize

telemetry, manage properties, and call commands.

The following sections describe the main types of device you can connect to an IoT Central application:

A standalone device connects directly to IoT Central. A standalone device typically sends telemetry from its

onboard or connected sensors to your IoT Central application. Standalone devices can also report property values,

receive writable property values, and respond to commands.

A gateway device manages one or more downstream devices that connect to your IoT Central application. You use

IoT Central to configure the relationships between the downstream devices and the gateway device. To learn more,

see Define a new IoT gateway device type in your Azure IoT Central application.

An edge device connects directly to IoT Central, but acts as an intermediary for other devices known as leaf devices.

An edge device is typically located close to the leaf devices for which it's acting as an intermediary. Scenarios that

use edge devices include:

Enable devices that can't connect directly to IoT Central to connect through the edge device. For example, a leaf

device might use bluetooth to connect to the edge device, which then connects over the internet to IoT Central.

Aggregate telemetry before it's sent to IoT Central. This approach can help to reduce the costs of sending data

to IoT Central.

Control leaf devices locally to avoid the latency associated with connecting to IoT Central over the internet.

An edge device can also send its own telemetry, report its properties, and respond to writable property updates

and commands.

IoT Central only sees the edge device, not the leaf devices connected to the edge device.

To learn more, see Add an Azure IoT Edge device to your Azure IoT Central application.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/iot-central/core/overview-iot-central-developer.md

Connect a device

Security

Communication protocols

Implement the device

Languages and SDKs

Next steps

Azure IoT Central uses the Azure IoT Hub Device Provisioning service (DPS) to manage all device registration and

connection.

Using DPS enables:

IoT Central to support onboarding and connecting devices at scale.

You to generate device credentials and configure the devices offline without registering the devices through IoT

Central UI.

You to use your own device IDs to register devices in IoT Central. Using your own device IDs simplifies

integration with existing back-office systems.

A single, consistent way to connect devices to IoT Central.

To learn more, see Get connected to Azure IoT Central.

The connection between a device and your IoT Central application is secured using either shared access signatures

or industry-standard X.509 certificates.

Communication protocols that a device can use to connect to IoT Central include MQTT, AMQP, and HTTPS.

Internally, IoT Central uses an IoT hub to enable device connectivity. For more information about the

communication protocols that IoT Hub supports for device connectivity, see Choose a communication protocol.

Use one of the Azure IoT device SDKs to implement the behavior of your device. The code should:

Register the device with DPS and use the information from DPS to connect to the internal IoT hub in your IoT

Central application.

Send telemetry in the format that the device template in IoT Central specifies. IoT Central uses the device

template to determine how to use the telemetry for visualizations and analysis.

Synchronize property values between the device and IoT Central. The device template specifies the property

names and data types so that IoT Central can display the information.

Implement command handlers for the commands specifies in the device template. The device template specifies

the command names and parameters that the device should use.

For more information about the role of device templates, see What are device templates?.

For some sample code, see Create and connect a Node.js client application or Create and connect a Python client

application.

For more information about the supported languages and SDKs, see Understand and use Azure IoT Hub device

SDKs.

If you're a device developer and want to dive into some code, the suggested next step is to Create and connect a

client application to your Azure IoT Central application.

If you want to learn more about using IoT Central, the suggested next steps are to try the quickstarts, beginning

with Create an Azure IoT Central application.

https://docs.microsoft.com/en-us/azure/iot-dps/about-iot-dps
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-protocols
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-sdks

Create an Azure IoT Central application
4/21/2020 • 2 minutes to read • Edit Online

Create an application

This quickstart shows you how to create an Azure IoT Central application.

Navigate to the Azure IoT Central Build site. Then sign in with a Microsoft personal, work, or school account.

You create a new application either from the list of industry-relevant IoT Central templates to help you get

started quickly, or start from scratch using a Custom apps template. In this quickstart, you use the Custom

application template.

To create a new Azure IoT Central application from the Custom application template:

1. Navigate to the Build page:

2. Choose Custom apps and make sure that the Custom application template is selected.

3. Azure IoT Central automatically suggests an application name based on the application template

you've selected. You can use this name or enter your own friendly application name.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/iot-central/core/quick-deploy-iot-central.md
https://aka.ms/iotcentral

4. Azure IoT Central also generates a unique application URL prefix for you, based on the application

name. You use this URL to access your application. Change this URL prefix to something more

memorable if you'd like.

NOTE
If you chose Custom app on the previous page, you see an Application template dropdown. From here you

can switch between custom and legacy templates. You might also see other templates that have been made

available for your organization.

5. Choose to create this application using the 7-day free trial pricing plan, or one of the standard pricing

plans:

Applications you create using the free plan are free for seven days and support up to five devices. You

can convert them to use a standard pricing plan at any time before they expire.

Applications you create using a standard plan are billed on a per device basis, you can choose either

Standard 1 or Standard 2 pricing plan with the first two devices being free. Learn more about the

free and standard pricing plans on the Azure IoT Central pricing page. If you create an application

using a standard pricing plan, you need to select your Directory, Azure Subscription, and Location:

Directory is the Azure Active Directory in which you create your application. An Azure Active

Directory contains user identities, credentials, and other organizational information. If you

don't have an Azure Active Directory, one is created for you when you create an Azure

subscription.

An Azure Subscription enables you to create instances of Azure services. IoT Central provisions

resources in your subscription. If you don't have an Azure subscription, you can create one for

free on the Azure sign-up page. After you create the Azure subscription, navigate back to the

New application page. Your new subscription now appears in the Azure Subscr iption

drop-down.

Location is the geography where you'd like to create your application. Typically, you should

choose the location that's physically closest to your devices to get optimal performance. Once

you choose a location, you can't later move your application to a different location.

https://azure.microsoft.com/pricing/details/iot-central/
https://aka.ms/createazuresubscription
https://azure.microsoft.com/global-infrastructure/geographies/

Next steps

6. Review the Terms and Conditions, and select Create at the bottom of the page. After a few minutes, you

IoT Central application is ready to use:

In this quickstart, you created an IoT Central application. Here's the suggested next step to continue learning

about IoT Central:

Add a simulated device to your IoT Central application

If you're a device developer and want to dive into some code, the suggested next step is to:

Create and connect a client application to your Azure IoT Central application

Quickstart: Add a simulated device to your IoT
Central application
7/21/2020 • 6 minutes to read • Edit Online

Prerequisites

Create a template

This article applies to operators, builders, and administrators.

A device template defines the capabilities of a device that connects to your IoT Central application. Capabilities

include telemetry the device sends, device properties, and the commands a device responds to. From a device

template, a builder or operator can add both real and simulated devices to an application. Simulated devices are

useful for testing the behavior of your IoT Central application before you connect real devices.

In this quickstart, you add a device template for an MXChip IoT DevKit (DevKit) board and create a simulated

device. To complete this quickstart you don't need a real device, you work with a simulation of the device. A DevKit

device:

Sends telemetry such as temperature.

Reports device-specific properties such as brightness level.

Responds to commands such as turn on and turn off.

Reports generic device properties such as firmware version and serial number.

Complete the Create an Azure IoT Central application quickstart to create an IoT Central application using the

Custom app > Custom application template.

As a builder, you can create and edit device templates in your IoT Central application. After you publish a device

template, you can generate simulated device or connect real devices from the device template. Simulated devices

let you test the behavior of your application before you connect a real device.

To add a new device template to your application, select the Device Templates tab in the left pane.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/iot-central/core/quick-create-simulated-device.md

Add a device capability model

A device template includes a device capability model that defines the telemetry the device sends, device

properties, and the commands the device responds to.

There are several options for adding a device capability model to your IoT Central application. You can create a

model from scratch, import a model from a file, or select a device from the device catalog. IoT Central also

supports a device-first approach where it automatically imports a model from a repository when a device

connects for the first time. In this quickstart, you choose a device from the device catalog to import its device

capability model.

The following steps show you how to use the device catalog to import the capability model for an MXChip IoT

DevKit device. These devices send telemetry, such as temperature, to your application:

1. To add a new device template, select + on the Device templates page.

2. On the Select template type page, scroll down until you find the MXChip IoT DevKit tile.

3. Select the MXChip IoT DevKit tile, and then select Next: Customize.

4. On the Review page, select Create.

5. After a few seconds, you can see your new device template:

Add cloud properties

The MXChip IoT DevKit capability model includes interfaces such as mxchip_sensor , mxchip_settings ,

and Device Information. Interfaces define the capabilities of an MXChip IoT DevKit device. Capabilities

include the telemetry a device sends, the properties a device reports, and the commands a device responds

to.

A device template can include cloud properties. Cloud properties only exist in the IoT Central application and are

never sent to, or received from, a device. To add a cloud property:

DISP L AY N A M E SEM A N T IC T Y P E SC H EM A

Last Service Date None Date

Customer Name None String

1. Select Cloud Proper ties and then + Add cloud proper ty . Use the information in the following table to

add two cloud properties to your device template:

2. Select Save to save your changes:

Views

Default views

As a builder, you can customize the application to display relevant information about the device to an operator.

Your customizations enable the operator to manage the devices connected to the application. You can create two

types of views for an operator to use to interact with devices:

Forms to view and edit device and cloud properties.

Dashboards to visualize devices including the telemetry they send.

Default views are a quick way to get started with visualizing your important device information. You can have up

to three default views generated for your device template:

The Commands view lets your operator dispatch commands to your device.

The Over view view uses charts and metrics to display device telemetry.

The About view displays device properties.

Select the Views node in the device template. You can see that IoT Central generated an Over view and an About

view for you when you added the template.

Publish device template

To add a new Manage device form that an operator can use to manage the device:

1. Select the Views node, and then select the Editing device and cloud data tile to add a new view.

2. Change the form name to Manage device.

3. Select the Customer Name and Last Ser vice Date cloud properties, and the Fan Speed property. Then

select Add section:

4. Select Save to save your new form.

Before you can create a simulated device, or connect a real device, you need to publish your device template.

Although IoT Central published the template when you first created it, you must publish the updated version.

To publish a device template:

1. Go to your device template from the Device Templates page.

2. Select Publish :

Add a simulated device

3. On the Publish this device template to the application dialog, select Publish .

After you publish a device template, it's visible on the Devices page. In a published device template, you can't edit

a device capability model without creating a new version. However, you can make updates to cloud properties,

customizations, and views, in a published device template without versioning. After making any changes, select

Publish to push those changes out to your operator.

To add a simulated device to your application, you use the MXChip IoT DevKit device template you created.

1. To add a new device as an operator choose Devices in the left pane. The Devices tab shows All devices

and the MXChip IoT DevKit device template. Select MXChip IoT DevKit.

2. To add a simulated DevKit device, select +. Use the suggested Device ID or enter your own lowercase

Device ID. You can also enter a name for your new device. Make sure the S imulated toggle is On and

then select Create.

Now you can interact with the views that were created by the builder for the device template using simulated data:

1. Select your simulated device on the Devices page

The Over view view shows a plot of the simulated telemetry:

The About view shows property values, including the cloud properties you added to the view.

The Commands view lets you run commands, such as blink on the device.

The Manage devices view is the form you created for the operator to manage the device.

The Raw data view lets you view the raw telemetry and property values sent by the device. This

view is useful for debugging devices.

Use a simulated device to improve views

Next steps

After you create a new simulated device, the builder can use this device to continue to improve and build upon the

views for the device template.

1. Choose Device templates in the left pane and select the MXChip IoT DevKit template.

2. Select any of the views you would like to edit, or create a new view. Select Configure preview device,

then Select from a running device. Here you can choose to have no preview device, a real device

configured for testing, or an existing device you've added into IoT Central.

3. Choose your simulated device in the list. Then select Apply . Now you can see the same simulated device in

your device template views building experience. This view is useful for charts and other visualizations.

In this quickstart, you learned how to you create an MXChip IoT DevKit device template and add a simulated

device to your application.

To learn more about monitoring devices connected to your application, continue to the quickstart:

Configure rules and actions

Quickstart: Configure rules and actions for your
device in Azure IoT Central
4/9/2020 • 2 minutes to read • Edit Online

Prerequisites

Create a telemetry-based rule

This article applies to operators, builders, and administrators.

In this quickstart, you create a rule that sends an email when the temperature reported by a device sensor exceeds

90° F.

Before you begin, you should complete the two previous quickstarts Create an Azure IoT Central application and

Add a simulated device to your IoT Central application to create the MXChip IoT DevKit device template to work

with.

F IEL D VA L UE

Measurement Temperature

Operator is greater than

Value 90

1. To add a new telemetry-based rule to your application, in the left pane, select Rules .

2. To create a new rule, select +.

3. Enter Environmental temperature as the rule name.

4. In the Target devices section, select MXChip IoT DevKit as the device template. This option filters the

devices the rule applies to by device template type. You can add more filter criteria by selecting + Filter .

5. In the Conditions section, you define what triggers your rule. Use the following information to define a

condition based on temperature telemetry:

To add more conditions, select + Condition.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/iot-central/core/quick-configure-rules.md

SET T IN G VA L UE

Display name Operator email action

To Your email address

Notes Environmental temperature exceeded the threshold.

NOTE

6. To add an email action to run when the rule triggers, select + Email .

7. Use the information in the following table to define your action and then select Done:

To receive an email notification, the email address must be a user ID in the application, and that user must have

signed in to the application at least once.

Test the rule

NOTE

Next steps

8. Select Save. Your rule is listed on the Rules page.

Shortly after you save the rule, it becomes live. When the conditions defined in the rule are met, your application

sends a message to the email address you specified in the action.

After your testing is complete, turn off the rule to stop receiving alerts in your inbox.

In this quickstart, you learned how to:

Create a telemetry-based rule

Add an action

To learn more about monitoring devices connected to your application, continue to the quickstart:

Use Azure IoT Central to monitor your devices.

Quickstart: Use Azure IoT Central to monitor your
devices
4/9/2020 • 2 minutes to read • Edit Online

Prerequisites

Receive a notification

This article applies to operators, builders, and administrators.

This quickstart shows you, as an operator, how to use your Microsoft Azure IoT Central application to monitor your

devices and change settings.

Before you begin, you should complete the three previous quickstarts Create an Azure IoT Central application, Add

a simulated device to your IoT Central application and Configure rules and actions for your device.

Azure IoT Central sends notifications about devices as email messages. The builder added a rule to send a

notification when the temperature in a connected device sensor exceeded a threshold. Check the emails sent to the

account the builder chose to receive notifications.

Open the email message you received at the end of the Configure rules and actions for your device quickstart. In

the email, select the link to the device:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/iot-central/core/quick-monitor-devices.md

The Over view view for the simulated device you created in the previous quickstarts opens in your browser :

Investigate an issue

Remediate an issue

As an operator, you can view information about the device on the Over view , About, and Commands views. The

builder created a Manage device view for you to edit device information and set device properties.

The chart on the dashboard shows a plot of the device temperature. You decide that the device temperature is too

high.

To make a change to the device, use the Manage device page.

Change Fan Speed to 500 to cool the device. Choose Save to update the device. When the device confirms the

settings change, the status of the property changes to synced:

Next steps
In this quickstart, you learned how to:

Receive a notification

Investigate an issue

Remediate an issue

Now that you know now to monitor your device, the suggested next step is to:

Build and manage a device template.

Tutorial: Create and connect a client application to
your Azure IoT Central application (Node.js)
7/21/2020 • 11 minutes to read • Edit Online

Prerequisites

Create a device template

This article applies to solution builders and device developers.

This tutorial shows you how, as a device developer, to connect a Node.js client application to your Azure IoT

Central application. The Node.js application simulates the behavior of an environmental sensor device. You use a

sample device capability model to create a device template in IoT Central. You add views to the device template to

enable an operator to interact with a device.

In this tutorial, you learn how to:

Import a device capability model to create a device template.

Add default and custom views to a device template.

Publish a device template and add a real device to your IoT Central application.

Create and run the Node.js device code and see it connect to your IoT Central application.

View the simulated telemetry sent from the device.

Use a view to manage device properties.

Call synchronous and asynchronous commands to control the device.

To complete the steps in this article, you need the following:

An Azure IoT Central application created using the Custom application template. For more information, see

the create an application quickstart. The application must have been created on or after 07/14/2020.

A development machine with Node.js version 10.0.0 or later installed. You can run node --version in the

command line to check your version. The instructions in this tutorial assume you're running the node

command at the Windows command prompt. However, you can use Node.js on many other operating systems.

Create a folder called environmental-sensor on your local machine.

Download the Environmental sensor capability model JSON file and save it in the environmental-sensor folder.

Use a text editor to replace the two instances of {YOUR_COMPANY_NAME_HERE} with your company name in the

EnvironmentalSensorInline.capabilitymodel.json file you downloaded. Use only the characters a-z, A-Z, 0-9, and

underscore.

In your Azure IoT Central application, create a device template called Environmental sensor by importing the

EnvironmentalSensorInline.capabilitymodel.json device capability model file:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/iot-central/core/tutorial-connect-device-nodejs.md
https://nodejs.org/
https://raw.githubusercontent.com/Azure/IoTPlugandPlay/9004219bff1e958b7cd6ff2a52209f4b7ae19396/samples/EnvironmentalSensorInline.capabilitymodel.json

T Y P E DISP L AY N A M E DESC RIP T IO N

Property Device State The state of the device. Two states
online/offline are available.

Property (writeable) Customer Name The name of the customer currently
operating the device.

Property (writeable) Brightness Level The brightness level for the light on the
device. Can be specified as 1 (high), 2
(medium), 3 (low).

Telemetry Temperature Current temperature detected by the
device.

Telemetry Humidity Current humidity detected by the
device.

Command blink Begin blinking the LED on the device
for given time interval.

Command turnon Turn on the LED on the device.

Command turnoff Turn off the LED on the device.

Command rundiagnostics This asynchronous command starts a
diagnostics run on the device.

The device capability model includes two interfaces: the standard Device Information interface and the custom

Environmental Sensor interface. The Environmental Sensor interface defines the following capabilities:

To customize how the Device State property displays in your IoT Central application, select Customize in the

device template. Expand the Device State entry, enter Online as the True name and Offline as the False name.

Then save the changes:

Create views
Views let you interact with devices connected to your IoT Central application. For example, you can have views

that display telemetry, views that display properties, and views that let you edit writeable and cloud properties.

Views are part of a device template.

To add some default views to your Environmental sensor device template, navigate to your device template,

select Views , and select the Generate Default views tile. Make sure Over view and About are On, and then

select Generate default dashboard view(s) . You now have two default views defined in your template.

The Environmental Sensor interface includes two writeable properties - Customer Name and Br ightness

Level . To create a view, you can use to edit these properties:

1. Select Views and then select the Editing device and cloud data tile.

2. Enter Properties as the form name.

3. Select the Br ightness Level and Customer Name properties. Then select Add section.

4. Save your changes.

Publish the template

Add a real device

Before you can add a device that uses the Environmental sensor device template, you must publish it.

In the device template, select Publish . On the Publish this device template to the application panel, select

Publish .

To check that the template is ready to use, navigate to the Devices page in your IoT Central application. The

Devices section shows a list of the published devices in the application:

In your Azure IoT Central application, add a real device to the device template you created in the previous section:

1. On the Devices page, select the Environmental sensor device template.

2. Select + New .

3. In the Create a new device dialog, make sure that Environmental Sensor is the template type and that

S imulate this device? is set to No.

4. Then select Create.

Click on the device name, and then select Connect. Make a note of the device connection information on the

Device Connection page - ID scope, Device ID, and Pr imar y key . You need these values when you create

your device code:

Create a Node.js application
The following steps show you how to create a Node.js client application that connects to the real device you

added to the application. This Node.js application simulates the behavior of a real device.

npm init
npm install azure-iot-device azure-iot-device-mqtt azure-iot-provisioning-device-mqtt azure-iot-
security-symmetric-key --save

"use strict";

// Use the Azure IoT device SDK for devices that connect to Azure IoT Central.
var iotHubTransport = require('azure-iot-device-mqtt').Mqtt;
var Client = require('azure-iot-device').Client;
var Message = require('azure-iot-device').Message;
var ProvisioningTransport = require('azure-iot-provisioning-device-mqtt').Mqtt;
var SymmetricKeySecurityClient = require('azure-iot-security-symmetric-
key').SymmetricKeySecurityClient;
var ProvisioningDeviceClient = require('azure-iot-provisioning-device').ProvisioningDeviceClient;

1. In your command-line environment, navigate to the environmental-sensor folder you created previously.

2. To initialize your Node.js project and install the required dependencies, run the following commands -

accept all the default options when you run npm init :

3. Create a file called environmentalSensor.js in the environmental-sensor folder.

4. Add the following require statements at the start of the environmentalSensor.js file:

5. Add the following variable declarations to the file:

var provisioningHost = 'global.azure-devices-provisioning.net';
var idScope = '{your Scope ID}';
var registrationId = '{your Device ID}';
var symmetricKey = '{your Primary Key}';
var provisioningSecurityClient = new SymmetricKeySecurityClient(registrationId, symmetricKey);
var provisioningClient = ProvisioningDeviceClient.create(provisioningHost, idScope, new
ProvisioningTransport(), provisioningSecurityClient);
var hubClient;

var targetTemperature = 0;
var ledOn = true;

// Send simulated device telemetry.
function sendTelemetry() {
 var temp = targetTemperature + (Math.random() * 15);
 var humid = 70 + (Math.random() * 10);
 var data = JSON.stringify({
 temp: temp,
 humid: humid,
 });
 var message = new Message(data);
 hubClient.sendEvent(message, (err, res) => console.log(`Sent message: ${message.getData()}` +
 (err ? `; error: ${err.toString()}` : '') +
 (res ? `; status: ${res.constructor.name}` : '')));
}

// Send device twin reported properties.
function sendDeviceProperties(twin, properties) {
 twin.properties.reported.update(properties, (err) => console.log(`Sent device properties:
${JSON.stringify(properties)}; ` +
 (err ? `error: ${err.toString()}` : `status: success`)));
}

Update the placeholders {your Scope ID} , {your Device ID} , and {your Primary Key} with the values you

made a note of previously. In this sample, you initialize targetTemperature to zero, you could use the

current reading from the device or a value from the device twin.

6. To send simulated telemetry to your Azure IoT Central application, add the following function to the file:

The names of the telemetry items (temp and humid) must match the names used in the device template.

7. To send device twin properties to your Azure IoT Central application, add the following function to your file:

IoT Central uses device twins to synchronize property values between the device and the IoT Central

application. Device property values use device twin reported properties. Writeable properties use both

device twin reported and desired properties.

8. To define and handle the writeable properties your device responds to, add the following code:

// Add any writeable properties your device supports,
// mapped to a function that's called when the writeable property
// is updated in the IoT Central application.
var writeableProperties = {
 'name': (newValue, callback) => {
 setTimeout(() => {
 callback(newValue, 'completed', 200);
 }, 1000);
 },
 'brightness': (newValue, callback) => {
 setTimeout(() => {
 callback(newValue, 'completed', 200);
 }, 5000);
 }
};

// Handle writeable property updates that come from IoT Central via the device twin.
function handleWriteablePropertyUpdates(twin) {
 twin.on('properties.desired', function (desiredChange) {
 for (let setting in desiredChange) {
 if (writeableProperties[setting]) {
 console.log(`Received setting: ${setting}: ${desiredChange[setting]}`);
 writeableProperties[setting](desiredChange[setting], (newValue, status, code) => {
 var patch = {
 [setting]: {
 value: newValue,
 ad: status,
 ac: code,
 av: desiredChange.$version
 }
 }
 sendDeviceProperties(twin, patch);
 });
 }
 }
 });
}

// Setup command handlers
function setupCommandHandlers(twin) {

 // Handle synchronous LED blink command with request and response payload.
 function onBlink(request, response) {
 console.log('Received synchronous call to blink');
 var responsePayload = {
 status: 'Blinking LED every ' + request.payload + ' seconds'
 }
 response.send(200, responsePayload, (err) => {
 if (err) {
 console.error('Unable to send method response: ' + err.toString());
 } else {
 console.log('Blinking LED every ' + request.payload + ' seconds');
 }
 });
 }

When the operator sets a writeable property in the IoT Central application, the application uses a device

twin desired property to send the value to the device. The device then responds using a device twin

reported property. When IoT Central receives the reported property value, it updates the property view

with a status of synced.

The names of the properties (name and brightness) must match the names used in the device template.

9. Add the following code to handle the commands sent from the IoT Central application:

 // Handle synchronous LED turn on command
 function turnOn(request, response) {
 console.log('Received synchronous call to turn on LED');
 if(!ledOn){
 console.log('Turning on the LED');
 ledOn = true;
 }
 response.send(200, (err) => {
 if (err) {
 console.error('Unable to send method response: ' + err.toString());
 }
 });
 }

 // Handle synchronous LED turn off command
 function turnOff(request, response) {
 console.log('Received synchronous call to turn off LED');
 if(ledOn){
 console.log('Turning off the LED');
 ledOn = false;
 }
 response.send(200, (err) => {
 if (err) {
 console.error('Unable to send method response: ' + err.toString());
 }
 });
 }

 // Handle asynchronous sensor diagnostics command with response payload.
 function diagnostics(request, response) {
 console.log('Starting asynchronous diagnostics run...');
 response.send(202, (err) => {
 if (err) {
 console.error('Unable to send method response: ' + err.toString());
 } else {
 var repetitions = 3;
 var intervalID = setInterval(() => {
 console.log('Generating diagnostics...');
 if (--repetitions === 0) {
 clearInterval(intervalID);
 var properties = {
 rundiagnostics: {
 value: 'Diagnostics run complete at ' + new Date().toLocaleString()
 }
 };
 sendDeviceProperties(twin, properties);
 }
 }, 2000);
 }
 });
 }

 hubClient.onDeviceMethod('blink', onBlink);
 hubClient.onDeviceMethod('turnon', turnOn);
 hubClient.onDeviceMethod('turnoff', turnOff);
 hubClient.onDeviceMethod('rundiagnostics', diagnostics);
}

The names of the commands (blink , turnon , turnoff , and rundiagnostics) must match the names used

in the device template.

Currently, IoT Central doesn't use the response schema defined in the device capability model. For a

synchronous command, the response payload can be any valid JSON. For an asynchronous command, the

device should return a 202 response immediately, followed by reported property update when the work is

finished. The format of the reported property update is:

Run your Node.js application

{
 [command name] : {
 value: 'response message'
 }
}

// Handle device connection to Azure IoT Central.
var connectCallback = (err) => {
 if (err) {
 console.log(`Device could not connect to Azure IoT Central: ${err.toString()}`);
 } else {
 console.log('Device successfully connected to Azure IoT Central');

 // Send telemetry to Azure IoT Central every 1 second.
 setInterval(sendTelemetry, 1000);

 // Get device twin from Azure IoT Central.
 hubClient.getTwin((err, twin) => {
 if (err) {
 console.log(`Error getting device twin: ${err.toString()}`);
 } else {
 // Send device properties once on device start up.
 var properties = {
 state: 'true',
 processorArchitecture: 'ARM',
 swVersion: '1.0.0'
 };
 sendDeviceProperties(twin, properties);

 handleWriteablePropertyUpdates(twin);

 setupCommandHandlers(twin);
 }
 });
 }
};

// Start the device (register and connect to Azure IoT Central).
provisioningClient.register((err, result) => {
 if (err) {
 console.log('Error registering device: ' + err);
 } else {
 console.log('Registration succeeded');
 console.log('Assigned hub=' + result.assignedHub);
 console.log('DeviceId=' + result.deviceId);
 var connectionString = 'HostName=' + result.assignedHub + ';DeviceId=' + result.deviceId +
';SharedAccessKey=' + symmetricKey;
 hubClient = Client.fromConnectionString(connectionString, iotHubTransport);

 hubClient.open(connectCallback);
 }
});

An operator can view the response payload in the command history.

10. Add the following code to complete the connection to Azure IoT Central and hook up the functions in the

client code:

To start the device client application, run the following command in your command-line environment:

node environmentalSensor.js

You can see the device connects to your Azure IoT Central application and starts sending telemetry:

As an operator in your Azure IoT Central application, you can:

View the telemetry sent by the device on the Over view page:

View the device properties on the About page:

Update writeable property values on the Proper ties page:

Call the commands from the Commands page:

You can see how the device responds to commands and property updates:

View raw data

Next steps

As a device developer, you can use the Raw data view to examine the raw data your device is sending to IoT

Central:

On this view, you can select the columns to display and set a time range to view. The Unmodeled data column

shows data from the device that doesn't match any property or telemetry definitions in the device template.

As a device developer, now that you've learned the basics of how to create a device using Node.js, some

suggested next steps are to:

Learn how to connect a real device to IoT Central in the Connect an MXChip IoT DevKit device to your Azure

IoT Central application how-to article.

Read What are device templates? to learn more about the role of device templates when you're implementing

your device code.

Read Get connected to Azure IoT Central to learn more about how to register devices with IoT Central and how

IoT Central secures device connections.

If you'd prefer to continue through the set of IoT Central tutorials and learn more about building an IoT Central

solution, see:

Create a gateway device template

Tutorial: Create and connect a client application to
your Azure IoT Central application (Python)
7/21/2020 • 10 minutes to read • Edit Online

Prerequisites

Create a device template

This article applies to solution builders and device developers.

This tutorial shows you how, as a device developer, to connect a Python client application to your Azure IoT Central

application. The Python application simulates the behavior of an environmental sensor device. You use a sample

device capability model to create a device template in IoT Central. You add views to the device template to enable

an operator to interact with a device.

In this tutorial, you learn how to:

Import a device capability model to create a device template.

Add default and custom views to a device template.

Publish a device template and add a real device to your IoT Central application.

Create and run the Python device code and see it connect to your IoT Central application.

View the simulated telemetry sent from the device.

Use a view to manage device properties.

Call synchronous and asynchronous commands to control the device.

To complete the steps in this article, you need the following:

An Azure IoT Central application created using the Custom application template. For more information, see

the create an application quickstart. The application must have been created on or after 07/14/2020.

A development machine with Python version 3.7 or later installed. You can run python3 --version at the

command line to check your version. Python is available for a wide variety of operating systems. The

instructions in this tutorial assume you're running the python3 command at the Windows command prompt.

Create a folder called environmental-sensor on your local machine.

Download the Environmental sensor capability model JSON file and save it in the environmental-sensor folder.

Use a text editor to replace the two instances of {YOUR_COMPANY_NAME_HERE} with your company name in the

EnvironmentalSensorInline.capabilitymodel.json file you downloaded. Use only the characters a-z, A-Z, 0-9, and

underscore.

In your Azure IoT Central application, create a device template called Environmental sensor by importing the

EnvironmentalSensorInline.capabilitymodel.json device capability model file:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/iot-central/core/tutorial-connect-device-python.md
https://www.python.org/
https://raw.githubusercontent.com/Azure/IoTPlugandPlay/9004219bff1e958b7cd6ff2a52209f4b7ae19396/samples/EnvironmentalSensorInline.capabilitymodel.json

T Y P E DISP L AY N A M E DESC RIP T IO N

Property Device State The state of the device. Two states
online/offline are available.

Property (writeable) Customer Name The name of the customer currently
operating the device.

Property (writeable) Brightness Level The brightness level for the light on the
device. Can be specified as 1 (high), 2
(medium), 3 (low).

Telemetry Temperature Current temperature detected by the
device.

Telemetry Humidity Current humidity detected by the
device.

Command blink Begin blinking the LED on the device for
given time interval.

Command turnon Turn on the LED on the device.

Command turnoff Turn off the LED on the device.

Command rundiagnostics This asynchronous command starts a
diagnostics run on the device.

The device capability model includes two interfaces: the standard Device Information interface and the custom

Environmental Sensor interface. The Environmental Sensor interface defines the following capabilities:

To customize how the Device State property displays in your IoT Central application, select Customize in the

device template. Expand the Device State entry, enter Online as the True name and Offline as the False name.

Then save the changes:

Create views
Views let you interact with devices connected to your IoT Central application. For example, you can have views that

display telemetry, views that display properties, and views that let you edit writeable and cloud properties. Views

are part of a device template.

To add some default views to your Environmental sensor device template, navigate to your device template,

select Views , and select the Generate Default views tile. Make sure Over view and About are On, and then

select Generate default dashboard view(s) . You now have two default views defined in your template.

The Environmental Sensor interface includes two writeable properties - Customer Name and Br ightness

Level . To create a view, you can use to edit these properties:

1. Select Views and then select the Editing device and cloud data tile.

2. Enter Properties as the form name.

3. Select the Br ightness Level and Customer Name properties. Then select Add section.

4. Save your changes.

Publish the template

Add a real device

Before you can add a device that uses the Environmental sensor device template, you must publish it.

In the device template, select Publish . On the Publish this device template to the application panel, select

Publish .

To check that the template is ready to use, navigate to the Devices page in your IoT Central application. The

Devices section shows a list of the published devices in the application:

In your Azure IoT Central application, add a real device to the device template you created in the previous section:

1. On the Devices page, select the Environmental sensor device template.

2. Select + New .

3. In the Create a new device dialog, make sure that Environmental Sensor is the template type and that

S imulate this device? is set to No.

4. Then select Create.

Click on the device name, and then select Connect. Make a note of the device connection information on the

Device Connection page - ID scope, Device ID, and Pr imar y key . You need these values when you create your

device code:

Create a Python application
The following steps show you how to create a Python client application that connects to the real device you added

to the application. This Python application simulates the behavior of a real device.

pip install azure-iot-device

import asyncio
import os
import json
import datetime
import random

from azure.iot.device.aio import ProvisioningDeviceClient
from azure.iot.device.aio import IoTHubDeviceClient
from azure.iot.device import MethodResponse
from azure.iot.device import Message

1. In your command-line environment, navigate to the environmental-sensor folder you created previously.

2. To install the required libraries, run the following commands:

3. Create a file called environmental_sensor.py in the environmental-sensor folder.

4. Add the following import statements at the start of the environmental_sensor.py file:

5. Add the following asynchronous main function and variable declarations to the file:

async def main():
 # In a production environment, don't store
 # connection information in the code.
 provisioning_host = 'global.azure-devices-provisioning.net'
 id_scope = '{your Scope ID}'
 registration_id = '{your Device ID}'
 symmetric_key = '{your Primary Key}'

 delay = 2

 # All the remaining code is nested within this main function

if __name__ == '__main__':
asyncio.run(main())

 async def register_device():
 provisioning_device_client = ProvisioningDeviceClient.create_from_symmetric_key(
 provisioning_host=provisioning_host,
 registration_id=registration_id,
 id_scope=id_scope,
 symmetric_key=symmetric_key,
)

 registration_result = await provisioning_device_client.register()

 print(f'Registration result: {registration_result.status}')

 return registration_result

 async def connect_device():
 device_client = None
 try:
 registration_result = await register_device()
 if registration_result.status == 'assigned':
 device_client = IoTHubDeviceClient.create_from_symmetric_key(
 symmetric_key=symmetric_key,
 hostname=registration_result.registration_state.assigned_hub,
 device_id=registration_result.registration_state.device_id,
)
 # Connect the client.
 await device_client.connect()
 print('Device connected successfully')
 finally:
 return device_client

Update the placeholders {your Scope ID} , {your Device ID} , and {your Primary Key} with the values you

made a note of previously. In a real application, don't hard code this information in the application.

All the following function definitions and code are nested within the main function.

6. Add the following two functions inside the main function to register the device and connect it to your IoT

Central application. Registration uses the Azure Device Provisioning Service:

7. Add the following function inside the main function to send telemetry to your IoT Central application:

 async def send_telemetry():
 print(f'Sending telemetry from the provisioned device every {delay} seconds')
 while True:
 temp = random.randrange(1, 75)
 humid = random.randrange(30, 99)
 payload = json.dumps({'temp': temp, 'humid': humid})
 msg = Message(payload)
 await device_client.send_message(msg,)
 print(f'Sent message: {msg}')
 await asyncio.sleep(delay)

The names of the telemetry items (temp and humid) must match the names used in the device template.

8. Add the following functions inside the main function to handle commands called from your IoT Central

application:

 async def blink_command(request):
 print('Received synchronous call to blink')
 response = MethodResponse.create_from_method_request(
 request, status = 200, payload = {'description': f'Blinking LED every {request.payload} seconds'}
)
 await device_client.send_method_response(response) # send response
 print(f'Blinking LED every {request.payload} seconds')

 async def diagnostics_command(request):
 print('Starting asynchronous diagnostics run...')
 response = MethodResponse.create_from_method_request(
 request, status = 202
)
 await device_client.send_method_response(response) # send response
 print('Generating diagnostics...')
 await asyncio.sleep(2)
 print('Generating diagnostics...')
 await asyncio.sleep(2)
 print('Generating diagnostics...')
 await asyncio.sleep(2)
 print('Sending property update to confirm command completion')
 await device_client.patch_twin_reported_properties({'rundiagnostics': {'value': f'Diagnostics run
complete at {datetime.datetime.today()}.'}})

 async def turnon_command(request):
 print('Turning on the LED')
 response = MethodResponse.create_from_method_request(
 request, status = 200
)
 await device_client.send_method_response(response) # send response

 async def turnoff_command(request):
 print('Turning off the LED')
 response = MethodResponse.create_from_method_request(
 request, status = 200
)
 await device_client.send_method_response(response) # send response

 commands = {
 'blink': blink_command,
 'rundiagnostics': diagnostics_command,
 'turnon': turnon_command,
 'turnoff': turnoff_command,
 }

 # Define behavior for handling commands
 async def command_listener():
 while True:
 method_request = await device_client.receive_method_request() # Wait for commands
 await commands[method_request.name](method_request)

The names of the commands (blink , turnon , turnoff , and rundiagnostics) must match the names used

in the device template.

Currently, IoT Central doesn't use the response schema defined in the device capability model. For a

synchronous command, the response payload can be any valid JSON. For an asynchronous command, the

device should return a 202 response immediately, followed by reported property update when the work is

finished. The format of the reported property update is:

{
 [command name] : {
 value: 'response message'
 }
}

 async def name_setting(value, version):
 await asyncio.sleep(1)
 print(f'Setting name value {value} - {version}')
 await device_client.patch_twin_reported_properties({'name' : {'value': value, 'ad': 'completed',
'ac': 200, 'av': version}})

 async def brightness_setting(value, version):
 await asyncio.sleep(5)
 print(f'Setting brightness value {value} - {version}')
 await device_client.patch_twin_reported_properties({'brightness' : {'value': value, 'ad':
'completed', 'ac': 200, 'av': version}})

 settings = {
 'name': name_setting,
 'brightness': brightness_setting
 }

 # define behavior for receiving a twin patch
 async def twin_patch_listener():
 while True:
 patch = await device_client.receive_twin_desired_properties_patch() # blocking
 to_update = patch.keys() & settings.keys()
 await asyncio.gather(
 *[settings[setting](patch[setting], patch['$version']) for setting in to_update]
)

An operator can view the response payload in the command history.

9. Add the following functions inside the main function to handle property updates sent from your IoT

Central application:

When the operator sets a writeable property in the IoT Central application, the application uses a device

twin desired property to send the value to the device. The device then responds using a device twin

reported property. When IoT Central receives the reported property value, it updates the property view with

a status of synced.

The names of the properties (name and brightness) must match the names used in the device template.

10. Add the following functions inside the main function to control the application:

Run your Python application

python3 environmental_sensor.py

 # Define behavior for halting the application
 def stdin_listener():
 while True:
 selection = input('Press Q to quit\n')
 if selection == 'Q' or selection == 'q':
 print('Quitting...')
 break

 device_client = await connect_device()

 if device_client is not None and device_client.connected:
 print('Send reported properties on startup')
 await device_client.patch_twin_reported_properties({'state': 'true', 'processorArchitecture':
'ARM', 'swVersion': '1.0.0'})
 tasks = asyncio.gather(
 send_telemetry(),
 command_listener(),
 twin_patch_listener(),
)

 # Run the stdin listener in the event loop
 loop = asyncio.get_running_loop()
 user_finished = loop.run_in_executor(None, stdin_listener)

 # Wait for user to indicate they are done listening for method calls
 await user_finished

 # Cancel tasks
 tasks.add_done_callback(lambda r: r.exception())
 tasks.cancel()
 await device_client.disconnect()

 else:
 print('Device could not connect')

11. Save the the environmental_sensor.py file.

To start the device client application, run the following command in your command-line environment:

You can see the device connects to your Azure IoT Central application and starts sending telemetry:

As an operator in your Azure IoT Central application, you can:

View the telemetry sent by the device on the Over view page:

View the device properties on the About page:

Update writeable property values on the Proper ties page:

Call the commands from the Commands page:

You can see how the device responds to commands and property updates:

View raw data

Next steps

As a device developer, you can use the Raw data view to examine the raw data your device is sending to IoT

Central:

On this view, you can select the columns to display and set a time range to view. The Unmodeled data column

shows data from the device that doesn't match any property or telemetry definitions in the device template.

As a device developer, now that you've learned the basics of how to create a device using Python, some suggested

next steps are to:

Learn how to connect a real device to IoT Central in the Connect an MXChip IoT DevKit device to your Azure IoT

Central application how-to article.

Read What are device templates? to learn more about the role of device templates when you're implementing

your device code.

Read Get connected to Azure IoT Central to learn more about how to register devices with IoT Central and how

IoT Central secures device connections.

If you'd prefer to continue through the set of IoT Central tutorials and learn more about building an IoT Central

solution, see:

Create a gateway device template

Tutorial: Use a device capability model to create an
IoT Plug and Play (preview) device and connect it to
your IoT Central application
7/21/2020 • 5 minutes to read • Edit Online

Prerequisites

Install Azure IoT Tools

Prepare the development environment

A device capability model (DCM) describes the capabilities of an IoT Plug and Play (preview) device. IoT Central can

use a DCM to create a device template and visualizations for a device when the device connects for the first time.

Support for IoT Plug and Play is in preview and is only supported only in selected regions.

In this tutorial, you learn how to:

Use Visual Studio Code to create an IoT Plug and Play (preview) device using a DCM.

Run the device code in Windows and see it connect to your IoT Central application.

View the simulated telemetry the device sends.

Complete the Create an Azure IoT Central application quickstart to create an IoT Central application using the

Custom app > Custom application template.

To complete this tutorial, you need to install the following software on your local machine:

npm i -g dps-keygen

Build Tools for Visual Studio with C++ build tools and Nuget package manager component

workloads. Or if you already have Visual Studio (Community, Professional, or Enterprise) 2019, 2017 or

2015 with same workloads installed.

Git.

CMake - when you install CMake, select the option Add CMake to the system PATH.

Visual Studio Code.

Node.js

The dps-keygen utility:

Use the following steps to install the Azure IoT Tools extension pack in VS Code:

1. In VS Code, select the Extensions tab.

2. Search for Azure IoT Tools .

3. Select Install .

In this tutorial, you use the Vcpkg library manager to install the Azure IoT C device SDK in your development

environment.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/iot-central/core/tutorial-connect-pnp-device.md
https://docs.microsoft.com/en-us/azure/iot-pnp/overview-iot-plug-and-play
https://docs.microsoft.com/en-us/azure/iot-pnp/overview-iot-plug-and-play
https://visualstudio.microsoft.com/thank-you-downloading-visual-studio/?sku=BuildTools&rel=16
https://visualstudio.microsoft.com/downloads/
https://git-scm.com/download/
https://cmake.org/download/
https://code.visualstudio.com/
https://nodejs.org/
https://github.com/microsoft/vcpkg

Generate device key

git clone https://github.com/Microsoft/vcpkg.git
cd vcpkg

.\bootstrap-vcpkg.bat

.\vcpkg.exe integrate install

.\vcpkg.exe install azure-iot-sdk-c[public-preview,use_prov_client]

1. Open a command prompt. Execute the following command to install Vcpkg:

Then, to hook up user-wide integration, run the following command. The first time you run this command it

requires administrative rights:

2. Install Azure IoT C device SDK Vcpkg:

To connect a device to an IoT Central application, you need a device key. To generate a device key:

1. Sign in to the IoT Central application you created using the Custom application template in the Create an

Azure IoT Central application quickstart.

2. Go to the Administration page and select Device Connection.

3. Make a note of the ID Scope. You use this value later in this tutorial.

4. Select the SAS-IoT-Devices enrollment group. Make a note of the Pr imar y Key . You use this value later in

this tutorial.

https://github.com/microsoft/vcpkg/blob/master/docs/users/integration.md

Download your model

dps-keygen -di:mxchip-001 -mk:{Primary Key from previous step}

5. Open a command prompt and run the following command to generate a device key:

Make a note of the generated device key, you use this value in a later step in this tutorial.

In this tutorial, you use the public DCM for an MxChip IoT DevKit device. You don't need an actual DevKit device to

run the code, in this tutorial you compile the code to run on Windows.

1. Create a folder called central_app and open it in VS Code.

2. Use Ctr l+Shift+P to open the command palette, enter IoT Plug and Play , and select Open Model

Repositor y . Select Public repositor y . VS Code shows a list of the DCMs in the public model repository.

3. Select the MXChip IoT DevKit DCM with ID urn:mxchip:mxchip_iot_devkit:1 . Then select Download. You

now have a copy of the DCM in the central_app folder.

NOTE

Generate the C code stub

To work with IoT Central, the device capability model must have all the interfaces defined inline in the same file.

Now you have the MXChip IoT DevKit DCM and its associated interfaces, you can generate the device code that

implements the model. To generate the C code stub in VS code:

NOTE

1. With the folder with DCM files open, use Ctr l+Shift+P to open the command palette, enter IoT Plug and

Play , and select Generate Device Code Stub.

The first time you use the IoT Plug and Play Code Generator utility, it takes a few seconds to download.

2. Select the MXChip IoT DevKit DCM file you just downloaded.

3. Enter the project name devkit_device.

4. Choose ANSI C as your language.

5. Choose Via DPS (Device Provisioning Ser vice) symmetr ic key as the connection method.

6. Choose CMake Project on Windows as your project type. Don't choose MXChip IoT DevKit Project,

this option is for when you have a real DevKit device.

7. Choose Via Vcpkg as the way to include the SDK.

8. VS Code opens a new window with generated device code stub files in the devkit_device folder.

Build the code
You use the device SDK to build the generated device code stub. The application you build simulates an MXChip

IoT DevKit device and connects to your IoT Central application. The application sends telemetry and properties,

and receives commands.

mkdir cmake
cd cmake

cmake .. -G "Visual Studio 16 2019" -A Win32 -Duse_prov_client=ON -Dhsm_type_symm_key:BOOL=ON -
DCMAKE_TOOLCHAIN_FILE="<directory of your Vcpkg repo>\scripts\buildsystems\vcpkg.cmake"

cmake --build . -- /p:Configuration=Release

1. At a command prompt, create a cmake subdirectory in the devkit_device folder, and navigate to that folder :

2. Run the following commands to build the generated code stub. Replace the <directory of your Vcpkg repo>

placeholder with the path to your copy of the Vcpkg repository:

If you're using Visual Studio 2017 or 2015, you need to specify the CMake generator based on the build

tools you're using:

View the device

Either
cmake .. -G "Visual Studio 15 2017" -Duse_prov_client=ON -Dhsm_type_symm_key:BOOL=ON -
DCMAKE_TOOLCHAIN_FILE="<directory of your Vcpkg repo>\scripts\buildsystems\vcpkg.cmake"
or
cmake .. -G "Visual Studio 14 2015" -Duse_prov_client=ON -Dhsm_type_symm_key:BOOL=ON -
DCMAKE_TOOLCHAIN_FILE="<directory of your Vcpkg repo>\scripts\buildsystems\vcpkg.cmake"

.\Release\devkit_device.exe mxchip-001 <scopeid> <devicekey>

3. After the build completes successfully, at the same command prompt run your application. Replace

<scopeid> and <devicekey> with the values you noted previously:

4. The device application starts sending data to IoT Hub. Sometimes you see the error

Error registering device for DPS the first time you run the previous command. If you see this error, retry

the command.

After your device code connects to your IoT Central, you can view the properties and telemetry it sends:

1. In your IoT Central application, go to the Devices page and select the mxchip-01 device. This device was

automatically added when the device code connected:

After a couple of minutes, this page shows charts of the telemetry the device is sending.

Next steps

2. Select the About page to see the property values the device sent.

3. Select the Commands page to call commands on the device. You can see the device responding at the

command prompt that's running the device code.

4. Go to the Device templates page to see the template that IoT Central created from the DCM in the public

repository:

In this tutorial, you learned how to connect an IoT Plug and Play (preview) device that was generated from a DCM

in the public model repository.

To learn more about DCMs and how to create your own models, continue to the how-to guide:

Define a new IoT device type

Define a new IoT gateway device type in your Azure
IoT Central application
4/21/2020 • 6 minutes to read • Edit Online

Prerequisites

Create downstream device templates

This article applies to solution builders and device developers.

This tutorial shows you, as a solution builder, how to use a gateway device template to define a gateway device in

your IoT Central application. You then configure several downstream devices that connect to your IoT Central

application through the gateway device.

In this tutorial, you create a Smar t Building gateway device template. A Smar t Building gateway device has

relationships with other downstream devices.

As well as enabling downstream devices to communicate with your IoT Central application, a gateway device can

also:

Send its own telemetry, such as temperature.

Respond to writeable property updates made by an operator. For example, an operator could changes the

telemetry send interval.

Respond to commands, such as rebooting the device.

To complete this tutorial, you need to Create an Azure IoT Central application.

This tutorial uses device templates for an S1 Sensor device and an RS40 Occupancy Sensor device to generate

simulated downstream devices.

To create a device template for an S1 Sensor device:

1. In the left pane, select Device Templates . Then select + to start adding the template.

2. Scroll down until you can see the tile for the S1 Sensor device. Select the tile and then select Next:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/iot-central/core/tutorial-define-gateway-device-type.md

Create a gateway device template

Add relationships

Customize.

3. On the Review page, select Create to add the device template to your application.

To create a device template for an *RS40 Occupancy Sensor device:

1. In the left pane, select Device Templates . Then select + to start adding the template.

2. Scroll down until you can see the tile for the *RS40 Occupancy Sensor device. Select the tile and then

select Next: Customize.

3. On the Review page, select Create to add the device template to your application.

You now have device templates for the two downstream device types:

In this tutorial you create a device template for a gateway device from scratch. You use this template later to create

a simulated gateway device in your application.

To add a new gateway device template to your application:

1. In the left pane, select Device Templates . Then select + to start adding the template.

2. On the Select template type page, select the IoT Device tile, and then select Next: Customize.

3. On the Customize device page, select the Gateway device checkbox.

4. On the Review page, select Create.

5. Enter Smar t Building gateway device as the template name.

6. On the Create a capability model page, select the Custom tile.

7. Select + to add an interface. Choose the Device Information standard interface.

Next you add relationships to the templates for the downstream device templates:

Add cloud properties

1. In the Smar t Building gateway device template, select Relationships .

2. Select + Add relationship. Enter Environmental Sensor as the display name, and select S1 Sensor as

the target.

3. Select + Add relationship again. Enter Occupancy Sensor as the display name, and select RS40

Occupancy Sensor as the target.

4. Select Save.

A gateway device template can include cloud properties. Cloud properties only exist in the IoT Central application,

and are never sent to, or received from, a device.

To add cloud properties to the Smar t Building gateway device template.

DISP L AY N A M E SEM A N T IC T Y P E SC H EM A

Last Service Date None Date

Customer Name None String

1. In the Smar t Building gateway device template, select Cloud proper ties .

2. Use the information in the following table to add two cloud properties to your gateway device template.

3. Select Save.

Create views

Publish the device template

Create the simulated devices

As a builder, you can customize the application to display relevant information about the environmental sensor

device to an operator. Your customizations enable the operator to manage the environmental sensor devices

connected to the application. You can create two types of views for an operator to use to interact with devices:

Forms to view and edit device and cloud properties.

Dashboards to visualize devices.

To generate the default views for the Smar t Building gateway device template:

1. In the Smar t Building gateway device template, select Views .

2. Select Generate default views tile and make sure that all the options are selected.

3. Select Generate default dashboard view(s) .

Before you can create a simulated gateway device, or connect a real gateway device, you need to publish your

device template.

To publish the gateway device template:

1. Select the Smar t Building gateway device template from the Device templates page.

2. Select Publish .

3. In the Publish a Device Template dialog box, choose Publish .

After a device template is published, it's visible on the Devices page and to the operator. In a published device

template, you can't edit a device capability model without creating a new version. However, you can make updates

to cloud properties, customizations, and views, in a published device template. These updates don't cause a new

version to be created. After making any changes, select Publish to push those changes out to your operator.

This tutorial uses simulated downstream devices and a simulated gateway device.

To create a simulated gateway device:

1. On the Devices page, select Smar t Building gateway device in the list of device templates.

2. Select + to start adding a new device.

3. Keep the generated Device ID and Device name. Make sure that the S imulated switch is On. Select

Create.

To create a simulated downstream devices:

1. On the Devices page, select RS40 Occupancy Sensor in the list of device templates.

2. Select + to start adding a new device.

3. Keep the generated Device ID and Device name. Make sure that the S imulated switch is On. Select

Create.

4. On the Devices page, select S1 Sensor in the list of device templates.

5. Select + to start adding a new device.

6. Keep the generated Device ID and Device name. Make sure that the S imulated switch is On. Select

Add downstream device relationships to a gateway device

Create.

Now that you have the simulated devices in your application, you can create the relationships between the

downstream devices and the gateway device:

1. On the Devices page, select S1 Sensor in the list of device templates, and then select your simulated S1

Sensor device.

2. Select Connect to gateway .

3. On the Connect to a gateway dialog, select the Smar t Building gateway device template, and then

select the simulated instance you created previously.

4. Select Join .

5. On the Devices page, select RS40 Occupancy Sensor in the list of device templates, and then select your

simulated RS40 Occupancy Sensor device.

6. Select Connect to gateway .

7. On the Connect to a gateway dialog, select the Smar t Building gateway device template, and then

select the simulated instance you created previously.

8. Select Join .

Both your simulated downstream devices are now connected to your simulated gateway device. If you navigate to

the Downstream Devices view for your gateway device, you can see the related downstream devices:

Next steps

NOTE

Select a gateway device template and gateway device instance, and select Join .

In this tutorial, you learned how to:

Create a new IoT gateway as a device template.

Create cloud properties.

Create customizations.

Define a visualization for the device telemetry.

Add relationships.

Publish your device template.

VS Code based code generation is currently not supported for gateway devices modeled in IoT Central.

Next, as a device developer, you can learn how to:

Add an Azure IoT Edge device to your Azure IoT Central application

Tutorial: Add an Azure IoT Edge device to your
Azure IoT Central application
7/21/2020 • 7 minutes to read • Edit Online

Prerequisites

Create device template

Import manifest to create template

This article applies to operators, solution builders, and device developers.

This tutorial shows you how to configure and add an Azure IoT Edge device to your Azure IoT Central application.

The tutorial uses an IoT Edge-enabled Linux virtual machine (VM) to simulate an IoT Edge device. The IoT Edge

device uses a module that generates simulated environmental telemetry. You view the telemetry on a dashboard

in your IoT Central application.

In this tutorial, you learn how to:

Create a device template for an IoT Edge device

Create an IoT Edge device in IoT Central

Deploy a simulated IoT Edge device to a Linux VM

Complete the Create an Azure IoT Central application quickstart to create an IoT Central application using the

Custom app > Custom application template.

To complete the steps in this tutorial, you need an active Azure subscription.

If you don't have an Azure subscription, create a free account before you begin.

Download the IoT Edge manifest file from GitHub. Right-click on the following link and then select Save link as :

EnvironmentalSensorManifest.json

In this section, you create an IoT Central device template for an IoT Edge device. You import an IoT Edge manifest

to get started, and then modify the template to add telemetry definitions and views:

To create a device template from an IoT Edge manifest:

1. In your IoT Central application, navigate to Device templates and select + New .

2. On the Select template type page, select the Azure IoT Edge tile. Then select Next: Customize.

3. On the Upload an Azure IoT Edge deployment manifest page, enter Environmental Sensor Edge

Device as the device template name. Then select Browse to upload the

EnvironmentalSensorManifest.json you downloaded previously. Then select Next: Review .

4. On the Review page, select Create.

5. Select the Manage interface in the S imulatedTemperatureSensor module to view the two properties

defined in the manifest:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/iot-central/core/tutorial-add-edge-as-leaf-device.md
https://azure.microsoft.com/free/?WT.mc_id=A261C142F
https://raw.githubusercontent.com/Azure-Samples/iot-central-docs-samples/master/iotedge/EnvironmentalSensorManifest.json

Add telemetry to manifest

{
 "machine": {
 "temperature": 75.0,
 "pressure": 40.2
 },
 "ambient": {
 "temperature": 23.0,
 "humidity": 30.0
 },
 "timeCreated": ""
}

An IoT Edge manifest doesn't define the telemetry a module sends. You add the telemetry definitions to the device

template in IoT Central. The S imulatedTemperatureSensor module sends telemetry messages that look like the

following JSON:

To add the telemetry definitions to the device template:

1. Select the Manage interface in the Environmental Sensor Edge Device template.

2. Select + Add capability . Enter machine as the Display name and make sure that the Capability type is

Telemetr y .

3. Select Object as the schema type, and then select Define. On the object definition page, add temperature

and pressure as attributes of type Double and then select Apply .

4. Select + Add capability . Enter ambient as the Display name and make sure that the Capability type is

Telemetr y .

5. Select Object as the schema type, and then select Define. On the object definition page, add temperature

and humidity as attributes of type Double and then select Apply .

6. Select + Add capability . Enter timeCreated as the Display name and make sure that the Capability

type is Telemetr y .

7. Select DateTime as the schema type.

8. Select Save to update the template.

Add views to template

The Manage interface now includes the machine, ambient, and timeCreated telemetry types:

The device template doesn't yet have a view that lets an operator see the telemetry from the IoT Edge device. To

add a view to the device template:

1. Select Views in the Environmental Sensor Edge Device template.

2. On the Select to add a new view page, select the Visualizing the device tile.

3. Change the view name to View IoT Edge device telemetry.

4. Select the ambient and machine telemetry types. Then select Add tile.

5. Select Save to save the View IoT Edge device telemetr y view.

Publish the template
Before you can add a device that uses the Environmental Sensor Edge Device template, you must publish the

template.

Navigate to the Environmental Sensor Edge Device template and select Publish . On the Publish this device

template to the application panel, select Publish to publish the template:

Add IoT Edge device

Get the device credentials

Deploy an IoT Edge device

Now you've published the Environmental Sensor Edge Device template, you can add a device to your IoT

Central application:

1. In your IoT Central application, navigate to the Devices page and select Environmental Sensor Edge

Device in the list of available templates.

2. Select + New to add a new device from the template. On the Create new device page, select Create.

You now have a new device with the status Registered:

When you deploy the IoT Edge device later in this tutorial, you need the credentials that allow the device to

connect to your IoT Central application. The get the device credentials:

1. On the Device page, select the device you created.

2. Select Connect.

3. On the Device connection page, make a note of the ID Scope, the Device ID, and the Pr imar y Key . You

use these values later.

4. Select Close.

You've now finished configuring your IoT Central application to enable an IoT Edge device to connect.

In this tutorial, you use an Azure IoT Edge-enabled Linux VM, created on Azure to simulate an IoT Edge device. To

create the IoT Edge-enabled VM in your Azure subscription, click:

On the Custom deployment page:

1. Select your Azure subscription.

2. Select Create new to create a new resource group called central-edge-rg.

3. Choose a region close to you.

4. Add a unique DNS Label Prefix such as contoso-central-edge.

https://portal.azure.com/#create/Microsoft.Template/uri/https%3A%2F%2Fraw.githubusercontent.com%2Fazure%2Fiotedge-vm-deploy%2Fmaster%2FedgeDeploy.json

Configure the IoT Edge VM

5. Choose an admin user name for the virtual machine.

6. Enter temp as the connection string. Later, you configure the device to connect using DPS.

7. Accept the default values for the VM size, Ubuntu version, and location.

8. Select password as the authentication type.

9. Enter a password for the VM.

10. Then select Review + Create.

11. Review your choices and then select Create:

The deployment takes a couple of minutes to complete. When the deployment is complete, navigate to the

central-edge-rg resource group in the Azure portal.

To configure IoT Edge in the VM to use DPS to register and connect to your IoT Central application:

sudo iotedge --version

sudo nano /etc/iotedge/config.yaml

1. In the contoso-edge-rg resource group, select the virtual machine instance.

2. In the Suppor t + troubleshooting section, select Ser ial console. If you're prompted to configure boot

diagnostics, follow the instructions in the portal.

3. Press Enter to see the login: prompt. Enter your username and password to sign in.

4. Run the following command to check the IoT Edge runtime version. At the time of writing, the version is

1.0.9.1:

5. Use the nano editor to open the IoT Edge config.yaml file:

Manual provisioning configuration
#provisioning:
source: "manual"
device_connection_string: "temp"

DPS symmetric key provisioning configuration
provisioning:
 source: "dps"
 global_endpoint: "https://global.azure-devices-provisioning.net"
 scope_id: "{scope_id}"
 attestation:
 method: "symmetric_key"
 registration_id: "{registration_id}"
 symmetric_key: "{symmetric_key}"

TIP

sudo systemctl restart iotedge

iotedge list

NAME STATUS DESCRIPTION CONFIG
SimulatedTemperatureSensor running Up 20 seconds mcr.microsoft.com/azureiotedge-simulated-
temperature-sensor:1.0
edgeAgent running Up 27 seconds mcr.microsoft.com/azureiotedge-agent:1.0
edgeHub running Up 22 seconds mcr.microsoft.com/azureiotedge-hub:1.0

TIP

6. Scroll down until you see # Manual provisioning configuration . Comment out the next three lines as shown

in the following snippet:

7. Scroll down until you see # DPS symmetric key provisioning configuration . Uncomment the next eight lines

as shown in the following snippet:

Make sure there's no space left in front of provisioning:

8. Replace {scope_id} with the ID Scope you made a note of previously.

9. Replace {registration_id} with the Device ID you made a note of previously.

10. Replace {symmetric_key} with the Pr imar y key you made a note of previously.

11. Save the changes (Ctr l-O) and exit (Ctr l-X) the nano editor.

12. Run the following command to restart the IoT Edge daemon:

13. To check the status of the IoT Edge modules, run the following command:

The following sample output shows the running modules:

You may need to wait for all the modules to start running.

View the telemetry
The simulated IoT Edge device is now running in the VM. In your IoT Central application, the device status is now

Provisioned on the Devices page:

You can see the telemetry from the device on the View IoT Edge device telemetr y page:

The Modules page shows the status of the IoT Edge modules on the device:

Clean up resources

Next steps

If you plan to continue working with the IoT Edge VM, you can keep and reuse the resources you used in this

tutorial. Otherwise, you can delete the resources you created in this tutorial to avoid additional charges:

To delete the IoT Edge VM and its associated resources, delete the the contoso-edge-rg resource group in the

Azure portal.

To delete the IoT Central application, navigate to the Your application page in the Administration section of

the application and select Delete.

As a device developer, now that you've learned how to work with and manage IoT Edge devices in IoT Central, a

suggested next step is to read:

Develop IoT Edge modules

As a solution developer or operator, now that you've learned how to work with and manage IoT Edge devices in IoT

Central, a suggested next step is to:

Use device groups to analyze device telemetry

https://docs.microsoft.com/en-us/azure/iot-edge/tutorial-develop-for-linux

Tutorial: Use device groups to analyze device
telemetry
4/9/2020 • 2 minutes to read • Edit Online

Prerequisites

Create simulated devices

This article describes how, as an operator, to use device groups to analyze device telemetry in your Azure IoT

Central application.

A device group is a list of devices that are grouped together because they match some specified criteria. Device

groups help you manage, visualize, and analyze devices at scale by grouping devices into smaller, logical groups.

For example, you can create a device group to list all the air conditioner devices in Seattle to enable a technician to

find the devices for which they're responsible.

In this tutorial, you learn how to:

Create a device group

Use a device group to analyze device telemetry

Before you begin, you should complete the Create an Azure IoT Central application and Add a simulated device to

your IoT Central application quickstarts to create the MXChip IoT DevKit device template to work with.

Before you create a device group, add at least five simulated devices from the MXChip IoT DevKit device

template to use in this tutorial:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/iot-central/core/tutorial-use-device-groups.md

Create a device group

For four of the simulated sensor devices, use the Manage device view to set the customer name to Contoso:

To create a device group:

1. Choose Device groups on the left pane.

2. Select +:

3. Give your device group the name Contoso devices. You can also add a description. A device group can only

contain devices from a single device template. Choose the MXChip IoT DevKit device template to use for

this group.

4. To customize the device group to include only the devices belonging to Contoso, select + Filter . Select the

Customer Name property, the Equals comparison operator, and Contoso as the value. You can add

multiple filters and devices that meet all the filter criteria are placed in the device group. The device group

you create is accessible to anyone who has access to the application, so anyone can view, modify, or delete

the device group:

NOTE

Analytics

TIP
The device group is a dynamic query. Every time you view the list of devices, there may be different devices in the

list. The list depends on which devices currently meet the criteria of the query.

5. Choose Save.

For Azure IoT Edge devices, select Azure IoT Edge templates to create a device group.

You can use Analytics with a device group to analyze the telemetry from the devices in the group. For example,

you can plot the average temperature reported by all the Contoso environmental sensors.

To analyze the telemetry for a device group:

1. Choose Analytics on the left pane.

2. Select the Contoso devices device group you created. Then add both the Temperature and Humidity

telemetry types:

Use the gear-wheel icons next to the telemetry types to select an aggregation type. The default is Average.

Use Split by to change how the aggregate data is shown. For example, if you split by device ID you see a

plot for each device when you select Analyze.

3. Select Analyze to view the average telemetry values:

Next steps

You can customize the view, change the time period shown, and export the data.

Now that you've learned how to use device groups in your Azure IoT Central application, here is the suggested

next step:

How to create telemetry rules

Tutorial: Create a rule and set up notifications in your
Azure IoT Central application
4/9/2020 • 4 minutes to read • Edit Online

Prerequisites

Create a rule

This article applies to operators, builders, and administrators.

You can use Azure IoT Central to remotely monitor your connected devices. Azure IoT Central rules let you

monitor your devices in near real time and automatically invoke actions, such as sending an email. This article

explains how to create rules to monitor the telemetry your devices send.

Devices use telemetry to send numerical data from the device. A rule triggers when the selected device telemetry

crosses a specified threshold.

In this tutorial, you create a rule to send an email when the temperature in a simulated environmental sensor

device exceeds 70° F.

In this tutorial, you learn how to:

Create a rule

Add an email action

Before you begin, complete the Create an Azure IoT Central application and Add a simulated device to your IoT

Central application quickstarts to create the MXChip IoT DevKit device template to work with.

To create a telemetry rule, the device template must include at least one telemetry value. This tutorial uses a

simulated MXChip IoT DevKit device that sends temperature and humidity telemetry. You added this device

template and created a simulated device in the Add a simulated device to your IoT Central application quickstart.

The rule monitors the temperature reported by the device and sends an email when it goes above 70 degrees.

1. In the left pane, select Rules .

2. If you haven't created any rules yet, you see the following screen:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/iot-central/core/tutorial-create-telemetry-rules.md

3. Select + to add a new rule.

4. Enter the name Temperature monitor to identify the rule and press Enter.

5. Select the MXChip IoT DevKit device template. By default, the rule automatically applies to all the devices

associated with the device template. To filter for a subset of the devices, select + Filter and use device

properties to identify the devices. To disable the rule, toggle the Enabled/Disabled button in the rule

header :

Configure the rule conditions
Conditions define the criteria that the rule monitors. In this tutorial, you configure the rule to fire when the

temperature exceeds 70° F.

1. Select Temperature in the Telemetr y dropdown.

2. Next, choose Is greater than as the Operator and enter 70 as the Value.

3. Optionally, you can set a Time aggregation. When you select a time aggregation, you must also select an

aggregation type, such as average or sum from the aggregation drop-down.

Without aggregation, the rule triggers for each telemetry data point that meets the condition. For

example, if you configure the rule to trigger when temperature is above 70 then the rule triggers almost

instantly when the device temperature exceeds this value.

With aggregation, the rule triggers if the aggregate value of the telemetry data points in the time

window meets the condition. For example, if you configure the rule to trigger when temperature is

above 70 and with an average time aggregation of 10 minutes, then the rule triggers when the device

reports an average temperature greater than 70, calculated over a 10-minute interval.

Configure actions

You can add multiple conditions to a rule by selecting + Condition. When multiple conditions are specified, all

the conditions must be met for the rule to trigger. Each condition is joined by an implicit AND clause. If you're

using time aggregation with multiple conditions, all the telemetry values must be aggregated.

After you define the condition, you set up the actions to take when the rule fires. Actions are invoked when all the

conditions specified in the rule evaluate to true.

NOTE

1. Select + Email in the Actions section.

2. Enter Temperature warning as the display name for the action, your email address in the To field, and You

should check the device! as a note to appear in the body of the email.

Emails are only sent to the users that have been added to the application and have logged in at least once. Learn

more about user management in Azure IoT Central.

3. To save the action, choose Done. You can add multiple actions to a rule.

4. To save the rule, choose Save. The rule goes live within a few minutes and starts monitoring telemetry

being sent to your application. When the condition specified in the rule is met, the rule triggers the

configured email action.

After a while, you receive an email message when the rule fires:

Delete a rule

Enable or disable a rule

Enable or disable a rule for specific devices

Next steps

If you no longer need a rule, delete it by opening the rule and choosing Delete.

Choose the rule you want to enable or disable. Toggle the Enabled/Disabled button in the rule to enable or

disable the rule for all devices that are scoped in the rule.

Choose the rule you want to customize. Use one or more filters in the Target devices section to narrow the scope

of the rule to the devices you want to monitor.

In this tutorial, you learned how to:

Create a telemetry-based rule

Add an action

Now that you've defined a threshold-based rule the suggested next step is to learn how to:

Configure continuous data export.

Azure IoT Central architecture
2/4/2020 • 6 minutes to read • Edit Online

Devices

Azure IoT Edge devices

This article provides an overview of the Microsoft Azure IoT Central architecture.

Devices exchange data with your Azure IoT Central application. A device can:

Send measurements such as telemetry.

Synchronize settings with your application.

In Azure IoT Central, the data that a device can exchange with your application is specified in a device template. For

more information about device templates, see Metadata management.

To learn more about how devices connect to your Azure IoT Central application, see Device connectivity.

As well as devices created using the Azure IoT SDKs, you can also connect Azure IoT Edge devices to an IoT Central

application. IoT Edge lets you run cloud intelligence and custom logic directly on IoT devices managed by IoT

Central. The IoT Edge runtime enables you to:

Install and update workloads on the device.

Maintain IoT Edge security standards on the device.

Ensure that IoT Edge modules are always running.

Report module health to the cloud for remote monitoring.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/iot-central/core/concepts-architecture.md
https://github.com/Azure/azure-iot-sdks
https://docs.microsoft.com/en-us/azure/iot-edge/about-iot-edge

IoT Edge device types

IoT Edge patterns

Manage communication between downstream leaf devices and an IoT Edge device, between modules on an IoT

Edge device, and between an IoT Edge device and the cloud.

IoT Central enables the following capabilities to for IoT Edge devices:

Device templates to describe the capabilities of an IoT Edge device, such as:

Deployment manifest upload capability, which helps you manage a manifest for a fleet of devices.

Modules that run on the IoT Edge device.

The telemetry each module sends.

The properties each module reports.

The commands each module responds to.

The relationships between an IoT Edge gateway device capability model and downstream device

capability model.

Cloud properties that aren't stored on the IoT Edge device.

Customizations, dashboards, and forms that are part of your IoT Central application.

For more information, see the Connect Azure IoT Edge devices to an Azure IoT Central application article.

The ability to provision IoT Edge devices at scale using Azure IoT device provisioning service

Rules and actions.

Custom dashboards and analytics.

Continuous data export of telemetry from IoT Edge devices.

IoT Central classifies IoT Edge device types as follows:

Leaf devices. An IoT Edge device can have downstream leaf devices, but these devices aren't provisioned in IoT

Central.

Gateway devices with downstream devices. Both gateway device and downstream devices are provisioned in IoT

Central

IoT Central supports the following IoT Edge device patterns:

IoT Edge as leaf device

IoT Edge gateway device connected to downstream devices with identity

IoT Edge gateway device connected to downstream devices with identity provided by the IoT Edge gateway

Cloud gateway

The IoT Edge device is provisioned in IoT Central and any downstream devices and their telemetry is represented as

coming from the IoT Edge device. Downstream devices connected to the IoT Edge device aren't provisioned in IoT

Central.

The IoT Edge device is provisioned in IoT Central along with the downstream devices connected to the IoT Edge

device. Runtime support for provisioning downstream devices through the gateway isn't currently supported.

The IoT Edge device is provisioned in IoT Central along with the downstream devices connected to the IoT Edge

device. Runtime support of gateway providing identity to downstream devices and provisioning of downstream

devices isn't currently supported. If you bring your own identity translation module, IoT Central can support this

pattern.

Azure IoT Central uses Azure IoT Hub as a cloud gateway that enables device connectivity. IoT Hub enables:

Data ingestion at scale in the cloud.

Device management.

Secure device connectivity.

Data stores

Analytics

Rules and actions

Metadata management

To learn more about IoT Hub, see Azure IoT Hub.

To learn more about device connectivity in Azure IoT Central, see Device connectivity.

Azure IoT Central stores application data in the cloud. Application data stored includes:

Device templates.

Device identities.

Device metadata.

User and role data.

Azure IoT Central uses a time series store for the measurement data sent from your devices. Time series data from

devices used by the analytics service.

The analytics service is responsible for generating the custom reporting data that the application displays. An

operator can customize the analytics displayed in the application. The analytics service is built on top of Azure Time

Series Insights and processes the measurement data sent from your devices.

Rules and actions work closely together to automate tasks within the application. A builder can define rules based

on device telemetry such as the temperature exceeding a defined threshold. Azure IoT Central uses a stream

processor to determine when the rule conditions are met. When a rule condition is met, it triggers an action defined

by the builder. For example, an action can send an email to notify an engineer that the temperature in a device is

too high.

In an Azure IoT Central application, device templates define the behavior and capability of types of device. For

example, a refrigerator device template specifies the telemetry a refrigerator sends to your application.

https://docs.microsoft.com/en-us/azure/iot-hub/
https://azure.microsoft.com/services/time-series-insights/

Data export

Batch device updates

Role-based access control (RBAC)

In an IoT Central application device template contains:

Device capability models specify the capabilities of a device such as the telemetry it sends, the properties

that define the device state, and the commands the device responds to. Device capabilities are organized into

one or more interfaces. For more information about device capability models, see the IoT Plug and Play

(preview) documentation.

Cloud proper ties specify the properties IoT Central stores for a device. These properties are only stored in IoT

Central and are never sent to a device.

Views specify the dashboards and forms the builder creates to let the operator monitor and manage the

devices.

Customizations let the builder override some of the definitions in the device capability model to make them

more relevant to the IoT Central application.

An application can have one or more simulated and real devices based on each device template.

In an Azure IoT Central application, you can continuously export your data to your own Azure Event Hubs and

Azure Service Bus instances. You can also periodically export your data to your Azure Blob storage account. IoT

Central can export measurements, devices, and device templates.

In an Azure IoT Central application, you can create and run jobs to manage connected devices. These jobs let you do

bulk updates to device properties or settings, or run commands. For example, you can create a job to increase the

fan speed for multiple refrigerated vending machines.

An administrator can define access rules for an Azure IoT Central application using one of the predefined roles or

by creating a custom role. Roles determine what areas of the application a user has access to and what actions they

https://docs.microsoft.com/en-us/azure/iot-pnp/overview-iot-plug-and-play

Security

UI shell

Next steps

can perform.

Security features within Azure IoT Central include:

Data is encrypted in transit and at rest.

Authentication is provided either by Azure Active Directory or Microsoft Account. Two-factor authentication is

supported.

Full tenant isolation.

Device level security.

The UI shell is a modern, responsive, HTML5 browser-based application. An administrator can customize the UI of

the application by applying custom themes and modifying the help links to point to your own custom help

resources. To learn more about UI customization, see Customize the Azure IoT Central UI article.

An operator can create personalized application dashboards. You can have several dashboards that display different

data and switch between them.

Now that you've learned about the architecture of Azure IoT Central, the suggested next step is to learn about

device connectivity in Azure IoT Central.

What are application templates?
7/21/2020 • 2 minutes to read • Edit Online

Custom templates

Industry focused templates

Application versions

Application templates in Azure IoT Central are a tool to help solution builders kickstart their IoT solution

development. You can use app templates for everything from getting a feel for what is possible, to fully

customizing and your application for resale to your customers.

Application templates consist of:

Sample operator dashboards

Sample device templates

Simulated devices producing real-time data

Pre-configured rules and jobs

Rich documentation including tutorials and how-tos

You choose the application template when you create your application. You can't change the template after the

application is created.

If you want to create your application from scratch, choose one of the two custom application templates:

Custom application

Custom application (legacy)

Choose the Custom application template unless you have a specific reason to use the legacy template.

Azure IoT Central is an industry agnostic application platform. Application templates are industry focused examples

available for these industries today, with more to come in the future:

Retail

Energy

Government

Healthcare.

Connected logistics

Digital distribution center

In-store analytics - condition monitoring

In-store analytics - checkout

Smart Inventory Management

Smart meter monitoring

Solar panel monitoring

Connected waste management

Water consumption monitoring

Water quality monitoring

Continuous patient monitoring

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/iot-central/core/concepts-app-templates.md

Next steps

Templates are associated with specific IoT Central application versions. You can find the version of an application on

the About your app page from the Help link.

Now that you know what IoT Central application templates are, get started by creating an IoT Central Application.

What are device templates?
7/21/2020 • 9 minutes to read • Edit Online

Device capability models

This article applies to device developers and solution builders.

A device template in Azure IoT Central is a blueprint that defines the characteristics and behaviors of a type of

device that connects to your application. For example, the device template defines the telemetry that a device

sends so that IoT Central can create visualizations that use the correct units and data types.

A solution builder adds device templates to an IoT Central application. A device developer writes the device code

that implements the behaviors defined in the device template.

A device template includes the following sections:

A device capability model (DCM). This part of the device template defines how the device interacts with your

application. A device developer implements the behaviors defined in the DCM.

Cloud properties. This part of the device template lets the solution developer specify any device metadata to

store. Cloud properties are never synchronized with devices and only exist in the application. Cloud properties

don't affect the code that a device developer writes to implement the DCM.

Customizations. This part of the device template lets the solution developer override some of the definitions in

the DCM. Customizations are useful if the solution developer wants to refine how the application handles a

value, such as changing the display name for a property or the color used to display a telemetry value.

Customizations don't affect the code that a device developer writes to implement the DCM.

Views. This part of the device template lets the solution developer define visualizations to view data from the

device, and forms to manage and control a device. The views use the DCM, cloud properties, and

customizations. Views don't affect the code that a device developer writes to implement the DCM.

A DCM defines how a device interacts with your IoT Central application. The device developer must make sure that

the device implements the behaviors defined in the DCM so that IoT Central can monitor and manage the device. A

DCM is made up of one or more interfaces, and each interface can define a collection of telemetry types, device

properties, and commands. A solution developer can import a JSON file that defines the DCM into a device

template, or use the web UI in IoT Central to create or edit a DCM. Changes to a DCM made using the Web UI

require the device template to be versioned.

A solution developer can also export a JSON file that contains the DCM. A device developer can use this JSON

document to understand how the device should communicate with the IoT Central application.

The JSON file that defines the DCM uses the Digital Twin Definition Language (DTDL) V1. IoT Central expects the

JSON file to contain the DCM with the interfaces defined inline, rather than in separate files.

A typical IoT device is made up of:

Custom parts, which are the things that make your device unique.

Standard parts, which are things that are common to all devices.

These parts are called interfaces in a DCM. Interfaces define the details of each part your device implements.

Interfaces are reusable across DCMs.

The following example shows the outline of device capability model for an environmental sensor device with two

interfaces:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/iot-central/core/concepts-device-templates.md
https://github.com/Azure/IoTPlugandPlay/tree/master/DTDL

{
 "@id": "urn:contoso:sensor_device:1",
 "@type": "CapabilityModel",
 "displayName": "Environment Sensor Capability Model",
 "implements": [
 {
 "@type": "InterfaceInstance",
 "name": "deviceinfo",
 "schema": {
 "@id": "urn:azureiot:DeviceManagement:DeviceInformation:1",
 "@type": "Interface",
 "displayName": "Device Information",
 "@context": "http://azureiot.com/v1/contexts/IoTModel.json",
 "contents": [
 ...
]
 }
 },
 {
 "@type": "InterfaceInstance",
 "name": "sensor",
 "schema": {
 "@id": "urn:contoso:EnvironmentalSensor:1",
 "@type": "Interface",
 "displayName": "Environmental Sensor",
 "@context": "http://azureiot.com/v1/contexts/IoTModel.json",
 "contents": [
 ...
]
 }
 }
],
 "@context": "http://azureiot.com/v1/contexts/IoTModel.json"
}

Interface

A capability model has some required fields:

@id : a unique ID in the form of a simple Uniform Resource Name.

@type : declares that this object is a capability model.

@context : specifies the DTDL version used for the capability model.

implements : lists the interfaces that your device implements.

Each entry in the list of interfaces in the implements section has a:

name : the programming name of the interface.

schema : the interface the capability model implements.

An interface has some required fields:

@id : a unique ID in the form of a simple Uniform Resource Name.

@type : declares that this object is an interface.

@context : specifies the DTDL version used for the interface.

contents : lists the properties, telemetry, and commands that make up your device.

There are some optional fields you can use to add more details to the capability model, such as display name and

description.

The DTDL lets you describe the capabilities of your device. Related capabilities are grouped into interfaces.

Interfaces describe the properties, telemetry, and commands a part of your device implements:

{
 "@type": "Property",
 "displayName": "Device State",
 "description": "The state of the device. Two states online/offline are available.",
 "name": "state",
 "schema": "boolean"
},
{
 "@type": "Property",
 "displayName": "Customer Name",
 "description": "The name of the customer currently operating the device.",
 "name": "name",
 "schema": "string",
 "writable": true
},
{
 "@type": [
 "Telemetry",
 "SemanticType/Temperature"
],
 "description": "Current temperature on the device",
 "displayName": "Temperature",
 "name": "temp",
 "schema": "double",
 "unit": "Units/Temperature/fahrenheit"
},
{
 "@type": "Command",
 "name": "turnon",
 "comment": "This Commands will turn-on the LED light on the device.",
 "commandType": "synchronous"
},
{
 "@type": "Command",
 "name": "turnoff",
 "comment": "This Commands will turn-off the LED light on the device.",
 "commandType": "synchronous"
}

Properties . Properties are data fields that represent the state of your device. Use properties to represent the

durable state of the device, such as the on-off state of a coolant pump. Properties can also represent basic

device properties, such as the firmware version of the device. You can declare properties as read-only or

writable.

Telemetry . Telemetry fields represent measurements from sensors. Whenever your device takes a sensor

measurement, it should send a telemetry event containing the sensor data.

Commands . Commands represent methods that users of your device can execute on the device. For example, a

reset command or a command to switch a fan on or off.

The following example shows the environmental sensor interface definition:

This example shows two properties, a telemetry type, and two commands. A minimal field description has a:

@type to specify the type of capability: Telemetry , Property , or Command . In some cases, the type includes a

semantic type to enable IoT Central to make some assumptions about how to handle the value.

name for the telemetry value.

schema to specify the data type for the telemetry or the property. This value can be a primitive type, such as

double, integer, boolean, or string. Complex object types, arrays, and maps are also supported.

commandType to specify how the command should be handled.

Optional fields, such as display name and description, let you add more details to the interface and capabilities.

Properties

Telemetry

Commands

Cloud properties

Customizations

By default, properties are read-only. Read-only properties mean that the device reports property value updates to

your IoT Central application. Your IoT Central application can't set the value of a read-only property.

You can also mark a property as writeable on an interface. A device can receive an update to a writeable property

from your IoT Central application as well as reporting property value updates to your application.

Devices don't need to be connected to set property values. The updated values are transferred when the device

next connects to the application. This behavior applies to both read-only and writeable properties.

Don't use properties to send telemetry from your device. For example, a readonly property such as

temperatureSetting=80 should mean that the device temperature has been set to 80, and the device is trying to get

to, or stay at, this temperature.

For writable properties, the device application returns a desired state status code, version, and description to

indicate whether it received and applied the property value.

IoT Central lets you view telemetry on dashboards and charts, and use rules to trigger actions when thresholds are

reached. IoT Central uses the information in the DCM, such as data types, units and display names, to determine

how to display telemetry values.

You can use the IoT Central data export feature to stream telemetry to other destinations such as storage or Event

Hubs.

Commands are either synchronous or asynchronous. A synchronous command must execute within 30 seconds

by default, and the device must be connected when the command arrives. If the device does respond in time, or

the device isn't connected, then the command fails.

Use asynchronous commands for long-running operations. The device sends progress information using

telemetry messages. These progress messages have the following header properties:

iothub-command-name : the command name, for example UpdateFirmware .

iothub-command-request-id : the request ID generated on the server side and sent to the device in the initial call.

iothub-interface-id : The ID of the interface this command is defined on, for example

urn:example:AssetTracker:1 . iothub-interface-name : the instance name of this interface, for example

myAssetTracker .

iothub-command-statuscode : the status code returned from the device, for example 202 .

Cloud properties are part of the device template, but aren't part of the DCM. Cloud properties let the solution

developer specify any device metadata to store in the IoT Central application. Cloud properties don't affect the

code that a device developer writes to implement the DCM.

A solution developer can add cloud properties to dashboards and views alongside device properties to enable an

operator to manage the devices connected to the application. A solution developer can also use cloud properties

as part of a rule definition to make a threshold value editable by an operator.

Customizations are part of the device template, but aren't part of the DCM. Customizations let the solution

developer enhance or override some of the definitions in the DCM. For example, a solution developer can change

the display name for a telemetry type or property. A solution developer can also use customizations to add

validation such as a minimum or maximum length for a string device property.

Views

Next steps

Customizations may affect the code that a device developer writes to implement the DCM. For example, a

customization could set minimum and maximum string lengths or minimum and maximum numeric values for

telemetry.

A solution developer creates views that let operators monitor and manage connected devices. Views are part of

the device template, so a view is associated with a specific device type. A view can include:

Charts to plot telemetry.

Tiles to display read-only device properties.

Tiles to let the operator edit writable device properties.

Tiles to let the operator edit cloud properties.

Tiles to let the operator call commands, including commands that expect a payload.

Tiles to display labels, images, or markdown text.

The telemetry, properties, and commands that you can add to a view are determined by the DCM, cloud

properties, and customizations in the device template.

As a device developer, now that you've learned about device templates, a suggested next steps is to read Get

connected to Azure IoT Central to learn more about how to register devices with IoT Central and how IoT Central

secures device connections.

As a solution developer, a suggested next step is to read Define a new IoT device type in your Azure IoT Central

application to learn more about how to create a device template.

Get connected to Azure IoT Central
7/21/2020 • 15 minutes to read • Edit Online

Connect a single device

This article applies to operators and device developers.

This article describes the options for connecting your devices to an Azure IoT Central application.

Typically, you must register a device in your application before it can connect. However, IoT Central does support

scenarios where devices can connect without first being registered.

IoT Central uses the Azure IoT Hub Device Provisioning service (DPS) to manage the connection process. A

device first connects to a DPS endpoint to retrieve the information it needs to connect to your application.

Internally, your IoT Central application uses an IoT hub to handle device connectivity. Using DPS enables:

IoT Central to support onboarding and connecting devices at scale.

You to generate device credentials and configure the devices offline without registering the devices through

IoT Central UI.

You to use your own device IDs to register devices in IoT Central. Using your own device IDs simplifies

integration with existing back-office systems.

A single, consistent way to connect devices to IoT Central.

To secure the communication between a device and your application, IoT Central supports both shared access

signatures (SAS) and X.509 certificates. X.509 certificates are recommended in production environments.

This article describes the following use cases:

Connect a single device using SAS

Connect devices at scale using SAS

Connect devices at scale using X.509 certificates - the recommended approach for production environments.

Connect devices without first registering them

Connect devices that use DPS individual enrollments

Automatically associate a device with a device template

This approach is useful when you're experimenting with IoT Central or testing devices. You can use the device

connection SAS keys from your IoT Central application to connect a device to your IoT Central application. Copy

the device SAS key from the connection information for a registered device:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/iot-central/core/concepts-get-connected.md
https://docs.microsoft.com/en-us/azure/iot-dps/about-iot-dps

Connect devices at scale using SAS

Register devices in bulk

Set up your devices

NOTE

Connect devices using X.509 certificates

To learn more, see the Create and connect a Node.js client application to your Azure IoT Central application

tutorial.

To connect devices to IoT Central at scale using SAS keys, you need to register and then set up the devices:

To register a large number of devices with your IoT Central application, use a CSV file to import device IDs and

device names.

To retrieve the connection information for the imported devices, export a CSV file from your IoT Central

application. The exported CSV file includes the device IDs and the SAS keys.

Use the connection information from the export file in your device code to enable your devices to connect and

send data to IoT to your IoT Central application. You also need the DPS ID scope for your application. You can

find this value in Administration > Device connection.

To learn how you can connect devices without first registering them in IoT Central, see Connect without first registering

devices.

In a production environment, using X.509 certificates is the recommended device authentication mechanism for

IoT Central. To learn more, see Device Authentication using X.509 CA Certificates.

To connect a device with an X.509 certificate to your application:

https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-x509ca-overview

Create an enrollment group

Add and verify a root or intermediate X.509 certificate

1. Create an enrollment group that uses the Cer tificates (X .509) attestation type.

2. Add and verify an intermediate or root X.509 certificate in the enrollment group.

3. Register and connect devices that use leaf X.509 certificates generated from the root or intermediate

certificate in the enrollment group.

An enrollment group is a group of devices that share the same attestation type. The two supported attestation

types are X.509 certificates and SAS:

In an X.509 enrollment group, all the devices that connect to IoT Central use leaf X.509 certificates generated

from the root or intermediate certificate in the enrollment group.

In a SAS enrollment group, all the devices that connect to IoT Central use a SAS token generated from the

SAS token in the enrollment group.

The two default enrollment groups in every IoT Central application are SAS enrollment groups - one for IoT

devices, and one for Azure IoT Edge devices. To create an X.509 enrollment group, navigate to the Device

connection page and select + Add enrollment group:

To add and verify a root or intermediate certificate to your enrollment group:

1. Navigate to the X.509 enrollment group you just created. You have the option to add both primary and

secondary X.509 certificates. Select + Manage primar y .

2. On the Pr imar y cer tificate page , upload your primary X.509 certificate. This is your root or

intermediate certificate:

https://docs.microsoft.com/en-us/azure/iot-dps/concepts-service

3. Use the Verification code to generate a verification code in the tool you're using. Then select Verify to

upload the verification certificate.

4. When the verification is successful, you see the following confirmation:

Register and connect devices

Sample device code

Verifying certificate ownership ensures that the person uploading the certificate has the certificate's private key.

If you have a security breach or your primary certificate is set to expire, use the secondary certificate to reduce

downtime. You can continue to provision devices using the secondary certificate while you update the primary

certificate.

To bulk connect devices using X.509 certificates, first register the devices in your application by using a CSV file

to import the device IDs and device names. The device IDs should all be in lower case.

Generate X.509 leaf certificates for your devices using the root or intermediate certificate you uploaded to your

X.509 enrollment group. Use the Device ID as the CNAME value in the leaf certificates. Your device code needs

the ID scope value for your application, the device ID, and the corresponding device certificate.

The following sample from the Azure IoT Node.JS SDK shows how a Node.js device client uses an X.509 leaf

certificate and DPS to register with an IoT Central application:

https://github.com/Azure/azure-iot-sdk-node/blob/master/provisioning/device/samples/register_x509.js

// Copyright (c) Microsoft. All rights reserved.
// Licensed under the MIT license. See LICENSE file in the project root for full license information.

'use strict';

var iotHubTransport = require('azure-iot-device-mqtt').Mqtt;
var Client = require('azure-iot-device').Client;
var Message = require('azure-iot-device').Message;

var fs = require('fs');
// You can change the following using statement if you would like to try another protocol.
var Transport = require('azure-iot-provisioning-device-mqtt').Mqtt;
// var Transport = require('azure-iot-provisioning-device-amqp').Amqp;
// var Transport = require('azure-iot-provisioning-device-amqp').AmqpWs;
// var Transport = require('azure-iot-provisioning-device-http').Http;
// var Transport = require('azure-iot-provisioning-device-mqtt').MqttWs;

var X509Security = require('azure-iot-security-x509').X509Security;
var ProvisioningDeviceClient = require('azure-iot-provisioning-device').ProvisioningDeviceClient;

var provisioningHost = process.env.PROVISIONING_HOST;
var idScope = process.env.PROVISIONING_IDSCOPE;
var registrationId = process.env.PROVISIONING_REGISTRATION_ID;
var deviceCert = {
 cert: fs.readFileSync(process.env.CERTIFICATE_FILE).toString(),
 key: fs.readFileSync(process.env.KEY_FILE).toString()
};

var transport = new Transport();
var securityClient = new X509Security(registrationId, deviceCert);
var deviceClient = ProvisioningDeviceClient.create(provisioningHost, idScope, transport, securityClient);

// Register the device. Do not force a re-registration.
deviceClient.register(function(err, result) {
 if (err) {
 console.log("error registering device: " + err);
 } else {
 console.log('registration succeeded');
 console.log('assigned hub=' + result.assignedHub);
 console.log('deviceId=' + result.deviceId);
 var connectionString = 'HostName=' + result.assignedHub + ';DeviceId=' + result.deviceId + ';x509=true';
 var hubClient = Client.fromConnectionString(connectionString, iotHubTransport);
 hubClient.setOptions(deviceCert);
 hubClient.open(function(err) {
 if (err) {
 console.error('Failure opening iothub connection: ' + err.message);
 } else {
 console.log('Client connected');
 var message = new Message('Hello world');
 hubClient.sendEvent(message, function(err, res) {
 if (err) console.log('send error: ' + err.toString());
 if (res) console.log('send status: ' + res.constructor.name);
 process.exit(1);
 });
 }
 });
 }
});

For testing purposes only

For an equivalent C sample, see prov_dev_client_sample.c in the Azure IoT C Provisioning Device Client SDK.

For testing only, you can use the following utilities to generate root, intermediate, and device certificates:

Tools for the Azure IoT Device Provisioning Device SDK: a collection of Node.js tools that you can use to

https://github.com/Azure/azure-iot-sdk-c/blob/master/provisioning_client/samples/prov_dev_client_sample/prov_dev_client_sample.c
https://github.com/Azure/azure-iot-sdk-c/blob/master/provisioning_client/devdoc/using_provisioning_client.md
https://github.com/Azure/azure-iot-sdk-node/blob/master/provisioning/tools/readme.md

 Connect without registering devices

Connect devices that use SAS tokens without registering

generate and verify X.509 certificates and keys.

If you're using a DevKit device, this command-line tool generates a CA certificate that you can add to your IoT

Central application to verify the certificates.

Manage test CA certificates for samples and tutorials: a collection of PowerShell and Bash scripts to:

Create a certificate chain.

Save the certificates as .cer files to upload to your IoT Central application.

Use the verification code from the IoT Central application to generate the verification certificate.

Create leaf certificates for your devices using your device IDs as a parameter to the tool.

The previously described scenarios all require you to register devices in your application before they connect. IoT

Central also enables OEMs to mass manufacture devices that can connect without first being registered. An OEM

generates suitable device credentials, and configures the devices in the factory. When a customer turns on a

device for the first time, it connects to DPS, which then automatically connects the device to the correct IoT

Central application. An IoT Central operator must approve the device before it starts sending data to the

application.

The flow is slightly different depending on whether the devices use SAS tokens or X.509 certificates:

1. Copy the group primary key from the SAS-IoT-Devices enrollment group:

2. Use the dps-keygen tool to generate the device SAS keys. Use the group primary key from the previous

step. The device IDs must be lower-case:

https://aka.ms/iotcentral-docs-dicetool
https://github.com/Azure/azure-iot-sdk-c/blob/master/tools/CACertificates/CACertificateOverview.md
https://www.npmjs.com/package/dps-keygen

Connect devices that use X.509 certificates without registering

Individual enrollment-based device connectivity

dps-keygen -mk:<group primary key> -di:<device ID>

NOTE

3. The OEM flashes each device with a device ID, a generated device SAS key, and the application ID scope

value.

4. When you switch on a device, it first connects to DPS to retrieve its IoT Central registration information.

The device initially has a device status Unassociated on the Devices page and isn't assigned to a device

template. On the Devices page, Migrate the device to the appropriate device template. Device

provisioning is now complete, the device status is now Provisioned, and the device can start sending

data.

On the Administration > Device connection page, the Auto approve option controls whether you

need to manually approve the device before it can start sending data.

To learn how automatically associate a device with a device template, see Automatically associate a device with a

device template.

NOTE

1. Create an enrollment group and then Add and verify a root or intermediate X.509 certificate to your IoT

Central application.

2. Generate the leaf-certificates for your devices using the root or intermediate certificate you added to your

IoT Central application. Use lower-case device IDs as the CNAME in the leaf certificates.

3. The OEM flashes each device with a device ID, a generated leaf X.509 certificate, and the application ID

scope value.

4. When you switch on a device, it first connects to DPS to retrieve its IoT Central registration information.

The device initially has a device status Unassociated on the Devices page and isn't assigned to a device

template. On the Devices page, Migrate the device to the appropriate device template. Device

provisioning is now complete, the device status is now Provisioned, and the device can start sending

data.

On the Administration > Device connection page, the Auto approve option controls whether you

need to manually approve the device before it can start sending data.

To learn how automatically associate a device with a device template, see Automatically associate a device with a

device template.

For customers connecting devices that each have their own authentication credentials, use individual

enrollments. An individual enrollment is an entry for a single device that is allowed to connect. Individual

enrollments can use either X.509 leaf certificates or SAS tokens (from a physical or virtual trusted platform

module) as attestation mechanisms. The device ID (also known as registration ID) in an individual enrollment is

alphanumeric, lowercase, and may contain hyphens. For more information, see DPS individual enrollment.

https://docs.microsoft.com/en-us/azure/iot-dps/concepts-service#individual-enrollment

NOTE

Create individual enrollments

Automatically associate with a device template

When you create an individual enrollment for a device, it takes precedence over the default group enrollment options in

your IoT Central application.

IoT Central supports the following attestation mechanisms for individual enrollments:

TIP

TIP

Symmetr ic key attestation: Symmetric key attestation is a simple approach to authenticating a device

with the DPS instance. To create an individual enrollment that uses symmetric keys, open the Device

Connection page, select Individual enrollment as the connection method, and Shared access

signature (SAS) as the mechanism. Enter base64 encoded primary and secondary keys, and save your

changes. Use the ID scope, Device ID, and either the primary or secondary key to connect your device.

For testing, you can use OpenSSL to generate base64 encoded keys: openssl rand -base64 64

X.509 cer tificates: To create an individual enrollment with X.509 certificates, open the Device

Connection page, select Individual enrollment as the connection method, and Cer tificates (X .509)

as the mechanism. Device certificates used with an individual enrollment entry have a requirement that

the issuer and subject CN are set to the device ID.

For testing, you can use Tools for the Azure IoT Device Provisioning Device SDK for Node.js to generate a self-

signed certificate: node create_test_cert.js device "mytestdevice"

Trusted Platform Module (TPM) attestation: A TPM is a type of hardware security module. Using a

TPM is one of the most secure ways to connect a device. This article assumes you're using a discrete,

firmware, or integrated TPM. Software emulated TPMs are well suited for prototyping or testing, but they

don't provide the same level of security as discrete, firmware, or integrated TPMs. Don't use software

TPMs in production. To create an individual enrollment that uses a TPM, open the Device Connection

page, select Individual enrollment as the connection method, and TPM as the mechanism. Enter the

TPM endorsement key and save the device connection information.

One of the key features of IoT Central is the ability to associate device templates automatically on device

connection. Along with device credentials, devices can send a CapabilityModelId as part of the device

registration call. The CapabilityModelID is a URN that identifies the capability model the device implements.

The IoT Central application can use the CapabilityModelID to identify the device template to use and then

automatically associate the device with the device template. The discovery process works as follows:

1. If the device template is already published in the IoT Central application, the device is associated with the

device template.

2. For pre-certified IoT Plug and Play devices, if the device template is not already published in the IoT Central

application, the device template is fetched from the public repository.

The following snippets show the format of the additional payload the device must send during the DPS

registration call for automatic association to work.

This is the format for devices that use the generally available device SDK that doesn't support IoT Plug and Play:

https://github.com/Azure/azure-iot-sdk-node/tree/master/provisioning/tools
https://docs.microsoft.com/en-us/azure/iot-dps/concepts-tpm-attestation

 iotcModelId: '< this is the URN for the capability model>';

'__iot:interfaces': {
 CapabilityModelId: <this is the URN for the capability model>
}

NOTE

Device status values

Best practices

This is the format for devices using public preview device SDK that does support IoT Plug and Play:

The Auto approve option on Administration > Device connection must be enabled for devices to automatically

connect, discover the device template, and start sending data.

When a real device connects to your IoT Central application, its device status changes as follows:

1. The device status is first Registered. This status means the device is created in IoT Central, and has a

device ID. A device is registered when:

A new real device is added on the Devices page.

A set of devices is added using Impor t on the Devices page.

2. The device status changes to Provisioned when the device that connected to your IoT Central application

with valid credentials completes the provisioning step. In this step, the device uses DPS to automatically

retrieve a connection string from the IoT Hub used by your IoT Central application. The device can now

connect to IoT Central and start sending data.

3. An operator can block a device. When a device is blocked, it can't send data to your IoT Central application.

Blocked devices have a status of Blocked. An operator must reset the device before it can resume sending

data. When an operator unblocks a device the status returns to its previous value, Registered or

Provisioned.

4. If the device status is Waiting for Approval , it means the Auto approve option is disabled. An operator

must explicitly approve a device before it starts sending data. Devices not registered manually on the

Devices page, but connected with valid credentials will have the device status Waiting for Approval .

Operators can approve these devices from the Devices page using the Approve button.

5. If the device status is Unassociated, it means the device connecting to IoT Central doesn't have an

associated device template. This situation typically happens in the following scenarios:

A set of devices is added using Impor t on the Devices page without specifying the device template.

A device was registered manually on the Devices page without specifying the device template. The

device then connected with valid credentials.

The Operator can associate a device to a device template from the Devices page using the Migrate

button.

Don't persist or cache the device connection string that DPS returns when you first connect the device. To

reconnect a device, go through the standard device registration flow to get the correct device connection string.

If the device caches the connection string, the device software runs into the risk of having a stale connection

string if IoT Central updates the underlying Azure IoT hub it uses.

SDK support

SDK features and IoT Hub connectivity

A Z URE IOT C EN T RA L A Z URE IOT H UB

Telemetry Device-to-cloud messaging

Property Device twin reported properties

Property (writeable) Device twin desired and reported properties

Command Direct methods

Protocols

Security

Next steps

The Azure Device SDKs offer the easiest way for you implement your device code. The following device SDKs are

available:

Azure IoT SDK for C

Azure IoT SDK for Python

Azure IoT SDK for Node.js

Azure IoT SDK for Java

Azure IoT SDK for .NET

All device communication with IoT Hub uses the following IoT Hub connectivity options:

Device-to-cloud messaging

Device twins

The following table summarizes how Azure IoT Central device features map on to IoT Hub features:

To learn more about using the Device SDKs, see Connect an MXChip IoT DevKit device to your Azure IoT Central

application for example code.

The Device SDKs support the following network protocols for connecting to an IoT hub:

MQTT

AMQP

HTTPS

For information about these difference protocols and guidance on choosing one, see Choose a communication

protocol.

If your device can't use any of the supported protocols, you can use Azure IoT Edge to do protocol conversion.

IoT Edge supports other intelligence-on-the-edge scenarios to offload processing to the edge from the Azure IoT

Central application.

All data exchanged between devices and your Azure IoT Central is encrypted. IoT Hub authenticates every

request from a device that connects to any of the device-facing IoT Hub endpoints. To avoid exchanging

credentials over the wire, a device uses signed tokens to authenticate. For more information, see, Control access

to IoT Hub.

https://github.com/azure/azure-iot-sdk-c
https://github.com/azure/azure-iot-sdk-python
https://github.com/azure/azure-iot-sdk-node
https://github.com/azure/azure-iot-sdk-java
https://github.com/azure/azure-iot-sdk-csharp
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-messages-d2c
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-device-twins
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-protocols
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-security

If you're a device developer, some suggested next steps are to:

Learn how to Monitor device connectivity using Azure CLI

Learn how to Define a new IoT device type in your Azure IoT Central application

Read about Azure IoT Edge devices and Azure IoT Central

Connect Azure IoT Edge devices to an Azure IoT
Central application
4/21/2020 • 2 minutes to read • Edit Online

Downstream device relationships with a gateway and modules

This article applies to solution builders and device developers.

IoT Edge is made up of three components:

IoT Edge modules are containers that run Azure services, partner services, or your own code. Modules are

deployed to IoT Edge devices, and run locally on those devices.

The IoT Edge runtime runs on each IoT Edge device, and manages the modules deployed to each device.

A cloud-based interface enables you to remotely monitor and manage IoT Edge devices. IoT Central is the

cloud interface.

An Azure IoT Edge device can be a gateway device, with downstream devices connecting into the IoT Edge

device. This article shares more information about downstream device connectivity patterns.

A device template defines the capabilities of your device and IoT Edge modules. Capabilities include telemetry

the module sends, module properties, and the commands a module responds to.

Downstream devices can connect to an IoT Edge gateway device through the $edgeHub module. This IoT Edge

device becomes a transparent gateway in this scenario.

Downstream devices can also connect to an IoT Edge gateway device through a custom module. In the following

scenario, downstream devices connect through a Modbus custom module.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/iot-central/core/concepts-iot-edge.md

The following diagram shows connection to an IoT Edge gateway device through both types of modules (custom

and $edgeHub).

Finally, downstream devices can connect to an IoT Edge gateway device through multiple custom modules. The

following diagram shows downstream devices connecting through a Modbus custom module, a BLE custom

module, and the $edgeHub module.

Deployment manifests and device templates
In IoT Edge, you can deploy and manage business logic in the form of modules. IoT Edge modules are the smallest

unit of computation managed by IoT Edge, and can contain Azure services (such as Azure Stream Analytics), or

your own solution-specific code. To understand how modules are developed, deployed, and maintained, see IoT

Edge modules.

At a high level, a deployment manifest is a list of module twins that are configured with their desired properties. A

deployment manifest tells an IoT Edge device (or a group of devices) which modules to install, and how to

configure them. Deployment manifests include the desired properties for each module twin. IoT Edge devices

report back the reported properties for each module.

Use Visual Studio Code to create a deployment manifest. To learn more, see Azure IoT Edge for Visual Studio Code.

In Azure IoT Central, you can import a deployment manifest to create a device template. The following flowchart

shows a deployment manifest life cycle in IoT Central.

https://docs.microsoft.com/en-us/azure/iot-edge/iot-edge-modules
https://marketplace.visualstudio.com/items?itemName=vsciot-vscode.azure-iot-edge

IoT Plug and Play (preview) models an IoT Edge device as follows:

Every IoT Edge device template has a device capability model.

For every custom module listed in the deployment manifest, a module capability model is generated.

A relationship is established between each module capability model and a device capability model.

A module capability model implements module interfaces.

Each module interface contains telemetry, properties, and commands.

IoT Edge gateway devices

Next steps

If you selected an IoT Edge device to be a gateway device, you can add downstream relationships to device

capability models for devices you want to connect to the gateway device.

If you're a device developer, a suggested next step is to learn about gateway device types in IoT Central.

Define a new IoT device type in your Azure IoT
Central application
7/21/2020 • 12 minutes to read • Edit Online

NOTE

Create a device template from the device catalog

This article applies to solution builders and device developers.

A device template is a blueprint that defines the characteristics and behaviors of a type of device that connects to

an Azure IoT Central application.

For example, a builder can create a device template for a connected fan that has the following characteristics:

Sends temperature telemetry

Sends location property

Sends fan motor error events

Sends fan operating state

Provides a writeable fan speed property

Provides a command to restart the device

Gives you an overall view of the device via a dashboard

From this device template, an operator can create and connect real fan devices. All these fans have measurements,

properties, and commands that operators use to monitor and manage them. Operators use the device

dashboards and forms to interact with the fan devices.

Only builders and administrators can create, edit, and delete device templates. Any user can create devices on the Devices

page from existing device templates.

IoT Plug and Play (preview) enables IoT Central to integrate devices, without you writing any embedded device

code. At the core of IoT Plug and Play (preview) is a device capability model schema that describes device

capabilities. In an IoT Central application, device templates use these IoT Plug and Play (preview) device capability

models.

As a builder, you have several options for creating device templates:

Design the device template in IoT Central, and then implement its device capability model in your device code.

Import a device capability model from the Azure Certified for IoT device catalog. Then add any cloud

properties, customizations, and dashboards your IoT Central application needs.

Create a device capability model by using Visual Studio Code. Implement your device code from the model.

Manually import the device capability model into your IoT Central application, and then add any cloud

properties, customizations, and dashboards your IoT Central application needs.

Create a device capability model by using Visual Studio Code. Implement your device code from the model,

and connect your real device to your IoT Central application by using a device-first connection. IoT Central

finds and imports the device capability model from the public repository for you. You can then add any cloud

properties, customizations, and dashboards your IoT Central application needs to the device template.

As a builder, you can quickly start building out your solution by using an IoT Plug and Play (preview) certified

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/iot-central/core/howto-set-up-template.md
https://docs.microsoft.com/en-us/azure/iot-pnp/overview-iot-plug-and-play
https://aka.ms/iotdevcat

Create a device template from scratch

Manage a device template

Create a capability model

Manage a capability model

device. See the list in the Azure IoT Device Catalog. IoT Central integrates with the device catalog so you can

import a device capability model from any of these IoT Plug and Play (preview) certified devices. To create a

device template from one of these devices in IoT Central:

1. Go to the Device Templates page in your IoT Central application.

2. Select + New , and then select any of the IoT Plug and Play (preview) certified devices from the catalog. IoT

Central creates a device template based on this device capability model.

3. Add any cloud properties, customizations, or views to your device template.

4. Select Publish to make the template available for operators to view and connect devices.

A device template contains:

A device capability model that specifies the telemetry, properties, and commands that the device implements.

These capabilities are organized into one or more interfaces.

Cloud properties that define information that your IoT Central application stores about your devices. For

example, a cloud property might record the date a device was last serviced. This information is never shared

with the device.

Customizations let the builder override some of the definitions in the device capability model. For example, the

builder can override the name of a device property. Property names appear in IoT Central dashboards and

forms.

Dashboards and forms let the builder create a UI that lets operators monitor and manage the devices

connected to your application.

To create a device template in IoT Central:

1. Go to the Device Templates page in your IoT Central application.

2. Select + New > Custom.

3. Enter a name for your template, such as Environmental Sensor .

4. Press Enter . IoT Central creates an empty device template.

You can rename or delete a template from the template's home page.

After you've added a device capability model to your template, you can publish it. Until you've published the

template, you can't connect a device based on this template for your operators to see in the Devices page.

To create a device capability model, you can:

Use IoT Central to create a custom model from scratch.

Import a model from a JSON file. A device builder might have used Visual Studio Code to author a device

capability model for your application.

Select one of the devices from the Device Catalog. This option imports the device capability model that the

manufacturer has published for this device. A device capability model imported like this is automatically

published.

After you create a device capability model, you can:

https://catalog.azureiotsolutions.com/alldevices

Create an interface

Telemetry

F IEL D DESC RIP T IO N

Display Name The display name for the telemetry value used on dashboards
and forms.

Name The name of the field in the telemetry message. IoT Central
generates a value for this field from the display name, but
you can choose your own value if necessary. This field needs
to be alphanumeric.

Capability Type Telemetry.

Semantic Type The semantic type of the telemetry, such as temperature,
state, or event. The choice of semantic type determines which
of the following fields are available.

Schema The telemetry data type, such as double, string, or vector. The
available choices are determined by the semantic type.
Schema isn't available for the event and state semantic types.

Severity Only available for the event semantic type. The severities are
Error , Information, or Warning.

Add interfaces to the model. A model must have at least one interface.

Edit model metadata, such as its ID, namespace, and name.

Delete the model.

A device capability must have at least one interface. An interface is a reusable collection of capabilities.

To create an interface:

1. Go to your device capability model, and choose + Add Interface.

2. On the Select an Interface page, you can:

Create a custom interface from scratch.

Import an existing interface from a file. A device builder might have used Visual Studio Code to author

an interface for your device.

Choose one of the standard interfaces, such as the Device Information interface. Standard interfaces

specify the capabilities common to many devices. These standard interfaces are published by Azure IoT,

and can't be versioned or edited.

3. After you create an interface, choose Edit Identity to change the display name of the interface.

4. If you choose to create a custom interface from scratch, you can add your device's capabilities. Device

capabilities are telemetry, properties, and commands.

Telemetry is a stream of values sent from the device, typically from a sensor. For example, a sensor might report

the ambient temperature.

The following table shows the configuration settings for a telemetry capability:

State Values Only available for the state semantic type. Define the possible
state values, each of which has display name, name,
enumeration type, and value.

Unit A unit for the telemetry value, such as mph, %, or °C .

Display Unit A display unit for use on dashboards and forms.

Comment Any comments about the telemetry capability.

Description A description of the telemetry capability.

F IEL D DESC RIP T IO N

Properties

F IEL D DESC RIP T IO N

Display Name The display name for the property value used on dashboards
and forms.

Name The name of the property. IoT Central generates a value for
this field from the display name, but you can choose your
own value if necessary. This field needs to be alphanumeric.

Capability Type Property.

Semantic Type The semantic type of the property, such as temperature,
state, or event. The choice of semantic type determines which
of the following fields are available.

Schema The property data type, such as double, string, or vector. The
available choices are determined by the semantic type.
Schema isn't available for the event and state semantic types.

Writeable If the property isn't writeable, the device can report property
values to IoT Central. If the property is writeable, the device
can report property values to IoT Central and IoT Central can
send property updates to the device.

Severity Only available for the event semantic type. The severities are
Error , Information, or Warning.

State Values Only available for the state semantic type. Define the possible
state values, each of which has display name, name,
enumeration type, and value.

Unit A unit for the property value, such as mph, %, or °C .

Display Unit A display unit for use on dashboards and forms.

Properties represent point-in-time values. For example, a device can use a property to report the target

temperature it's trying to reach. You can set writeable properties from IoT Central.

The following table shows the configuration settings for a property capability:

Comment Any comments about the property capability.

Description A description of the property capability.

F IEL D DESC RIP T IO N

Commands

F IEL D DESC RIP T IO N

Display Name The display name for the command used on dashboards and
forms.

Name The name of the command. IoT Central generates a value for
this field from the display name, but you can choose your
own value if necessary. This field needs to be alphanumeric.

Capability Type Command.

Command SynchronousExecutionType .

Comment Any comments about the command capability.

Description A description of the command capability.

Request If enabled, a definition of the request parameter, including:
name, display name, schema, unit, and display unit.

Response If enabled, a definition of the command response, including:
name, display name, schema, unit, and display unit.

Manage an interface

Add cloud properties

You can call device commands from IoT Central. Commands optionally pass parameters to the device and receive

a response from the device. For example, you can call a command to reboot a device in 10 seconds.

The following table shows the configuration settings for a command capability:

If you haven't published the interface, you can edit the capabilities defined by the interface. After you publish the

interface, if you want to make any changes, you'll need to create a new version of the device template and version

the interface. You can make changes that don't require versioning, such as display names or units, in the

Customize section.

You can also export the interface as a JSON file if you want to reuse it in another capability model.

Use cloud properties to store information about devices in IoT Central. Cloud properties are never sent to a

device. For example, you can use cloud properties to store the name of the customer who has installed the device,

or the device's last service date.

The following table shows the configuration settings for a cloud property:

F IEL D DESC RIP T IO N

Display Name The display name for the cloud property value used on
dashboards and forms.

Name The name of the cloud property. IoT Central generates a
value for this field from the display name, but you can choose
your own value if necessary.

Semantic Type The semantic type of the property, such as temperature,
state, or event. The choice of semantic type determines which
of the following fields are available.

Schema The cloud property data type, such as double, string, or
vector. The available choices are determined by the semantic
type.

Add customizations

Generate default views

Add dashboards

Use customizations when you need to modify an imported interface or add IoT Central-specific features to a

capability. You can only customize fields that don't break interface compatibility. For example, you can:

Customize the display name and units of a capability.

Add a default color to use when the value appears on a chart.

Specify initial, minimum, and maximum values for a property.

You can't customize the capability name or capability type. If there are changes you can't make in the Customize

section, you'll need to version your device template and interface to modify the capability.

Generating default views is a quick way to visualize your important device information. You have up to three

default views generated for your device template:

Commands provides a view with device commands, and allows your operator to dispatch them to your

device.

Over view provides a view with device telemetry, displaying charts and metrics.

About provides a view with device information, displaying device properties.

After you've selected Generate default views , you see that they have been automatically added under the

Views section of your device template.

Add dashboards to a device template to enable operators to visualize a device by using charts and metrics. You

can have multiple dashboards for a device template.

To add a dashboard to a device template:

1. Go to your device template, and select Views .

2. Choose Visualizing the Device.

3. Enter a name for your dashboard in Dashboard Name.

4. Add tiles to your dashboard from the list of static, property, cloud property, telemetry, and command tiles.

Drag and drop the tiles you want to add to your dashboard.

5. To plot multiple telemetry values on a single chart tile, select the telemetry values, and then select Combine.

6. Configure each tile you add to customize how it displays data. You can do this by selecting the gear icon, or by

Configure preview device to view dashboard

Add forms

Publish a device template

Next steps

selecting Change configuration on your chart tile.

7. Arrange and resize the tiles on your dashboard.

8. Save the changes.

To view and test your dashboard, select Configure preview device. This enables you to see the dashboard as

your operator sees it after it's published. Use this option to validate that your views show the correct data. You can

choose from the following:

No preview device.

The real test device you've configured for your device template.

An existing device in your application, by using the device ID.

Add forms to a device template to enable operators to manage a device by viewing and setting properties.

Operators can only edit cloud properties and writeable device properties. You can have multiple forms for a

device template.

To add a form to a device template:

1. Go to your device template, and select Views .

2. Choose Editing Device and Cloud data.

3. Enter a name for your form in Form Name.

4. Select the number of columns to use to lay out your form.

5. Add properties to an existing section on your form, or select properties and choose Add Section. Use sections

to group properties on your form. You can add a title to a section.

6. Configure each property on the form to customize its behavior.

7. Arrange the properties on your form.

8. Save the changes.

Before you can connect a device that implements your device capability model, you must publish your device

template.

After you publish a device template, you can only make limited changes to the device capability model. To modify

an interface, you need to create and publish a new version.

To publish a device template, go to you your device template, and select Publish .

After you publish a device template, an operator can go to the Devices page, and add either real or simulated

devices that use your device template. You can continue to modify and save your device template as you're

making changes. When you want to push these changes out to the operator to view under the Devices page, you

must select Publish each time.

If you're a device developer, a suggested next step is to read about device template versioning.

Connect an MXChip IoT DevKit device to your Azure
IoT Central application
4/21/2020 • 3 minutes to read • Edit Online

Prerequisites

Get device connection details

This article applies to device developers.

This article shows you how to connect an MXChip IoT DevKit (DevKit) device to an Azure IoT Central application.

The device uses the certified IoT Plug and Play (preview) model for the DevKit device to configure its connection to

IoT Central.

In this how-to article, you:

Get the connection details from your IoT Central application.

Prepare the device and connect it to your IoT Central application.

View the telemetry and properties from the device in IoT Central.

To complete the steps in this article, you need the following resources:

A DevKit device.

An IoT Central application. You can follow the steps in Create an IoT Central application.

1. In your Azure IoT Central application, select the Device Templates tab and select + New . In the section

Use a preconfigured device template, select MXChip IoT DevKit.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/iot-central/core/howto-connect-devkit.md
https://aka.ms/iot-devkit-purchase

2. Select Next: Customize and then Create.

3. Select Devices tab. In the devices list, select MXChip IoT DevKit and select + New to create a new device

from the template.

4. In the pop-up window, enter the Device ID as SampleDevKit and Device Name as

MXChip IoT DevKit - Sample . Make sure the S imulated option is off. Then select Create.

5. Select the device you created and then select Connect. Make a note of the ID Scope, Device ID, and

Primar y key . You need these values later in this how-to article.

Prepare the device

NOTE

1. Download the latest pre-built Azure IoT Central Plug and Play (preview) firmware for the DevKit device from

GitHub.

2. Connect the DevKit device to your development machine using a USB cable. In Windows, a file explorer

window opens on a drive mapped to the storage on the DevKit device. For example, the drive might be

called AZ3166 (D:) .

3. Drag the iotc_devkit.bin file onto the drive window. When the copying is complete, the device reboots

with the new firmware.

If you see errors on the screen such as No Wi-Fi, this is because the DevKit has not yet been connected to WiFi.

4. On the DevKit, hold down button B, push and release the Reset button, and then release button B. The

device is now in access point mode. To confirm, the screen displays "IoT DevKit - AP" and the configuration

portal IP address.

5. On your computer or tablet, connect to the WiFi network name shown on the screen of the device. The WiFi

https://github.com/Azure-Samples/mxchip-iot-devkit-pnp/raw/master/bin/iotc_devkit.bin

NOTE

network starts with AZ- followed by the MAC address. When you connect to this network, you don't have

internet access. This state is expected, and you only connect to this network for a short time while you

configure the device.

6. Open your web browser and navigate to http://192.168.0.1/. The following web page displays:

On the web page, enter :

The name of your WiFi network (SSID).

Your WiFi network password.

The connection details: enter the Device ID, ID Scope, and SAS Pr imar y Key you made a note of

previously.

Currently, the IoT DevKit only can connect to 2.4 GHz Wi-Fi, 5 GHz is not supported due to hardware restrictions.

7. Choose Configure Device, the DevKit device reboots and runs the application:

The DevKit screen displays a confirmation that the application is running:

http://192.168.0.1/

View the telemetry

The DevKit first registers a new device in IoT Central application and then starts sending data.

In this step, you view the telemetry in your Azure IoT Central application.

In your IoT Central application, select Devices tab, select the device you added. In the Over view tab, you can see

the telemetry from the DevKit device:

Review the code

Next steps

To review the code or modify and compile it, go to the Code Samples.

If you're a device developer, some suggested next steps are to:

Read about Device connectivity in Azure IoT Central

Learn how to Monitor device connectivity using Azure CLI

https://docs.microsoft.com/en-us/samples/azure-samples/mxchip-iot-devkit-pnp/sample/

Connect an Azure Sphere device to your Azure IoT
Central application
5/20/2020 • 2 minutes to read • Edit Online

Prerequisites

NOTE

Create the device in IoT Central

This article applies to device developers.

This article shows you how to connect an Azure Sphere (DevKit) device to an Azure IoT Central application.

Azure Sphere is a secured, high-level application platform with built-in communication and security features for

internet-connected devices. It includes a secured, connected, crossover microcontroller unit (MCU), a custom high-

level Linux-based operating system (OS), and a cloud-based security service that provides continuous, renewable

security. For more information, see What is Azure Sphere?.

Azure Sphere development kits provide everything you need to start prototyping and developing Azure Sphere

applications. Azure IoT Central with Azure Sphere enables an end-to-end stack for an IoT Solution. Azure Sphere

provides the device support and IoT Central as a zero-code, managed IoT application platform.

In this how-to article, you:

Create an Azure Sphere device in IoT Central using the Azure Sphere DevKit device template from the library.

Prepare Azure Sphere DevKit device for Azure IoT.

Connect Azure Sphere DevKit to Azure IoT Central.

View the telemetry from the device in IoT Central.

To complete the steps in this article, you need the following resources:

An Azure IoT Central application.

Visual Studio 2019, version 16.4 or later.

An Azure Sphere MT3620 development kit from Seeed Studios.

If you don't have a physical device, then after the first step step skip to the last section to try a simulated device.

To create an Azure Sphere device in IoT Central:

1. In your Azure IoT Central application, select the Device Templates tab and select + New . In the section Use

a featured device template, select Azure Sphere Sample Device.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/iot-central/core/howto-connect-sphere.md
https://docs.microsoft.com/en-us/azure-sphere/product-overview/what-is-azure-sphere
https://azure.microsoft.com/services/azure-sphere/get-started/
https://docs.microsoft.com/en-us/azure-sphere/hardware/mt3620-reference-board-design

Prepare the device

Connect the device

View the telemetry from the device

2. In the device template, edit the view called Over view to show Temperature and Button Press .

3. Select the Editing Device and Cloud Data view type to add another view that shows the read/write

property Status LED. Drag the Status LED property to the empty, dotted rectangle on the right-side of the

form. Select Save.

Before you can connect the Azure Sphere DevKit device to IoT Central, you need to setup the device and

development environment.

To enable the sample to connect to IoT Central, you must configure an Azure IoT Central application and then

modify the sample's application manifest.

When the device is connected to IoT Central, you can see the telemetry on the dashboard.

https://github.com/Azure/azure-sphere-samples/tree/master/Samples/AzureIoT
https://aka.ms/iotcentral-sphere-git-readme

Create a simulated device

Next steps

If you don't have a physical Azure Sphere DevKit device, you can create a simulated device to try Azure IoT Central

application.

To create a simulated device:

Select Devices > Azure IoT Sphere

Select + New .

Enter a unique Device ID and a friendly Device name.

Enable the S imulated setting.

Select Create.

If you're a device developer, some suggested next steps are to:

Read about Device connectivity in Azure IoT Central

Learn how to Monitor device connectivity using Azure CLI

Connect a RuuviTag sensor to your Azure IoT Central
application
4/21/2020 • 2 minutes to read • Edit Online

Prerequisites

Add a RuuviTag device template

This article applies to solution builders and device developers.

This article describes how, as a solution builder, you can connect a RuuviTag sensor to your Microsoft Azure IoT

Central application.

What is a Ruuvi tag?

RuuviTag is an advanced open-source sensor beacon platform designed to fulfill the needs of business customers,

developers, makers, students, and hobbyists. The device is set up to work as soon as you take it out of its box and is

ready for you to deploy it where you need it. It's a Bluetooth LE beacon with an environment sensor and

accelerometer built in.

RuuviTag communicates over BLE (Bluetooth Low Energy) and requires a gateway device to talk to Azure IoT

Central. Make sure you have a gateway device, such as the Rigado Cascade 500, setup to enable a RuuviTag to

connect to IoT Central.

Please follow the instructions here if you'd like to set up a Rigado Cascade 500 gateway device.

To connect RuuviTag sensors, you need the following resources:

A RuuviTag sensor. For more information, please visit RuuviTag.

A Rigado Cascade 500 device or another BLE gateway. For more information, please visit Rigado.

An Azure IoT Central application. For more information, see the create a new application.

To onboard a RuuviTag sensor into your Azure IoT Central application instance, you need to configure a

corresponding device template within your application.

To add a RuuviTag device template:

1. Navigate to the Device Templates tab in the left pane, select + New :

The page gives you an option to Create a custom template or Use a preconfigured device template

2. Select the RuuviTag device template from the list of preconfigured device templates as shown below:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/iot-central/core/howto-connect-ruuvi.md
https://ruuvi.com/
https://www.rigado.com/

Connect a RuuviTag sensor

Create a simulated RuuviTag

3. Select Next: Customize to continue to the next step.

4. On the next screen, select Create to onboard the C500 device template into your IoT Central application.

As mentioned previously, to connect the RuuviTag with your IoT Central application, you need to set up a gateway

device. The steps below assume that you've set up a Rigado Cascade 500 gateway device.

1. Power on your Rigado Cascade 500 device and connect it to your network connection (via Ethernet or wireless)

2. Pop the cover off of the RuuviTag and pull the plastic tab to secure the connection with the battery.

3. Place the RuuviTag close to a Rigado Cascade 500 gateway that's already configured in your IoT Central

application.

4. In just a few seconds, your RuuviTag should appear in your list of devices within IoT Central.

You can now use this RuuviTag within your IoT Central application.

If you don't have a physical RuuviTag device, you can create a simulated RuuviTag sensor to use for testing within

your Azure IoT Central application.

To create a simulated RuuviTag:

1. Select Devices > RuuviTag.

2. Select + New .

3. Specify a unique Device ID and a friendly Device name.

Next Steps

4. Enable the S imulated setting.

5. Select Create.

If you're a device developer, some suggested next steps are to:

Read about Device connectivity in Azure IoT Central

Learn how to Monitor device connectivity using Azure CLI

Connect a Rigado Cascade 500 gateway device to
your Azure IoT Central application
4/21/2020 • 2 minutes to read • Edit Online

What is Cascade 500?

Prerequisites

Add a device template

This article applies to solution builders and device developers.

This article describes how, as a solution builder, you can connect a Rigado Cascade 500 gateway device to your

Microsoft Azure IoT Central application.

Cascade 500 IoT gateway is a hardware offering from Rigado that is included as part of their Cascade Edge-as-a-

Service solution. It provides commercial IoT project and product teams with flexible edge computing power, a

robust containerized application environment, and a wide variety of wireless device connectivity options, including

Bluetooth 5, LTE, & Wi-Fi.

Cascade 500 is pre-certified for Azure IoT Plug and Play (preview) allowing our solution builders to easily onboard

the device into their end to end solutions. The Cascade gateway allows you to wirelessly connect to a variety of

condition monitoring sensors that are in proximity to the gateway device. These sensors can be onboarded into IoT

Central via the gateway device.

To step through this how-to guide, you need the following resources:

A Rigado Cascade 500 device. For more information, please visit Rigado.

An Azure IoT Central application. For more information, see the create a new application.

In order to onboard a Cascade 500 gateway device into your Azure IoT Central application instance, you will need

to configure a corresponding device template within your application.

To add a Cascade 500 device template:

1. Navigate to the Device Templates tab in the left pane, select + New :

2. The page gives you an option to Create a custom template or Use a preconfigured device template

3. Select the C500 device template from the list of preconfigured device templates as shown below:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/iot-central/core/howto-connect-rigado-cascade-500.md
https://www.rigado.com/

Retrieve application connection details

4. Select Next: Customize to continue to the next step.

5. On the next screen, select Create to onboard the C500 device template into your IoT Central application.

You will now need to retrieve the Scope ID and Pr imar y key for your Azure IoT Central application in order to

connect the Cascade 500 device.

1. Navigate to Administration in the left pane and click on Device connection.

2. Make a note of the Scope ID for your IoT Central application.

3. Now click on View Keys and make a note of the Pr imar y key

Contact Rigado to connect the gateway
In order to connect the Cascade 500 device to your IoT Central application, you will need to contact Rigado and

provide them with the application connection details from the above steps.

Once the device is connected to the internet, Rigado will be able to push down a configuration update down to the

Cascade 500 gateway device through a secure channel.

This update will apply the IoT Central connection details on the Cascade 500 device and it will appear in your

devices list.

You are now ready to use your C500 device in your IoT Central application!

Next steps
If you're a device developer, some suggested next steps are to:

Read about Device connectivity in Azure IoT Central

Learn how to Monitor device connectivity using Azure CLI

Build the IoT Central device bridge to connect other
IoT clouds to IoT Central
3/24/2020 • 2 minutes to read • Edit Online

What is it and how does it work?

This topic applies to administrators.

The IoT Central device bridge is an open-source solution that connects your Sigfox, Particle, The Things Network,

and other clouds to your IoT Central app. Whether you are using asset tracking devices connected to Sigfox's Low-

Power-Wide Area Network, or using air quality monitoring devices on the Particle Device Cloud, or using soil

moisture monitoring devices on TTN, you can directly leverage the power of IoT Central using the IoT Central

device bridge. The device bridge connects other IoT clouds with IoT Central by forwarding the data your devices

send to the other clouds through to your IoT Central app. In your IoT Central app, you can build rules and run

analytics on that data, create workflows in Microsoft Flow and Azure Logic apps, export that data, and much more.

Get the IoT Central device bridge from GitHub

The IoT Central device bridge is an open-source solution in GitHub. It is ready to go with a "Deploy to Azure" button

that deploys a custom Azure Resource Manager template with several Azure resources into your Azure

subscription. The resources include:

Azure Function app

Azure Storage Account

Consumption Plan

Azure Key Vault

The function app is the critical piece of the device bridge. It receives HTTP POST requests from other IoT platforms

or any custom platforms via a simple webhook integration. We have provided examples that show how to connect

to Sigfox, Particle, and TTN clouds. You can easily extend this solution to connect to your custom IoT cloud if your

platform can send HTTP POST requests to your function app. The Function app transforms the data into a format

accepted by IoT Central and forwards it along via DPS APIs.

If your IoT Central app recognizes the device by device ID in the forwarded message, a new measurement will

appear for that device. If the device ID has never been seen by your IoT Central app, your function app will attempt

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/iot-central/core/howto-build-iotc-device-bridge.md
https://aka.ms/iotcentralgithubdevicebridge

How do I set it up?

Pricing

Next steps

to register a new device with that device ID, and it will appear as an "Unassociated device" in your IoT Central app.

The instructions are listed in detail in the README file in the GitHub repo.

The Azure resources will be hosted in your Azure subscription. You can learn more about pricing in the README

file.

Now that you've learned how to build the IoT Central device bridge, here is the suggested next step:

Manage your devices

https://aka.ms/iotcentralgithubdevicebridge

Monitor device connectivity using Azure CLI
4/21/2020 • 2 minutes to read • Edit Online

Prerequisites

Install the IoT Central extension

az extension add --name azure-iot

az --version

az extension update --name azure-iot

Using the extension

Login

az login

Get the Application ID of your IoT Central app

Monitor messages

This topic applies to device developers and solution builders.

Use the Azure CLI IoT extension to see messages your devices are sending to IoT Central and observe changes in

the device twin. You can use this tool to debug and observe device connectivity and diagnose issues of device

messages not reaching the cloud or devices not responding to twin changes.

Visit the Azure CLI extensions reference for more details

Azure CLI installed and is version 2.0.7 or higher. Check the version of your Azure CLI by running az --version

. Learn how to install and update from the Azure CLI docs

A work or school account in Azure, added as a user in an IoT Central application.

Run the following command from your command line to install:

Check the version of the extension by running:

You should see the azure-iot extension is 0.8.1 or higher. If it is not, run:

The following sections describe common commands and options that you can use when you run az iot central .

To view the full set of commands and options, pass --help to az iot central or any of its subcommands.

Start by signing into the Azure CLI.

In Administration/Application Settings , copy the Application ID. You use this value in later steps.

Monitor the messages that are being sent to your IoT Central app from your devices. The output includes all

headers and annotations.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/iot-central/core/howto-monitor-devices-azure-cli.md
https://docs.microsoft.com/en-us/cli/azure/ext/azure-iot/iot/central?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli

az iot central app monitor-events --app-id <app-id> --properties all

View device properties

az iot central device-twin show --app-id <app-id> --device-id <device-id>

Next steps

View the current read and read/write device properties for a given device.

If you're a device developer, a suggested next step is to read about Device connectivity in Azure IoT Central.

Create a new device template version
4/30/2020 • 5 minutes to read • Edit Online

NOTE

Versioning rules

This article applies to solution builders and device developers.

A device template includes a schema that describes how a device interacts with IoT Central. These interactions

include telemetry, properties, and commands. Both the device and the IoT Central application rely on a shared

understanding of this schema to exchange information. You can only make limited changes to the schema without

breaking the contract, that's why most schema changes require a new version of the device template. Versioning

the device template lets older devices continue with the schema version they understand, while newer or updated

devices use a later schema version.

The schema in a device template is defined in the device capability model (DCM) and its interfaces. Device

templates include other information, such as cloud properties, display customizations, and views. If you make

changes to those parts of the device template that don't define how the device exchanges data with IoT Central,

you don't need to version the template.

You must publish any device template changes, whether or not they require a version update, before an operator

can use it. IoT Central stops you from publishing breaking changes to a device template without first versioning

the template.

To learn more about how to create a device template see Set up and manage a device template

This section summarizes the versioning rules that apply to device templates. Both DCMs and interfaces have

version numbers. The following snippet shows the DCM for an environmental sensor device. The DCM has two

interfaces: DeviceInformation and EnvironmentalSensor . You can see the version numbers at the end of the

@id fields. To view this information in the IoT Central UI, select View identity in the device template editor.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/iot-central/core/howto-version-device-template.md

{
 "@id": "urn:contoso:sample_device:1",
 "@type": "CapabilityModel",
 "implements": [
 {
 "@id": "urn:contoso:sample_device:deviceinfo:1",
 "@type": "InterfaceInstance",
 "name": "deviceinfo",
 "schema": {
 "@id": "urn:azureiot:DeviceManagement:DeviceInformation:1",
 "@type": "Interface",
 "displayName": {
 "en": "Device Information"
 },
 "contents": [...
]
 }
 },
 {
 "@id": "urn:contoso:sample_device:sensor:1",
 "@type": "InterfaceInstance",
 "name": "sensor",
 "schema": {
 "@id": "urn:contoso:EnvironmentalSensor:2",
 "@type": "Interface",
 "displayName": {
 "en": "Environmental Sensor"
 },
 "contents": [...
]
 }
 }
],
 "displayName": {
 "en": "Environment Sensor Capability Model"
 },
 "@context": [
 "http://azureiot.com/v1/contexts/IoTModel.json"
]
}

Customize the device template without versioning

After a DCM is published, you can't remove any interfaces, even in a new version of the device template.

After a DCM is published, you can add an interface if you create a new version of the device template.

After a DCM is published, you can replace an interface with a newer version if you create a new version of the

device template. For example, if the sensor v1 device template uses the EnvironmentalSensor v1 interface, you

can create a sensor v2 device template that uses the EnvironmentalSensor v2 interface.

After an interface is published, you can't remove any of the interface contents, even in a new version of the

device template.

After an interface is published, you can add items to the contents of an interface if you create a new version of

the interface and device template. Items that you can add to the interface include telemetry, properties, and

commands.

After an interface is published, you can make non-schema changes to existing items in the interface if you

create a new version of the interface and device template. Non-schema parts of an interface item include the

display name and the semantic type. The schema parts of an interface item that you can't change are name,

capability type, and schema.

The following sections walk you through some examples of modifying device templates in IoT Central.

Version a device template

Version an interface

Migrate a device across versions

Certain elements of your device capabilities can be edited without needing to version your device template and

interfaces. For example, some of these fields include display name, semantic type, minimum value, maximum

value, decimal places, color, unit, display unit, comment, and description. To add one of these customizations:

1. Go to the Device Templates page.

2. Select the device template you wish to customize.

3. Choose the Customize tab.

4. All the capabilities defined in your device capability model are listed here. You can edit, save, and use all of

these fields without the need to version your device template. If there are fields you wish to edit that are read-

only, you must version your device template to change them. Select a field you wish to edit and enter in any

new values.

5. Click Save. Now these values override anything that was initially saved in your device template and are used

across the application.

Creating a new version of your device template creates a draft version of the template where the device capability

model can be edited. Any published interfaces remain published until they're individually versioned. To modify a

published interface, first create a new device template version.

Only version the device template when you're trying to edit a part of the device capability model that you can't edit

in the customizations section.

To version a device template:

1. Go to the Device Templates page.

2. Select the device template you're trying to version.

3. Click the Version button at the top of the page and give the template a new name. IoT Central suggests a new

name, which you can edit.

4. Click Create.

5. Now your device template is in draft mode. You can see your interfaces are still locked. Version any interfaces

you want to modify.

Versioning an interface allows you to add, update, and remove the capabilities inside the interface you had already

created.

To version an interface:

1. Go to the Device Templates page.

2. Select the device template you have in a draft mode.

3. Select the interface that is in published mode that you wish to version and edit.

4. Click the Version button at the top of the interface page.

5. Click Create.

6. Now your interface is in draft mode. You can add or edit capabilities to your interface without breaking existing

customizations and views.

You can create multiple versions of the device template. Over time, you'll have multiple connected devices using

these device templates. You can migrate devices from one version of your device template to another. The

following steps describe how to migrate a device:

Next steps

1. Go to the Device Explorer page.

2. Select the device you need to migrate to another version.

3. Choose Migrate.

4. Select the device template with the version number you want to migrate the device to and choose Migrate.

If you're an operator or solution builder, a suggested next step is to learn how to manage your devices.

If you're a device developer, a suggested next step is to read about Azure IoT Edge devices and Azure IoT Central.

Manage devices in your Azure IoT Central
application
3/24/2020 • 5 minutes to read • Edit Online

View your devices

Add a device

This article describes how, as an operator, to manage devices in your Azure IoT Central application. As an operator,

you can:

Use the Devices page to view, add, and delete devices connected to your Azure IoT Central application.

Maintain an up-to-date inventory of your devices.

Keep your device metadata up-to-date by changing the values stored in the device properties from your views.

Control the behavior of your devices by updating a setting on a specific device from your views.

To view an individual device:

1. Choose Devices on the left pane. Here you see a list of all devices and of your device templates.

2. Choose a device template.

3. In the right-hand pane of the Devices page, you see a list of devices created from that device template.

Choose an individual device to see the device details page for that device:

To add a device to your Azure IoT Central application:

1. Choose Devices on the left pane.

2. Choose the device template from which you want to create a device.

3. Choose + New .

4. Turn the S imulated toggle to On or Off . A real device is for a physical device that you connect to your

Azure IoT Central application. A simulated device has sample data generated for you by Azure IoT Central.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/iot-central/core/howto-manage-devices.md

 Import devices

5. Click Create.

6. This device now appears in your device list for this template. Select the device to see the device details page

that contains all views for the device.

To connect large number of devices to your application, you can bulk import devices from a CSV file. The CSV file

should have the following columns and headers:

IOTC_DeviceID - the device ID should be all lowercase.

IOTC_DeviceName - this column is optional.

To bulk-register devices in your application:

NOTE

1. Choose Devices on the left pane.

2. On the left panel, choose the device template for which you want to bulk create the devices.

If you don't have a device template yet then you can import devices under All devices and register them without a

template. After devices have been imported, you can then migrate them to a template.

3. Select Impor t .

4. Select the CSV file that has the list of Device IDs to be imported.

5. Device import starts once the file has been uploaded. You can track the import status in the Device

Operations panel. This panel appears automatically after the import starts or you can access it through the

bell icon in the top right-hand corner.

6. Once the import completes, a success message is shown in the Device Operations panel.

If the device import operation fails, you see an error message on the Device Operations panel. A log file capturing

all the errors is generated that you can download.

Migrating devices to a template

If you register devices by starting the import under All devices , then the devices are created without any device

template association. Devices must be associated with a template to explore the data and other details about the

device. Follow these steps to associate devices with a template:

1. Choose Devices on the left pane.

2. On the left panel, choose All devices :

3. Use the filter on the grid to determine if the value in the Device Template column is "Unassociated" for

any of your devices.

4. Select the devices you want to associate with a template:

5. Select Migrate:

 Export devices

6. Choose the template from the list of available templates and select Migrate.

7. The selected devices are associated with the device template you chose.

To connect a real device to IoT Central, you need its connection string. You can export device details in bulk to get

the information you need to create device connection strings. The export process creates a CSV file with the device

identity, device name, and keys for all the selected devices.

To bulk export devices from your application:

1. Choose Devices on the left pane.

2. On the left pane, choose the device template from which you want to export the devices.

3. Select the devices that you want to export and then select the Expor t action.

4. The export process starts. You can track the status using the Device Operations panel.

5. When the export completes, a success message is shown along with a link to download the generated file.

6. Select the Download File link to download the file to a local folder on the disk.

7. The exported CSV file contains the following columns: device ID, device name, device keys, and X509

certificate thumbprints:

IOTC_DEVICEID

IOTC_DEVICENAME

IOTC_SASKEY_PRIMARY

IOTC_SASKEY_SECONDARY

IOTC_X509THUMBPRINT_PRIMARY

IOTC_X509THUMBPRINT_SECONDARY

For more information about connection strings and connecting real devices to your IoT Central application, see

Device connectivity in Azure IoT Central.

Delete a device

Change a property

Next steps

To delete either a real or simulated device from your Azure IoT Central application:

1. Choose Devices on the left pane.

2. Choose the device template of the device you want to delete.

3. Use the filter tools to filter and search for your devices. Check the box next to the devices to delete.

4. Choose Delete. You can track the status of this deletion in your Device Operations panel.

Cloud properties are the device metadata associated with the device, such as city and serial number. Writeable

properties control the behavior of a device. In other words, they enable you to provide inputs to your device.

Device properties are set by the device and are read-only within IoT Central. You can view and update properties

on the Device Details views for your device.

1. Choose Devices on the left pane.

2. Choose the device template of the device whose properties you want to change and select the target device.

3. Choose the view that contains properties for your device, this view enables you to input values and select

Save at the top of the page. Here you see the properties your device has and their current values. Cloud

properties and writeable properties have editable fields, while device properties are read-only. For

writeable properties, you can see their sync status at the bottom of the field.

4. Modify the properties to the values you need. You can modify multiple properties at a time and update

them all at the same time.

5. Choose Save. If you saved writeable properties, the values are sent to your device. When the device

confirms the change for the writeable property, the status returns back to synced. If you saved a cloud

property, the value is updated.

Now that you've learned how to manage devices in your Azure IoT Central application, here is the suggested next

step:

How to use device groups

Configure rules
5/19/2020 • 2 minutes to read • Edit Online

Select target devices

Use multiple conditions

This article applies to operators, builders, and administrators.

Rules in IoT Central serve as a customizable response tool that trigger on actively monitored events from

connected devices. The following sections describe how rules are evaluated.

Use the target devices section to select on what kind of devices this rule will be applied. Filters allow you to further

refine what devices should be included. The filters use properties on the device template to filter down the set of

devices. Filters themselves don't trigger an action. In the following screenshot, the devices that are being targeted

are of device template type Refr igerator . The filter states that the rule should only include Refr igerators where

the Manufactured State property equals Washington.

Conditions are what rules trigger on. Currently, when you add multiple conditions to a rule, they're logically AND'd

together. In other words, all conditions must be met for the rule to evaluate as true.

In the following screenshot, the conditions check when the temperature is greater than 70° F and the humidity is

less than 10. When both of these statements are true, the rule evaluates to true and triggers an action.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/iot-central/core/howto-configure-rules.md

Use a cloud property in a value field

Use aggregate windowing

You can reference a cloud property from the device template in the Value field for a condition. The cloud property

and telemetry value must have similar types. For example, if Temperature is a double, then only cloud properties

of type double show as options in the Value drop-down.

If you choose an event type telemetry value, the Value drop-down includes the option Any . The Any option means

the rule fires when your application receives an event of that type, whatever the payload.

Rules evaluate aggregate time windows as tumbling windows. In the screenshot below, the time window is five

minutes. Every five minutes, the rule evaluates on the last five minutes of data. The data is only evaluated once in

the window to which it corresponds.

Use rules with IoT Edge modules

Next steps

A restriction applies to rules that are applied to IoT Edge modules. Rules on telemetry from different modules aren't

evaluated as valid rules. Take the following as an example. The first condition of the rule is on a temperature

telemetry from Module A. The second condition of the rule is on a humidity telemetry on Module B. Since the two

conditions are from different modules, this is an invalid set of conditions. The rule isn't valid and will throw an error

on trying to save the rule.

Now that you've learned how to configure a rule in your Azure IoT Central application, you can learn how to

Configure advanced rules using Power Automate or Azure Logic Apps.

How to use analytics to analyze device data
7/21/2020 • 4 minutes to read • Edit Online

Understanding the Analytics UI

Querying your data

This article applies to operators, builders, and administrators.

Azure IoT Central provides rich analytics capabilities to analyze historical trends and correlate various telemetries

from your devices. To get started, visit Analytics on the left pane.

Analytics user interface is made of three main components:

Data configuration panel: On the configuration panel, start by selecting the device group for which you

want to analyze the data. Next, select the telemetry that you want to analyze and select the aggregation

method for each telemetry. Split By control helps to group the data by using the device properties as

dimensions.

Time control: Time control is used to select the duration for which you want to analyze the data. You can

drag either end of the time slider to select the time span. Time control also has an Inter val size slider that

controls the bucket or the interval size used to aggregate the data.

Char t control: Chart control visualizes the data as a line chart. You can toggle the visibility of specific lines

by interacting with the chart legend.

You'll need to start by choosing a device group, and the telemetry that you want to analyze. Once you're done,

select Analyze to start visualizing your data.

Device group: A device group is a user-defined group of your devices. For example, all Refrigerators in

Oakland, or All version 2.0 wind turbines.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/iot-central/core/howto-create-analytics.md

Interacting with your data

TIP

Telemetr y: Select the telemetry that you want to analyze and explore. You can select multiple telemetries to

analyze together. Default aggregation method is set to Average for numerical and Count for string data-type

respectively. Supported aggregation methods for Numeric data types are Average, Maximum, Minimum,

Count and, Sum. Supported aggregation methods for string data type are count.

Split by: 'Split by' control helps to group the data by using the device properties as dimensions. Values of

the device and cloud properties are joined along with the telemetry as and when it is sent by the device. If

the cloud or device property has been updated, then you will see the telemetry grouped by different values

on the chart.

To view data for each device separately, select Device Id in the 'Split by' control.

Once you've queried your data, you can start visualizing it on the line chart. You can show/hide telemetry, change

the time duration, view telemetry in a data grid.

TIP

Time editor panel: By default we'll retrieve data from the past one day. You can drag either end of the time

slider to change the time duration. You can also use the calendar control to select one of the predefined time

buckets or select a custom time range. Time control also has an Inter val size slider that controls the bucket

or the interval size used to aggregate the data.

Inner date range slider tool : Use the two endpoint controls by dragging them over the time span

you want. This inner date range is constrained by the outer date range slider control.

Outer date range slider control : Use the endpoint controls to select the outer date range, which

will be available for your inner date range control.

Increase and decrease date range buttons : Increase or decrease your time span by selecting

either button for the interval you want.

Inter val-size slider : Use it to zoom in and out of intervals over the same time span. This action

provides more precise control of movement between large slices of time. You can use it to see

granular, high-resolution views of your data, even down to milliseconds. The slider's default starting

point is set as the most optimal view of the data from your selection, which balances resolution,

query speed, and granularity.

Date range picker : With this web control, you can easily select the date and time ranges you want.

You can also use the control to switch between different time zones. After you make the changes to

apply to your current workspace, select Save.

Interval size is determined dynamically based on the selected time span. Smaller time spans will enable aggregating

the data into very granular intervals of up to a few seconds.

Char t Legend: Chart legend shows the selected telemetry on the chart. You can hover over each item on

the legend to bring it into focus on the chart. When using 'Split By', the telemetry is grouped by the

respective values of the selected dimension. You can toggle the visibility of each specific telemetry or the

whole group by clicking on the group name.

Y-axis format control: y-axis mode cycles through the available y-axis view options. This control is

available only when different telemetries are being visualized. You can set the y-axis by choosing from one

of three modes:

Stacked: A graph for every telemetry is stacked and each of the graphs have their own y-axis. This

mode is set as default.

Shared: A graph for every telemetry is plotted against the same y-axis.

Overlap: Use it to stack multiple lines on the same y-axis, with the y-axis data changing based on the

selected line.

Zoom control: Zoom lets you drill further into your data. If you find a time period you'd like to focus on

within your result set, use your mouse pointer to grab the area and then drag it to the endpoint of your

choice. Then right click on the selected area and click Zoom.

Under the ellipsis, there are more chart controls to interact with the data:

Display Grid: Your results are available in a table format, enabling you to view the specific value for each

data point.

Download as CSV: Your results are available to export as a comma-separated values (CSV) file. The CSV

file contains data for each device. Results are exported by using the interval and timeframe specified.

Drop a Marker : The 'Drop Marker' control provides a way to anchor certain data points on the chart. It is

useful when you are trying to compare data for multiple lines across different time periods.

Configure the application dashboard
7/21/2020 • 4 minutes to read • Edit Online

TIP

Add tiles

The Dashboard is the first page you see when you connect to an IoT Central application. If you create your

application from one of the industry-focused application templates, your application has a pre-defined dashboard

to start. If you create your application from a custom application template, your dashboard shows some tips to get

started.

Users can create multiple dashboards in addition to the default application dashboard. These dashboards can be personal to

the user only, or shared across all users of the application.

The following screenshot shows the dashboard in an application created from the Custom application template.

To customize the current dashboard, select Edit, to add a custom personal or shared dashboard, select New :

After you select Edit or New , the dashboard is in edit mode. You can use the tools in the Edit dashboard panel to

add tiles to the dashboard, and customize and remove tiles on the dashboard itself. For example, to add a

Telemetr y tile to show current temperature reported by one or more devices:

1. In the Edit dashboard panel, select a Device group.

2. Select one or more devices in the Devices dropdown to show on the tile. You now see the available telemetry,

properties, and commands from the devices.

3. Select Temperature in the telemetry section, and then select Add tile. The tile now shows on the dashboard

where you can change the visualization, resize the tile, and configure it:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/iot-central/core/howto-add-tiles-to-your-dashboard.md

Customize tiles

Tile types

T IL E DESC RIP T IO N

Markdown Markdown tiles are clickable tiles that display a heading and
description text formatted using markdown. The URL can be a
relative link to another page in the application, or an absolute
link to an external site.

Image Image tiles display a custom image and can be clickable. The
URL can be a relative link to another page in the application,
or an absolute link to an external site.

Label Label tiles display custom text on a dashboard. You can
choose the size of the text. Use a label tile to add relevant
information to the dashboard such descriptions, contact
details, or help.

Count Count tiles display the number of devices in a device group.

When you've finished adding and customizing tiles on the dashboard, select Save.

To customize a tile on the dashboard, the dashboard must be in edit mode. The available customization options

depend on the tile type:

The ruler icon on a tile lets you change the visualization. Visualizations include line charts, last known

values, and heat maps.

The square icon lets you resize the tile.

The gear icon lets you configure the visualization. For example, for a line chart visualization you can choose

to show the legend and axes, and choose the time range to plot.

The following table describes the different types of tile you can add to a dashboard:

Map Map tiles display the location of one or more devices on a
map. You can also display up to 100 points of a device's
location history. For example, you can display sampled route
of where a device has been on the past week.

KPI KPI tiles display aggregate telemetry values for one or more
devices over a time period. For example, you can use it to
show the maximum temperature and pressure reached for
one or more devices during the last hour.

Line chart Line chart tiles plot one or more aggregate telemetry values
for one or more devices for a time period. For example, you
can display a line chart to plot the average temperature and
pressure of one or more devices for the last hour.

Bar chart Bar chart tiles plot one or more aggregate telemetry values
for one or more devices for a time period. For example, you
can display a bar chart to show the average temperature and
pressure of one or more devices over the last hour.

Pie chart Pie chart tiles display one or more aggregate telemetry values
for one or more devices for a time period.

Heat map Heat map tiles display information about one or more devices,
represented as colors.

Last Known Value Last known value tiles display the latest telemetry values for
one or more devices. For example, you can use this tile to
display the most recent temperature, pressure, and humidity
values for one or more devices.

Event History Event History tiles display the events for a device over a time
period. For example, you can use it to show all the valve open
and close events for one or more devices during the last hour.

Property Property tiles display the current value for properties and
cloud properties of one or more devices. For example, you can
use this tile to display device properties such as the
manufacturer or firmware version for a device.

T IL E DESC RIP T IO N

Customizing visualizations

Currently, you can add up to 10 devices to tiles that support multiple devices.

For tiles that display aggregate values, select the gear icon next to the telemetry type in the Configure char t

panel to choose the aggregation. You can choose from average, sum, maximum, minimum, and count.

For line charts, bar charts, and pie charts, you can customize the color of the different telemetry values. Select the

palette icon next to the telemetry you want to customize:

Next steps

For tiles that show string properties or telemetry values, you can choose how to display the text. For example, if

the device stores a URL in a string property, you can display it as a clickable link. If the URL references an image,

you can render the image in a last known value or property tile. To change how a string displays, in the tile

configuration select the gear icon next to the telemetry type or property:

Now that you've learned how to configure your Azure IoT Central default application dashboard, you can Learn

how to create a personal dashboard.

Create and manage multiple dashboards
5/19/2020 • 2 minutes to read • Edit Online

Create dashboard

The Dashboard is the page that loads when you first navigate to your application. An builder in your application

defines the default application dashboard for all users. You can additionally create your own, personalized

application dashboard. You can have several dashboards that display different data and switch between them.

If you are an admin of the application, you also can create up to 10 application level dashboards to share with

other users of the application. Only admins have the ability to create, edit, and delete application level

dashboards.

The following screenshot shows the dashboard in an application created from the Custom Application template.

You can replace the default application dashboard with a personal dashboard, or if you are an admin, another

application level dashboard. To do so, select + New at the top left of the page.

Selecting + New opens the dashboard editor. In the editor, you can give your dashboard a name and chose items

from the library. The library contains the tiles and dashboard primitives you can use to customize the dashboard.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/iot-central/core/howto-create-personal-dashboards.md

If you are an admin of the application, you will be given the option to create a personal level dashboard or an

application level dashboard. If you create a personal level dashboard, only you will be able to see it. If you create

an application level dashboard, every user of the application will be able to see it. After entering a title and

selecting the type of dashboard you want to create, you can save and add tiles later. Or if you are ready now and

have added a device template and device instance, you can go ahead and create your first tile.

For example, you can add a Telemetr y tile for the current temperature of the device. To do so:

1. Select a Device template

2. Select a device from Devices for the device you want to see on a dashboard tile. Then you will see a list of the

device's properties that can be used on the tile.

3. To create the tile on the dashboard, click on Temperature and drag it to the dashboard area. You can also click

the checkbox next to Temperature and click Add tile. The following screenshot shows selecting a Device

Template and device then creating a Temperature Telemetry tile on the dashboard.

4. Select Save in the top left to save your changes to the dashboard.

Now when you view your personal dashboard, you see the new tile with the Temperature setting for the device:

Manage dashboards

You can explore other tile types in the library to discover how to further customize your personal dashboards.

To learn more about how to use tiles in Azure IoT Central, see Add Tiles to your Dashboard.

You can have several personal dashboards and switch between them or choose from one of the default application

dashboards:

Next steps

You can edit your personal dashboards and delete any dashboards you no longer need. If you are an admin, you

also have the ability to edit or delete application level dashboards as well.

Now that you've learned how to create and manage personal dashboards, you can Learn how to manage your

application preferences.

Create and run a job in your Azure IoT Central
application
7/21/2020 • 4 minutes to read • Edit Online

Create and run a job

You can use Microsoft Azure IoT Central to manage your connected devices at scale using jobs. Jobs let you do

bulk updates to device properties and run commands. This article shows you how to get started using jobs in your

own application.

This section shows you how to create and run a job. It shows you how to set the light threshold for a group of

logistic gateway devices.

1. Navigate to Jobs from the left pane.

2. Select + New to create a new job:

3. Enter a name and description to identify the job you're creating.

4. Select the target device group you want your job to apply to. You can see how many devices your job

configuration applies to in the Summar y section.

5. Next, choose either Cloud proper ty , Proper ty , or Command as the type of job to configure. To set up a

Proper ty job configuration, select a property and set its new value. To set up a Command, choose the

command to run. A property job can set multiple properties:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/iot-central/core/howto-run-a-job.md

NOTE

6. After creating your job, choose Run or Save. The job now appears on your main Jobs page. On this page,

you can see your currently running job and the history of any previously run or saved jobs. Your saved job

can be opened again at any time to continue editing it or to run it:

You can view up 30 days of history for your previously run jobs.

7. To get an overview of your job, select the job to view from the list. This overview contains the job details,

devices, and device status values. From this overview, you can also select Download Job Details to

download a CSV file of your job details, including the devices and their status values. This information can

be useful for troubleshooting:

Manage jobs

Copy a job

To stop one of your running jobs, open it and select Stop. The job status changes to reflect the job is stopped. The

Summar y section shows which devices have completed, failed, or are still pending.

To run a job that's currently stopped, select it, and then select Run. The job status changes to reflect the job is now

running again. The Summar y section continues to update with the latest progress.

To copy one of your existing jobs, select it on the Jobs page and select Copy . A copy of the job configuration

opens for you to edit, and Copy is appended to the job name. You can save or run the new job:

View job status

STAT US M ESSA GE STAT US M EA N IN G

Completed This job has been executed on all devices.

Failed This job has failed and not fully executed on devices.

Pending This job hasn't yet begun executing on devices.

Running This job is currently executing on devices.

Stopped This job has been manually stopped by a user.

STAT US M ESSA GE STAT US M EA N IN G

Succeeded The number of devices that the job successfully executed on.

Failed The number of devices that the job has failed to execute on.

View the device status values

STAT US M ESSA GE STAT US M EA N IN G

Completed The job executed on this device.

After a job is created, the Status column updates with the latest status message of the job. The following table lists

the possible status values:

The status message is followed by an overview of the devices in the job. The following table lists the possible

device status values:

To view the status of the job and all the affected devices, open the job. Next to each device name, you see one of

the following status messages:

Failed The job failed to execute on this device. The error message
shows more information.

Pending The job hasn't yet executed on this device.

STAT US M ESSA GE STAT US M EA N IN G

Filter the list of devices

Customize columns in the device list

To download a CSV file that includes the job details and the list of devices and their status values, select

Download.

You can filter the device list on the job details page by selecting the filter icon. You can filter on the Device ID or

Status fields:

You can choose additional columns to display in the device list by selecting the column options icon:

You see a dialog that lets you choose the columns to display in the device list. Select the columns you want to

display, select the right arrow icon, and the select OK. To select all the available columns, check Select all :

Rerun jobs

The selected columns display on the device list:

Selected columns are persisted across a user session or across user sessions that have access to the application.

You can rerun a job that has failed devices. Select Rerun:

NOTE

NOTE

Next steps

Enter a job name and description, then select Rerun job. A new job is submitted to retry the action on failed

devices:

You can't execute more than five jobs at the same time from an IoT Central application.

When a job is complete and you delete a device that's in the job's device list, the device entry shows as deleted in the device

name and device details link isn't available for the deleted device.

Now that you've learned how to create jobs in your Azure IoT Central application, here are some next steps:

Manage your devices

Version your device template

Export IoT data to destinations in Azure
7/21/2020 • 14 minutes to read • Edit Online

NOTE

Prerequisites

Set up export destination

Create Event Hubs namespace

Create Service Bus namespace

This topic applies to administrators.

This article describes how to use the data export feature in Azure IoT Central. This feature lets you export your

data continuously to Azure Event Hubs , Azure Ser vice Bus , or Azure Blob storage instances. Data export

uses the JSON format and can include telemetry, device information, and device template information. Use the

exported data for :

Warm-path insights and analytics. This option includes triggering custom rules in Azure Stream Analytics,

triggering custom workflows in Azure Logic Apps, or passing it through Azure Functions to be transformed.

Cold-path analytics such as training models in Azure Machine Learning or long-term trend analysis in

Microsoft Power BI.

When you turn on data export, you get only the data from that moment onward. Currently, data can't be retrieved for a

time when data export was off. To retain more historical data, turn on data export early.

You must be an administrator in your IoT Central application, or have Data export permissions.

Your export destination must exist before you configure your data export.

If you don't have an existing Event Hubs namespace to export to, follow these steps:

1. Create a new Event Hubs namespace in the Azure portal. You can learn more in Azure Event Hubs docs.

2. Choose a subscription. You can export data to other subscriptions that aren't in the same subscription as

your IoT Central application. You connect using a connection string in this case.

3. Create an event hub in your Event Hubs namespace. Go to your namespace, and select + Event Hub at the

top to create an event hub instance.

If you don't have an existing Service Bus namespace to export to, follow these steps:

1. Create a new Service Bus namespace in the Azure portal. You can learn more in Azure Service Bus docs.

2. Choose a subscription. You can export data to other subscriptions that aren't in the same subscription as

your IoT Central application. You connect using a connection string in this case.

3. To create a queue or topic to export to, go to your Service Bus namespace, and select + Queue or + Topic.

When you choose Service Bus as an export destination, the queues and topics must not have Sessions or

Duplicate Detection enabled. If either of those options are enabled, some messages won't arrive in your queue or

topic.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/iot-central/core/howto-export-data.md
https://ms.portal.azure.com/#create/Microsoft.EventHub
https://docs.microsoft.com/en-us/azure/event-hubs/event-hubs-create
https://ms.portal.azure.com/#create/Microsoft.ServiceBus.1.0.5
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-create-namespace-portal

Create storage account

Set up data export

If you don't have an existing Azure storage account to export to, follow these steps:

P ERF O RM A N C E T IER A C C O UN T T Y P E

Standard General Purpose V2

Standard General Purpose V1

Standard Blob storage

Premium Block Blob storage

1. Create a new storage account in the Azure portal. You can learn more about creating new Azure Blob

storage accounts or Azure Data Lake Storage v2 storage accounts. Data export can only write data to

storage accounts that support block blobs. The following list shows the known compatible storage account

types:

2. Create a container in your storage account. Go to your storage account. Under Blob Ser vice , select

Browse Blobs . Select + Container at the top to create a new container.

Now that you have a destination to export data to, follow these steps to set up data export.

TIP

1. Sign in to your IoT Central application.

2. In the left pane, select Data expor t .

If you don't see Data expor t in the left pane, then you don't have permissions to configure data export in your

app. Talk to an administrator to set up data export.

3. Select the + New button. Choose one of Azure Blob Storage, Azure Event Hubs , Azure Ser vice Bus

Queue, or Azure Ser vice Bus Topic as the destination of your export. The maximum number of exports

per application is five.

4. Enter a name for the export. In the drop-down list box, select your namespace, or Enter a connection

str ing .

You only see storage accounts, Event Hubs namespaces, and Service Bus namespaces in the same

subscription as your IoT Central application. If you want to export to a destination outside of this

subscription, choose Enter a connection str ing and see step 6.

For apps created using the free pricing plan, the only way to configure data export is through a

connection string. Apps on the free pricing plan don't have an associated Azure subscription.

https://ms.portal.azure.com/#create/Microsoft.StorageAccount-ARM
https://aka.ms/blobdocscreatestorageaccount
file:///T:/seec/scjw/azure/storage/blobs/data-lake-storage-quickstart-create-account.html

Export contents and format

5. Choose an event hub, queue, topic, or container from the drop-down list box.

6. (Optional) If you chose Enter a connection str ing , a new box appears for you to paste your connection

string. To get the connection string for your :

Event Hubs or Service Bus, go to the namespace in the Azure portal:

Storage account, go to the storage account in the Azure portal:

To use a connection string for the entire namespace:

To use connection string for a specific event hub instance or Service Bus queue or topic, go to

Entities > Event Hubs or Entities > Queues or Entities > Topics . Choose a specific instance,

and follow the same steps above to get a connection string.

a. Under Settings , select Shared Access Policies

b. Create a new key or choose an existing key that has Send permissions.

c. Copy either the primary or secondary connection string

Only connection strings for the entire storage account are supported. Connection strings scoped

to a single container are not supported.

a. Under Settings , select Access keys

b. Copy either the key1 connection string or the key2 connection string

Paste in the connection string. Type in the instance or container name, keeping in mind this is case-

sensitive.

7. Under Data to expor t , choose the types of data to export by setting the type to On.

8. To turn on data export, make sure the Enabled toggle is On. Select Save.

9. After a few minutes, your data appears in your chosen destination.

Telemetry

NOTE

{
 "temp":81.129693132351775,
 "humid":59.488071477541247,
 "EventProcessedUtcTime":"2020-04-07T09:41:15.2877981Z",
 "PartitionId":0,
 "EventEnqueuedUtcTime":"2020-04-07T09:38:32.7380000Z"
}

Exported telemetry data contains the entirety of the message your devices sent to IoT Central, not just the

telemetry values themselves. Exported devices data contains changes to properties and metadata of all devices,

and exported device templates contains changes to all device templates.

For Event Hubs and Service Bus, data is exported in near-realtime. The data is in the body property and is in JSON

format. See below for examples.

For Blob storage, data is exported once per minute, with each file containing the batch of changes since the last

exported file. Exported data is placed in three folders in JSON format. The default paths in your storage account

are:

Telemetry: {container}/{app-id}/telemetry/{YYYY}/{MM}/{dd}/{hh}/{mm}/{filename}

Devices: {container}/{app-id}/devices/{YYYY}/{MM}/{dd}/{hh}/{mm}/{filename}

Device templates: {container}/{app-id}/deviceTemplates/{YYYY}/{MM}/{dd}/{hh}/{mm}/{filename}

To browse the exported files in the Azure portal, navigate to the file and select the Edit blob tab.

For Event Hubs and Service Bus, IoT Central exports a new message quickly after it receives the message from a

device. Each exported message contains the full message the device sent in the body property in JSON format.

For Blob storage, messages are batched and exported once per minute. The exported files use the same format as

the message files exported by IoT Hub message routing to blob storage.

For Blob storage, ensure that your devices are sending messages that have contentType: application/JSON and

contentEncoding:utf-8 (or utf-16 , utf-32). See the IoT Hub documentation for an example.

The device that sent the telemetry is represented by the device ID (see the following sections). To get the names of

the devices, export device data and correlate each message by using the connectionDeviceId that matches the

deviceId of the device message.

The following example shows a message received from an event hub or Service Bus queue or topic:

This message doesn't include the device ID of the sending device.

To retrieve the device ID from the message data in an Azure Stream Analytics query, use the

GetMetadataPropertyValue function. For an example, see the query in Extend Azure IoT Central with custom rules

using Stream Analytics, Azure Functions, and SendGrid.

To retrieve the device ID in an Azure Databricks or Apache Spark workspace, use systemProperties. For an

example, see the Databricks workspace in Extend Azure IoT Central with custom analytics using Azure Databricks.

The following example shows a record exported to blob storage:

https://docs.microsoft.com/en-us/azure/iot-hub/tutorial-routing
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-routing-query-syntax
https://docs.microsoft.com/en-us/stream-analytics-query/getmetadatapropertyvalue
https://github.com/Azure/azure-event-hubs-spark/blob/master/docs/structured-streaming-eventhubs-integration.md

{
 "EnqueuedTimeUtc":"2019-09-26T17:46:09.8870000Z",
 "Properties":{

 },
 "SystemProperties":{
 "connectionDeviceId":"<deviceid>",
 "connectionAuthMethod":"
{\"scope\":\"device\",\"type\":\"sas\",\"issuer\":\"iothub\",\"acceptingIpFilterRule\":null}",
 "connectionDeviceGenerationId":"637051167384630591",
 "contentType":"application/json",
 "contentEncoding":"utf-8",
 "enqueuedTime":"2019-09-26T17:46:09.8870000Z"
 },
 "Body":{
 "temp":49.91322758395974,
 "humid":49.61214852573155,
 "pm25":25.87332214661367
 }
}

Devices
Each message or record in a snapshot represents one or more changes to a device and its device and cloud

properties since the last exported message. The message includes the:

id of the device in IoT Central

displayName of the device

Device template ID in instanceOf

simulated flag, true if the device is a simulated device

provisioned flag, true if the device has been provisioned

approved flag, true if the device has been approved to send data

Property values

properties including device and cloud properties values

Deleted devices aren't exported. Currently, there are no indicators in exported messages for deleted devices.

For Event Hubs and Service Bus, IoT Central sends messages containing device data to your event hub or Service

Bus queue or topic in near real time.

For Blob storage, a new snapshot containing all the changes since the last one written is exported once per

minute.

The following example message shows information about devices and properties data in an event hub or Service

Bus queue or topic:

{
 "body":{
 "id": "<device Id>",
 "etag": "<etag>",
 "displayName": "Sensor 1",
 "instanceOf": "<device template Id>",
 "simulated": false,
 "provisioned": true,
 "approved": true,
 "properties": {
 "sensorComponent": {
 "setTemp": "30",
 "fwVersion": "2.0.1",
 "status": { "first": "first", "second": "second" },
 "$metadata": {
 "setTemp": {
 "desiredValue": "30",
 "desiredVersion": 3,
 "desiredTimestamp": "2020-02-01T17:15:08.9284049Z",
 "ackVersion": 3
 },
 "fwVersion": { "ackVersion": 3 },
 "status": {
 "desiredValue": {
 "first": "first",
 "second": "second"
 },
 "desiredVersion": 2,
 "desiredTimestamp": "2020-02-01T17:15:08.9284049Z",
 "ackVersion": 2
 }
 },

 }
 },
 "installDate": { "installDate": "2020-02-01" }
},
 "annotations":{
 "iotcentral-message-source":"devices",
 "x-opt-partition-key":"<partitionKey>",
 "x-opt-sequence-number":39740,
 "x-opt-offset":"<offset>",
 "x-opt-enqueued-time":1539274959654
 },
 "partitionKey":"<partitionKey>",
 "sequenceNumber":39740,
 "enqueuedTimeUtc":"2020-02-01T18:14:49.3820326Z",
 "offset":"<offset>"
}

This snapshot is an example message that shows devices and properties data in Blob storage. Exported files

contain a single line per record.

{
 "id": "<device Id>",
 "etag": "<etag>",
 "displayName": "Sensor 1",
 "instanceOf": "<device template Id>",
 "simulated": false,
 "provisioned": true,
 "approved": true,
 "properties": {
 "sensorComponent": {
 "setTemp": "30",
 "fwVersion": "2.0.1",
 "status": { "first": "first", "second": "second" },
 "$metadata": {
 "setTemp": {
 "desiredValue": "30",
 "desiredVersion": 3,
 "desiredTimestamp": "2020-02-01T17:15:08.9284049Z",
 "ackVersion": 3
 },
 "fwVersion": { "ackVersion": 3 },
 "status": {
 "desiredValue": {
 "first": "first",
 "second": "second"
 },
 "desiredVersion": 2,
 "desiredTimestamp": "2020-02-01T17:15:08.9284049Z",
 "ackVersion": 2
 }
 },

 }
 },
 "installDate": { "installDate": "2020-02-01" }
}

Device templates

{
 "body":{
 "id": "<device template id>",

Each message or snapshot record represents one or more changes to a published device template since the last

exported message. Information sent in each message or record includes:

id of the device template that matches the instanceOf of the devices stream above

displayName of the device template

The device capabilityModel including its interfaces , and the telemetry, properties, and commands definitions

cloudProperties definitions

Overrides and initial values, inline with the capabilityModel

Deleted device templates aren't exported. Currently, there are no indicators in exported messages for deleted

device templates.

For Event Hubs and Service Bus, IoT Central sends messages containing device template data to your event hub or

Service Bus queue or topic in near real time.

For Blob storage, a new snapshot containing all the changes since the last one written is exported once per

minute.

This example shows a message about device templates data in event hub or Service Bus queue or topic:

 "id": "<device template id>",
 "etag": "<etag>",
 "types": ["DeviceModel"],
 "displayName": "Sensor template",
 "capabilityModel": {
 "@id": "<capability model id>",
 "@type": ["CapabilityModel"],
 "contents": [],
 "implements": [
 {
 "@id": "<component Id>",
 "@type": ["InterfaceInstance"],
 "name": "sensorComponent",
 "schema": {
 "@id": "<interface Id>",
 "@type": ["Interface"],
 "displayName": "Sensor interface",
 "contents": [
 {
 "@id": "<id>",
 "@type": ["Telemetry"],
 "displayName": "Humidity",
 "name": "humidity",
 "schema": "double"
 },
 {
 "@id": "<id>",
 "@type": ["Telemetry", "SemanticType/Event"],
 "displayName": "Error event",
 "name": "error",
 "schema": "integer"
 },
 {
 "@id": "<id>",
 "@type": ["Property"],
 "displayName": "Set temperature",
 "name": "setTemp",
 "writable": true,
 "schema": "integer",
 "unit": "Units/Temperature/fahrenheit",
 "initialValue": "30"
 },
 {
 "@id": "<id>",
 "@type": ["Property"],
 "displayName": "Firmware version read only",
 "name": "fwversion",
 "schema": "string"
 },
 {
 "@id": "<id>",
 "@type": ["Property"],
 "displayName": "Display status",
 "name": "status",
 "writable": true,
 "schema": {
 "@id": "urn:testInterface:status:obj:ka8iw8wka:1",
 "@type": ["Object"]
 }
 },
 {
 "@id": "<id>",
 "@type": ["Command"],
 "commandType": "synchronous",
 "request": {
 "@id": "<id>",
 "@type": ["SchemaField"],
 "displayName": "Configuration",
 "name": "config",

 "schema": "string"
 },
 "response": {
 "@id": "<id>",
 "@type": ["SchemaField"],
 "displayName": "Response",
 "name": "response",
 "schema": "string"
 },
 "displayName": "Configure sensor",
 "name": "sensorConfig"
 }
]
 }
 }
],
 "displayName": "Sensor capability model"
 },
 "solutionModel": {
 "@id": "<id>",
 "@type": ["SolutionModel"],
 "cloudProperties": [
 {
 "@id": "<id>",
 "@type": ["CloudProperty"],
 "displayName": "Install date",
 "name": "installDate",
 "schema": "dateTime",
 "valueDetail": {
 "@id": "<id>",
 "@type": ["ValueDetail/DateTimeValueDetail"]
 }
 }
]
 }
 },
 "annotations":{
 "iotcentral-message-source":"deviceTemplates",
 "x-opt-partition-key":"<partitionKey>",
 "x-opt-sequence-number":25315,
 "x-opt-offset":"<offset>",
 "x-opt-enqueued-time":1539274985085
 },
 "partitionKey":"<partitionKey>",
 "sequenceNumber":25315,
 "enqueuedTimeUtc":"2019-10-02T16:23:05.085Z",
 "offset":"<offset>"
 }
}

{
 "id": "<device template id>",
 "etag": "<etag>",
 "types": ["DeviceModel"],
 "displayName": "Sensor template",
 "capabilityModel": {
 "@id": "<capability model id>",
 "@type": ["CapabilityModel"],
 "contents": [],
 "implements": [
 {
 "@id": "<component Id>",
 "@type": ["InterfaceInstance"],
 "name": "Sensor component",

This example snapshot shows a message that contains device and properties data in Blob storage. Exported files

contain a single line per record.

 "name": "Sensor component",
 "schema": {
 "@id": "<interface Id>",
 "@type": ["Interface"],
 "displayName": "Sensor interface",
 "contents": [
 {
 "@id": "<id>",
 "@type": ["Telemetry"],
 "displayName": "Humidity",
 "name": "humidity",
 "schema": "double"
 },
 {
 "@id": "<id>",
 "@type": ["Telemetry", "SemanticType/Event"],
 "displayName": "Error event",
 "name": "error",
 "schema": "integer"
 },
 {
 "@id": "<id>",
 "@type": ["Property"],
 "displayName": "Set temperature",
 "name": "setTemp",
 "writable": true,
 "schema": "integer",
 "unit": "Units/Temperature/fahrenheit",
 "initialValue": "30"
 },
 {
 "@id": "<id>",
 "@type": ["Property"],
 "displayName": "Firmware version read only",
 "name": "fwversion",
 "schema": "string"
 },
 {
 "@id": "<id>",
 "@type": ["Property"],
 "displayName": "Display status",
 "name": "status",
 "writable": true,
 "schema": {
 "@id": "urn:testInterface:status:obj:ka8iw8wka:1",
 "@type": ["Object"]
 }
 },
 {
 "@id": "<id>",
 "@type": ["Command"],
 "commandType": "synchronous",
 "request": {
 "@id": "<id>",
 "@type": ["SchemaField"],
 "displayName": "Configuration",
 "name": "config",
 "schema": "string"
 },
 "response": {
 "@id": "<id>",
 "@type": ["SchemaField"],
 "displayName": "Response",
 "name": "response",
 "schema": "string"
 },
 "displayName": "Configure sensor",
 "name": "sensorconfig"
 }
]

]
 }
 }
],
 "displayName": "Sensor capability model"
 },
 "solutionModel": {
 "@id": "<id>",
 "@type": ["SolutionModel"],
 "cloudProperties": [
 {
 "@id": "<id>",
 "@type": ["CloudProperty"],
 "displayName": "Install date",
 "name": "installDate",
 "schema": "dateTime",
 "valueDetail": {
 "@id": "<id>",
 "@type": ["ValueDetail/DateTimeValueDetail"]
 }
 }
]
 }
 }

Data format change notice

NOTE

Devices (format deprecated as of 3 February 2020)

The telemetry stream data format is unaffected by this change. Only the devices and device templates streams of data are

affected.

If you have an existing data export in your preview application with the Devices and Device templates streams

turned on, update your export by 30 June 2020 . This requirement applies to exports to Azure Blob storage,

Azure Event Hubs, and Azure Service Bus.

Starting 3 February 2020, all new exports in applications with Devices and Device templates enabled will have the

data format described above. All exports created before this date remain on the old data format until 30 June

2020, at which time these exports will automatically be migrated to the new data format. The new data format

matches the device, device property, device cloud property, and device template objects in the IoT Central public

API.

For Devices , notable differences between the old data format and the new data format include:

@id for device is removed, deviceId is renamed to id

provisioned flag is added to describe the provisioning status of the device

approved flag is added to describe the approval state of the device

properties including device and cloud properties, matches entities in the public API

For Device templates , notable differences between the old data format and the new data format include:

@id for device template is renamed to id

@type for the device template is renamed to types , and is now an array

https://docs.microsoft.com/en-us/rest/api/iotcentral/devices/get
https://docs.microsoft.com/en-us/rest/api/iotcentral/devices/getproperties
https://docs.microsoft.com/en-us/rest/api/iotcentral/devices/getcloudproperties
https://docs.microsoft.com/en-us/rest/api/iotcentral/devicetemplates/get

{
 "@id":"<id-value>",
 "@type":"Device",
 "displayName":"Airbox",
 "data":{
 "$cloudProperties":{
 "Color":"blue"
 },
 "EnvironmentalSensor":{
 "thsensormodel":{
 "reported":{
 "value":"Neque quia et voluptatem veritatis assumenda consequuntur quod.",
 "$lastUpdatedTimestamp":"2019-09-30T20:35:43.8478978Z"
 }
 },
 "pm25sensormodel":{
 "reported":{
 "value":"Aut alias odio.",
 "$lastUpdatedTimestamp":"2019-09-30T20:35:43.8478978Z"
 }
 }
 },
 "urn_azureiot_DeviceManagement_DeviceInformation":{
 "totalStorage":{
 "reported":{
 "value":27900.9730905171,
 "$lastUpdatedTimestamp":"2019-09-30T20:35:43.8478978Z"
 }
 },
 "totalMemory":{
 "reported":{
 "value":4667.82916715811,
 "$lastUpdatedTimestamp":"2019-09-30T20:35:43.8478978Z"
 }
 }
 }
 },
 "instanceOf":"<template-id>",
 "deviceId":"<device-id>",
 "simulated":true
}

Device templates (format deprecated as of 3 February 2020)

{
 "@id":"<template-id>",
 "@type":"DeviceModelDefinition",
 "displayName":"Airbox",
 "capabilityModel":{
 "@id":"<id>",
 "@type":"CapabilityModel",
 "implements":[
 {
 "@id":"<id>",
 "@type":"InterfaceInstance",
 "name":"EnvironmentalSensor",
 "schema":{
 "@id":"<id>",
 "@type":"Interface",
 "comment":"Requires temperature and humidity sensors.",
 "description":"Provides functionality to report temperature, humidity. Provides telemetry, commands
and read-write properties",
 "displayName":"Environmental Sensor",
 "contents":[
 {
 "@id":"<id>",
 "@type":"Telemetry",

 "@type":"Telemetry",
 "description":"Current temperature on the device",
 "displayName":"Temperature",
 "name":"temp",
 "schema":"double",
 "unit":"Units/Temperature/celsius",
 "valueDetail":{
 "@id":"<id>",
 "@type":"ValueDetail/NumberValueDetail",
 "minValue":{
 "@value":"50"
 }
 },
 "visualizationDetail":{
 "@id":"<id>",
 "@type":"VisualizationDetail"
 }
 },
 {
 "@id":"<id>",
 "@type":"Telemetry",
 "description":"Current humidity on the device",
 "displayName":"Humidity",
 "name":"humid",
 "schema":"integer"
 },
 {
 "@id":"<id>",
 "@type":"Telemetry",
 "description":"Current PM2.5 on the device",
 "displayName":"PM2.5",
 "name":"pm25",
 "schema":"integer"
 },
 {
 "@id":"<id>",
 "@type":"Property",
 "description":"T&H Sensor Model Name",
 "displayName":"T&H Sensor Model",
 "name":"thsensormodel",
 "schema":"string"
 },
 {
 "@id":"<id>",
 "@type":"Property",
 "description":"PM2.5 Sensor Model Name",
 "displayName":"PM2.5 Sensor Model",
 "name":"pm25sensormodel",
 "schema":"string"
 }
]
 }
 },
 {
 "@id":"<id>",
 "@type":"InterfaceInstance",
 "name":"urn_azureiot_DeviceManagement_DeviceInformation",
 "schema":{
 "@id":"<id>",
 "@type":"Interface",
 "displayName":"Device information",
 "contents":[
 {
 "@id":"<id>",
 "@type":"Property",
 "comment":"Total available storage on the device in kilobytes. Ex. 20480000 kilobytes.",
 "displayName":"Total storage",
 "name":"totalStorage",
 "displayUnit":"kilobytes",

 "schema":"long"
 },
 {
 "@id":"<id>",
 "@type":"Property",
 "comment":"Total available memory on the device in kilobytes. Ex. 256000 kilobytes.",
 "displayName":"Total memory",
 "name":"totalMemory",
 "displayUnit":"kilobytes",
 "schema":"long"
 }
]
 }
 }
],
 "displayName":"AAEONAirbox52"
 },
 "solutionModel":{
 "@id":"<id>",
 "@type":"SolutionModel",
 "cloudProperties":[
 {
 "@id":"<id>",
 "@type":"CloudProperty",
 "displayName":"Color",
 "name":"Color",
 "schema":"string",
 "valueDetail":{
 "@id":"<id>",
 "@type":"ValueDetail/StringValueDetail"
 },
 "visualizationDetail":{
 "@id":"<id>",
 "@type":"VisualizationDetail"
 }
 }
]
 }
}

Next steps
Now that you know how to export your data to Azure Event Hubs, Azure Service Bus, and Azure Blob storage,

continue to the next step:

How to run custom analytics with Databricks

Create webhook actions on rules in Azure IoT Central
4/23/2020 • 2 minutes to read • Edit Online

Set up the webhook

Payload

This topic applies to builders and administrators.

Webhooks enable you to connect your IoT Central app to other applications and services for remote monitoring

and notifications. Webhooks automatically notify other applications and services you connect whenever a rule is

triggered in your IoT Central app. Your IoT Central app sends a POST request to the other application's HTTP

endpoint whenever a rule is triggered. The payload contains device details and rule trigger details.

In this example, you connect to RequestBin to get notified when rules fire using webhooks.

1. Open RequestBin.

2. Create a new RequestBin and copy the Bin URL .

3. Create a telemetry rule. Save the rule and add a new action.

4. Choose the webhook action and provide a display name and paste the Bin URL as the Callback URL.

5. Save the rule.

Now when the rule is triggered, you see a new request appear in RequestBin.

When a rule is triggered, an HTTP POST request is made to the callback URL containing a json payload with the

telemetry, device, rule, and application details. The payload could look like the following:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/iot-central/core/howto-create-webhooks.md
https://requestbin.net/

{
 "timestamp": "2020-04-06T00:20:15.06Z",
 "action": {
 "id": "<id>",
 "type": "WebhookAction",
 "rules": [
 "<rule_id>"
],
 "displayName": "Webhook 1",
 "url": "<callback_url>"
 },
 "application": {
 "id": "<application_id>",
 "displayName": "Contoso",
 "subdomain": "contoso",
 "host": "contoso.azureiotcentral.com"
 },
 "device": {
 "id": "<device_id>",
 "etag": "<etag>",
 "displayName": "MXChip IoT DevKit - 1yl6vvhax6c",
 "instanceOf": "<device_template_id>",
 "simulated": true,
 "provisioned": true,
 "approved": true,
 "cloudProperties": {
 "City": {
 "value": "Seattle"
 }
 },
 "properties": {
 "deviceinfo": {
 "firmwareVersion": {
 "value": "1.0.0"
 }
 }
 },
 "telemetry": {
 "<interface_instance_name>": {
 "humidity": {
 "value": 47.33228889360127
 }
 }
 }
 },
 "rule": {
 "id": "<rule_id>",
 "displayName": "Humidity monitor"
 }
}

{
 "telemetry": {
 "<interface_instance_name>": {
 "Humidity": {
 "avg": 39.5
 }
 }
 }
}

If the rule monitors aggregated telemetry over a period of time, the payload will contain a different telemetry

section.

Data format change notice

Webhook payload (format deprecated as of 3 April 2020)

{
 "id": "<id>",
 "displayName": "Webhook 1",
 "timestamp": "2019-10-24T18:27:13.538Z",
 "rule": {
 "id": "<id>",
 "displayName": "High temp alert",
 "enabled": true
 },
 "device": {
 "id": "mx1",
 "displayName": "MXChip IoT DevKit - mx1",
 "instanceOf": "<device-template-id>",
 "simulated": true,
 "provisioned": true,
 "approved": true
 },
 "data": [{
 "@id": "<id>",
 "@type": ["Telemetry"],
 "name": "temperature",
 "displayName": "Temperature",
 "value": 66.27310467496761,
 "interfaceInstanceName": "sensors"
 }],
 "application": {
 "id": "<id>",
 "displayName": "x - Store Analytics Checkout---PnP",
 "subdomain": "<subdomain>",
 "host": "<host>"
 }
}

Known limitations

Next steps

If you have one or more webhooks created and saved before 3 April 2020 , you will need to delete the webhook

and create a new webhook. This is because older webhooks use an older payload format that will be deprecated in

the future.

Currently there is no programmatic way of subscribing/unsubscribing from these webhooks through an API.

If you have ideas for how to improve this feature, post your suggestions to our User voice forum.

Now that you've learned how to set up and use webhooks, the suggested next step is to explore configuring Azure

Monitor Action Groups.

https://feedback.azure.com/forums/911455-azure-iot-central

Use workflows to integrate your Azure IoT Central
application with other cloud services
7/21/2020 • 6 minutes to read • Edit Online

Prerequisites

NOTE

Trigger a workflow from a rule

This article applies to solution builders.

You can create rules in IoT Central that trigger actions, such as sending an email, in response to telemetry-based

conditions, such as device temperature exceeding a threshold.

The Azure IoT Central V3 connector for Power Automate and Azure Logic Apps lets you create more advanced rules

to automate operations in IoT Central:

When a rule fires in your Azure IoT Central app, it can trigger a workflow in Power Automate or Azure Logic

Apps. These workflows can run actions in other cloud services, such as Office 365, or a third-party service.

An event in another cloud service, such as Office 365, can trigger a workflow in Power Automate or Azure Logic

Apps. These workflows can run actions or retrieve data from your IoT Central application.

To complete the steps in this how-to guide, you need an active Azure subscription. If you don't have an Azure

subscription, create a free account before you begin.

Setting up the solution requires a version 3 IoT Central application. To learn how to check your application version,

see About your application. To learn how to create an IoT Central application, see Create an Azure IoT Central

application.

If you're using a version 2 IoT Central application, see Build workflows with the IoT Central connector in Azure Logic Apps on

the previous versions documentation site and use the Azure IoT Central V2 connector

Before you can trigger a workflow in Power Automate or Azure Logic Apps, you need a rule in your IoT Central

application. To learn more, see Configure rules and actions in Azure IoT Central.

To add the Azure IoT Central V3 - preview connector as a trigger in Power Automate:

1. In Power Automate, select + Create, select the Custom tab.

2. Search for IoT Central, and select the Azure IoT Central V3 - preview connector.

3. In the list of triggers, select When a rule is fired (preview) .

4. In the When a rule is fired step, select your IoT Central application and the rule you're using.

To add the Azure IoT Central V3 - preview connector as a trigger in Azure Logic Apps:

1. In Logic Apps Designer , select the Blank Logic App template.

2. In the designer, select the Custom tab.

3. Search for IoT Central, and select the Azure IoT Central V3 - preview connector.

4. In the list of triggers, select When a rule is fired (preview) .

5. In the When a rule is fired step, select your IoT Central application and the rule you're using.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/iot-central/core/howto-configure-rules-advanced.md
https://azure.microsoft.com/free/?WT.mc_id=A261C142F
https://docs.microsoft.com/en-us/previous-versions/azure/iot-central/core/howto-build-azure-logic-apps

Run an action

You can now add more steps to your workflow to build out your integration scenario.

You can run actions in an IoT Central application from Power Automate and Azure Logic Apps workflows. First,

create your workflow and use a connector to define a trigger to start the workflow. Then use the Azure IoT

Central V3 - preview connector as an action.

To add the Azure IoT Central V3 - preview connector as an action in Power Automate:

1. In Power Automate, in the Choose an action panel, select the Custom tab.

2. Search for IoT Central and select the Azure IoT Central V3 - preview connector.

3. In the list of actions, select the IoT Central action you want to use.

4. In the action step, complete the configuration for the action you chose. Then select Save.

To add the Azure IoT Central V3- preview connector as an action in Azure Logic Apps:

1. In Logic Apps Designer , in the Choose an action panel, select the Custom tab.

2. Search for IoT Central, and select the Azure IoT Central V3- preview connector.

3. In the list of actions, select the IoT Central action you want to use.

4. In the action step, complete the configuration for the action you chose. Then select Save.

List of actions

Create or update a device

F IEL D DESC RIP T IO N

Application Choose from your list of IoT Central applications.

Device The unique ID of the device to create or update.

Approved Choose whether the device has been approved to connect to
IoT Central.

Device Description A detailed description of the device.

Device Name The display name of the device.

The following list shows all the available IoT Central actions in the Azure IoT Central V3 - preview connector

and their configuration options. Many of the fields can have dynamically generated content. For example, a

previous step could determine the device ID that the current step acts on.

Use this action to create or update a device in your IoT Central application.

Device Template Choose from the list of device templates in your IoT Central
application.

Simulated Choose whether the device is simulated.

F IEL D DESC RIP T IO N

Delete a device

F IEL D DESC RIP T IO N

Application Choose from your list of IoT Central applications.

Device The unique ID of the device to delete.

Execute a device command

F IEL D DESC RIP T IO N

Application Choose from your list of IoT Central applications.

Device The unique ID of the device to delete.

Device Component The interface in the device template that contains the
command.

Device Command Choose one of the commands on the selected interface.

Device Template Choose from the list of device templates in your IoT Central
application.

Device Command Request Payload If the command requires a request payload, add it here.

NOTE

Get a device by ID

F IEL D DESC RIP T IO N

Application Choose from your list of IoT Central applications.

Device The unique ID of the device to delete.

Get device cloud properties

Use this action to delete a device from your IoT Central application.

Use this action to execute a command defined in one of the device's interfaces.

You can't choose a device component until you've chosen a device template.

Use this action to retrieve the device's details.

You can use the returned details in the dynamic expressions in other actions. The device details returned include:

Approved, body , Device Descr iption , Device Name, Device Template, Provisioned, and S imulated.

F IEL D DESC RIP T IO N

Application Choose from your list of IoT Central applications.

Device The unique ID of the device to delete.

Device Template Choose from the list of device templates in your IoT Central
application.

Get device properties

F IEL D DESC RIP T IO N

Application Choose from your list of IoT Central applications.

Device The unique ID of the device to delete.

Device Template Choose from the list of device templates in your IoT Central
application.

Get device telemetry value

F IEL D DESC RIP T IO N

Application Choose from your list of IoT Central applications.

Device The unique ID of the device to delete.

Device Template Choose from the list of device templates in your IoT Central
application.

Update device cloud properties

F IEL D DESC RIP T IO N

Application Choose from your list of IoT Central applications.

Device The unique ID of the device to delete.

Device Template Choose from the list of device templates in your IoT Central
application.

Use this action to retrieve the cloud property values for a specific device.

You can use the returned cloud property values in the dynamic expressions in other actions.

Use this action to retrieve the property values for a specific device.

You can use the returned property values in the dynamic expressions in other actions.

Use this action to retrieve the telemetry values for a specific device.

You can use the returned telemetry values in the dynamic expressions in other actions.

Use this action to update cloud property values for a specific device.

Cloud properties After you choose a device template, a field is added for each
cloud property defined in the template.

F IEL D DESC RIP T IO N

Update device properties

F IEL D DESC RIP T IO N

Application Choose from your list of IoT Central applications.

Device The unique ID of the device to delete.

Device Template Choose from the list of device templates in your IoT Central
application.

Writeable properties After you choose a device template, a field is added for each
writeable property defined in the template.

Next steps

Use this action to update writeable property values for a specific device.

Now that you've learned how to create an advanced rule in your Azure IoT Central application, you can learn how

to Analyze device data in your Azure IoT Central application

Group multiple actions to run from one or more rules
3/24/2020 • 2 minutes to read • Edit Online

Prerequisites

Create action groups

This article applies to builders and administrators.

In Azure IoT Central, you create rules to run actions when a condition is met. Rules are based on device telemetry

or events. For example, you can notify an operator when the temperature of a device exceeds a threshold. This

article describes how to use Azure Monitor action groups to attach multiple actions to an IoT Central rule. You can

attach an action group to multiple rules. An action group is a collection of notification preferences defined by the

owner of an Azure subscription.

An application created using a standard pricing plan

An Azure account and subscription to create and manage Azure Monitor action groups

You can create and manage action groups in the Azure portal or with an Azure Resource Manager template.

An action group can:

Send notifications such as an email, an SMS, or make a voice call.

Run an action such as calling a webhook.

The following screenshot shows an action group that sends email and SMS notifications and calls a webhook:

To use an action group in an IoT Central rule, the action group must be in the same Azure subscription as the IoT

Central application.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/iot-central/core/howto-use-action-groups.md
https://docs.microsoft.com/en-us/azure/azure-monitor/overview
https://docs.microsoft.com/en-us/azure/azure-monitor/platform/action-groups
https://docs.microsoft.com/en-us/azure/azure-monitor/platform/action-groups
https://docs.microsoft.com/en-us/azure/azure-monitor/platform/action-groups-create-resource-manager-template

Use an action group
To use an action group in your IoT Central application, first create a rule. When you add an action to the rule, select

Azure Monitor Action Groups :

Choose an action group from your Azure subscription:

Select Save. The action group now appears in the list of actions to run when the rule is triggered:

A C T IO N T Y P E O UT P UT F O RM AT

Email Standard IoT Central email template

SMS Azure IoT Central alert: ${applicationName} - "${ruleName}"
triggered on "${deviceName}" at ${triggerDate} ${triggerTime}

Voice Azure I.O.T Central alert: rule "${ruleName}" triggered on
device "${deviceName}" at ${triggerDate} ${triggerTime}, in
application ${applicationName}

Webhook { "schemaId" : "AzureIoTCentralRuleWebhook", "data": {regular
webhook payload}}

Next steps

The following table summarizes the information sent to the supported action types:

The following text is an example SMS message from an action group:

iotcentral: Azure IoT Central alert: Contoso - "Low pressure alert" triggered on "Motion sensor 2" at March 20,
2019 10:12 UTC

Now that you've learned how to use action groups with rules, the suggested next step is to learn how to manage

your devices.

Extend Azure IoT Central with custom rules using
Stream Analytics, Azure Functions, and SendGrid
3/24/2020 • 8 minutes to read • Edit Online

Prerequisites

IoT Central application

SET T IN G VA L UE

Pricing plan Standard

Application template In-store analytics – condition monitoring

Application name Accept the default or choose your own name

URL Accept the default or choose your own unique URL prefix

Directory Your Azure Active Directory tenant

Azure subscription Your Azure subscription

Region Your nearest region

Resource group

This how-to guide shows you, as a solution developer, how to extend your IoT Central application with custom rules

and notifications. The example shows sending a notification to an operator when a device stops sending telemetry.

The solution uses an Azure Stream Analytics query to detect when a device has stopped sending telemetry. The

Stream Analytics job uses Azure Functions to send notification emails using SendGrid.

This how-to guide shows you how to extend IoT Central beyond what it can already do with the built-in rules and

actions.

In this how-to guide, you learn how to:

Stream telemetry from an IoT Central application using continuous data export.

Create a Stream Analytics query that detects when a device has stopped sending data.

Send an email notification using the Azure Functions and SendGrid services.

To complete the steps in this how-to guide, you need an active Azure subscription.

If you don't have an Azure subscription, create a free account before you begin.

Create an IoT Central application on the Azure IoT Central application manager website with the following settings:

The examples and screenshots in this article use the United States region. Choose a location close to you and

make sure you create all your resources in the same region.

This application template includes two simulated thermostat devices that send telemetry.

Use the Azure portal to create a resource group called DetectStoppedDevices to contain the other resources you

create. Create your Azure resources in the same location as your IoT Central application.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/iot-central/core/howto-create-custom-rules.md
https://docs.microsoft.com/en-us/azure/stream-analytics/
https://docs.microsoft.com/en-us/azure/azure-functions/
https://sendgrid.com/docs/for-developers/partners/microsoft-azure/
https://azure.microsoft.com/free/?WT.mc_id=A261C142F
https://aka.ms/iotcentral
https://portal.azure.com/#create/Microsoft.ResourceGroup

Event Hubs namespace

SET T IN G VA L UE

Name Choose your namespace name

Pricing tier Basic

Subscription Your subscription

Resource group DetectStoppedDevices

Location East US

Throughput Units 1

Stream Analytics job

SET T IN G VA L UE

Name Choose your job name

Subscription Your subscription

Resource group DetectStoppedDevices

Location East US

Hosting environment Cloud

Streaming units 3

Function app

SET T IN G VA L UE

App name Choose your function app name

Subscription Your subscription

Resource group DetectStoppedDevices

OS Windows

Hosting Plan Consumption Plan

Location East US

Runtime Stack .NET

Use the Azure portal to create an Event Hubs namespace with the following settings:

Use the Azure portal to create a Stream Analytics job with the following settings:

Use the Azure portal to create a function app with the following settings:

https://portal.azure.com/#create/Microsoft.EventHub
https://portal.azure.com/#create/Microsoft.StreamAnalyticsJob
https://portal.azure.com/#create/Microsoft.FunctionApp

Storage Create new

SET T IN G VA L UE

SendGrid account

SET T IN G VA L UE

Name Choose your SendGrid account name

Password Create a password

Subscription Your subscription

Resource group DetectStoppedDevices

Pricing tier F1 Free

Contact information Fill out required information

Use the Azure portal to create a SendGrid account with the following settings:

When you've created all the required resources, your DetectStoppedDevices resource group looks like the

following screenshot:

https://portal.azure.com/#create/Sendgrid.sendgrid

Create an event hub

Get SendGrid API key

You can configure an IoT Central application to continuously export telemetry to an event hub. In this section, you

create an event hub to receive telemetry from your IoT Central application. The event hub delivers the telemetry to

your Stream Analytics job for processing.

1. In the Azure portal, navigate to your Event Hubs namespace and select + Event Hub.

2. Name your event hub centralexpor t , and select Create.

Your Event Hubs namespace looks like the following screenshot:

Your function app needs a SendGrid API key to send email messages. To create a SendGrid API key:

1. In the Azure portal, navigate to your SendGrid account. Then choose Manage to access your SendGrid

account.

2. In your SendGrid account, choose Settings , then API Keys . Choose Create API Key :

Define the function

3. On the Create API Key page, create a key named AzureFunctionAccess with Full Access permissions.

4. Make a note of the API Key, you need it when you configure your function app.

This solution uses an Azure Functions app to send an email notification when the Stream Analytics job detects a

stopped device. To create your function app:

1. In the Azure portal, navigate to the App Ser vice instance in the DetectStoppedDevices resource group.

2. Select + to create a new function.

3. On the CHOOSE A DEVELOPMENT ENVIRONMENT page, choose In-por tal and then select Continue.

4. On the CREATE A FUNCTION page, choose Webhook + API and then select Create.

The portal creates a default function called HttpTrigger1 :

Configure function bindings
To send emails with SendGrid, you need to configure the bindings for your function as follows:

1. Select Integrate, choose the output HTTP ($return) , and then select delete.

2. Choose + New Output, then choose SendGrid, and then choose Select. Choose Install to install the

SendGrid extension.

3. When the installation completes, select Use function return value. Add a valid To address to receive email

notifications. Add a valid From address to use as the email sender.

4. Select new next to SendGrid API Key App Setting. Enter SendGridAPIKey as the key, and the SendGrid API

key you noted previously as the value. Then select Create.

5. Choose Save to save the SendGrid bindings for your function.

The integrate settings look like the following screenshot:

Add the function code
To implement your function, add the C# code to parse the incoming HTTP request and send the emails as follows:

1. Choose the HttpTrigger1 function in your function app and replace the C# code with the following code:

Test the function works

[{"deviceid":"test-device-1","time":"2019-05-02T14:23:39.527Z"},{"deviceid":"test-device-2","time":"2019-05-
02T14:23:50.717Z"},{"deviceid":"test-device-3","time":"2019-05-02T14:24:28.919Z"}]

#r "Newtonsoft.Json"
#r "..\bin\SendGrid.dll"

using System;
using SendGrid.Helpers.Mail;
using Microsoft.Azure.WebJobs.Host;
using Microsoft.AspNetCore.Mvc;
using Microsoft.Extensions.Primitives;
using Newtonsoft.Json;

public static SendGridMessage Run(HttpRequest req, ILogger log)
{
 string requestBody = new StreamReader(req.Body).ReadToEnd();
 log.LogInformation(requestBody);
 var notifications = JsonConvert.DeserializeObject<IList<Notification>>(requestBody);

 SendGridMessage message = new SendGridMessage();
 message.Subject = "Contoso device notification";

 var content = "The following device(s) have stopped sending telemetry:

<table><tr>
<th>Device ID</th><th>Time</th></tr>";
 foreach(var notification in notifications) {
 log.LogInformation($"No message received - Device: {notification.deviceid}, Time:
{notification.time}");
 content += $"<tr><td>{notification.deviceid}</td><td>{notification.time}</td></tr>";
 }
 content += "</table>";
 message.AddContent("text/html", content);

 return message;
}

public class Notification
{
 public string deviceid { get; set; }
 public string time { get; set; }
}

You may see an error message until you save the new code.

2. Select Save to save the function.

To test the function in the portal, first choose Logs at the bottom of the code editor. Then choose Test to the right

of the code editor. Use the following JSON as the Request body :

The function log messages appear in the Logs panel:

The following device(s) have stopped sending telemetry:

Device ID Time
test-device-1 2019-05-02T14:23:39.527Z
test-device-2 2019-05-02T14:23:50.717Z
test-device-3 2019-05-02T14:24:28.919Z

Add Stream Analytics query

After a few minutes, the To email address receives an email with the following content:

This solution uses a Stream Analytics query to detect when a device stops sending telemetry for more than 120

seconds. The query uses the telemetry from the event hub as its input. The job sends the query results to the

function app. In this section, you configure the Stream Analytics job:

1. In the Azure portal, navigate to your Stream Analytics job, under Jobs topology select Inputs , choose +

Add stream input, and then choose Event Hub.

2. Use the information in the following table to configure the input using the event hub you created previously,

then choose Save:

SET T IN G VA L UE

Input alias centraltelemetry

Subscription Your subscription

Event Hub namespace Your Event Hub namespace

Event Hub name Use existing - centralexpor t

SET T IN G VA L UE

Output alias emailnotification

Subscription Your subscription

Function app Your function app

Function HttpTrigger1

3. Under Jobs topology , select Outputs , choose + Add, and then choose Azure function.

4. Use the information in the following table to configure the output, then choose Save:

5. Under Jobs topology , select Quer y and replace the existing query with the following SQL:

with
LeftSide as
(
 SELECT
 -- Get the device ID from the message metadata and create a column
 GetMetadataPropertyValue([centraltelemetry], '[EventHub].[IoTConnectionDeviceId]') as deviceid1,
 EventEnqueuedUtcTime AS time1
 FROM
 -- Use the event enqueued time for time-based operations
 [centraltelemetry] TIMESTAMP BY EventEnqueuedUtcTime
),
RightSide as
(
 SELECT
 -- Get the device ID from the message metadata and create a column
 GetMetadataPropertyValue([centraltelemetry], '[EventHub].[IoTConnectionDeviceId]') as deviceid2,
 EventEnqueuedUtcTime AS time2
 FROM
 -- Use the event enqueued time for time-based operations
 [centraltelemetry] TIMESTAMP BY EventEnqueuedUtcTime
)

SELECT
 LeftSide.deviceid1 as deviceid,
 LeftSide.time1 as time
INTO
 [emailnotification]
FROM
 LeftSide
 LEFT OUTER JOIN
 RightSide
 ON
 LeftSide.deviceid1=RightSide.deviceid2 AND DATEDIFF(second,LeftSide,RightSide) BETWEEN 1 AND 120
 where
 -- Find records where a device didn't send a message 120 seconds
 RightSide.deviceid2 is NULL

6. Select Save.

7. To start the Stream Analytics job, choose Over view , then Star t , then Now , and then Star t :

Configure export in IoT Central
On the Azure IoT Central application manager website, navigate to the IoT Central application you created from the

Contoso template. In this section, you configure the application to stream the telemetry from its simulated devices

to your event hub. To configure the export:

SET T IN G VA L UE

Display Name Export to Event Hubs

Enabled On

Event Hubs namespace Your Event Hubs namespace name

Event hub centralexport

Measurements On

Devices Off

Device Templates Off

1. Navigate to the Data Expor t page, select + New , and then Azure Event Hubs .

2. Use the following settings to configure the export, then select Save:

https://aka.ms/iotcentral

Test

Tidy up

Wait until the export status is Running before you continue.

To test the solution, you can disable the continuous data export from IoT Central to simulated stopped devices:

The following device(s) have stopped sending telemetry:

Device ID Time
Thermostat-Zone1 2019-11-01T12:45:14.686Z

1. In your IoT Central application, navigate to the Data Expor t page and select the Expor t to Event Hubs

export configuration.

2. Set Enabled to Off and choose Save.

3. After at least two minutes, the To email address receives one or more emails that look like the following

example content:

To tidy up after this how-to and avoid unnecessary costs, delete the DetectStoppedDevices resource group in the

Azure portal.

Next steps

You can delete the IoT Central application from the Management page within the application.

In this how-to guide, you learned how to:

Stream telemetry from an IoT Central application using continuous data export.

Create a Stream Analytics query that detects when a device has stopped sending data.

Send an email notification using the Azure Functions and SendGrid services.

Now that you know how to create custom rules and notifications, the suggested next step is to learn how to Extend

Azure IoT Central with custom analytics.

Extend Azure IoT Central with custom analytics using
Azure Databricks
7/21/2020 • 5 minutes to read • Edit Online

Prerequisites

IoT Central application

SET T IN G VA L UE

Pricing plan Standard

Application template In-store analytics – condition monitoring

Application name Accept the default or choose your own name

URL Accept the default or choose your own unique URL prefix

Directory Your Azure Active Directory tenant

Azure subscription Your Azure subscription

Region Your nearest region

Resource group

Event Hubs namespace

This how-to guide shows you, as a solution developer, how to extend your IoT Central application with custom

analytics and visualizations. The example uses an Azure Databricks workspace to analyze the IoT Central telemetry

stream and to generate visualizations such as box plots.

This how-to guide shows you how to extend IoT Central beyond what it can already do with the built-in analytics

tools.

In this how-to guide, you learn how to:

Stream telemetry from an IoT Central application using continuous data export.

Create an Azure Databricks environment to analyze and plot device telemetry.

To complete the steps in this how-to guide, you need an active Azure subscription.

If you don't have an Azure subscription, create a free account before you begin.

Create an IoT Central application on the Azure IoT Central application manager website with the following settings:

The examples and screenshots in this article use the United States region. Choose a location close to you and

make sure you create all your resources in the same region.

This application template includes two simulated thermostat devices that send telemetry.

Use the Azure portal to create a resource group called IoTCentralAnalysis to contain the other resources you

create. Create your Azure resources in the same location as your IoT Central application.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/iot-central/core/howto-create-custom-analytics.md
https://docs.microsoft.com/en-us/azure/azure-databricks/
https://wikipedia.org/wiki/Box_plot
https://azure.microsoft.com/free/?WT.mc_id=A261C142F
https://aka.ms/iotcentral
https://portal.azure.com/#create/Microsoft.ResourceGroup

SET T IN G VA L UE

Name Choose your namespace name

Pricing tier Basic

Subscription Your subscription

Resource group IoTCentralAnalysis

Location East US

Throughput Units 1

Azure Databricks workspace

SET T IN G VA L UE

Workspace name Choose your workspace name

Subscription Your subscription

Resource group IoTCentralAnalysis

Location East US

Pricing Tier Standard

Use the Azure portal to create an Event Hubs namespace with the following settings:

Use the Azure portal to create an Azure Databricks Service with the following settings:

When you've created the required resources, your IoTCentralAnalysis resource group looks like the following

screenshot:

https://portal.azure.com/#create/Microsoft.EventHub
https://portal.azure.com/#create/Microsoft.Databricks

Create an event hub

Configure export in IoT Central

You can configure an IoT Central application to continuously export telemetry to an event hub. In this section, you

create an event hub to receive telemetry from your IoT Central application. The event hub delivers the telemetry to

your Stream Analytics job for processing.

1. In the Azure portal, navigate to your Event Hubs namespace and select + Event Hub.

2. Name your event hub centralexpor t , and select Create.

3. In the list of event hubs in your namespace, select centralexpor t . Then choose Shared access policies .

4. Select + Add. Create a policy named Listen with the L isten claim.

5. When the policy is ready, select it in the list, and then copy the Connection str ing-primar y key value.

6. Make a note of this connection string, you use it later when you configure your Databricks notebook to read

from the event hub.

Your Event Hubs namespace looks like the following screenshot:

On the Azure IoT Central application manager website, navigate to the IoT Central application you created from the

Contoso template. In this section, you configure the application to stream the telemetry from its simulated devices

to your event hub. To configure the export:

1. Navigate to the Data Expor t page, select + New , and then Azure Event Hubs .

2. Use the following settings to configure the export, then select Save:

https://aka.ms/iotcentral

Configure Databricks workspace

SET T IN G VA L UE

Display Name Export to Event Hubs

Enabled On

Event Hubs namespace Your Event Hubs namespace name

Event hub centralexport

Measurements On

Devices Off

Device Templates Off

Wait until the export status is Running before you continue.

In the Azure portal, navigate to your Azure Databricks service and select Launch Workspace. A new tab opens in

your browser and signs you in to your workspace.

Create a cluster

SET T IN G VA L UE

Cluster Name centralanalysis

Cluster Mode Standard

Databricks Runtime Version 5.5 LTS (Scala 2.11, Spark 2.4.3)

Python Version 3

Enable Autoscaling No

Terminate after minutes of inactivity 30

Worker Type Standard_DS3_v2

Workers 1

Driver Type Same as worker

Install libraries

On the Azure Databricks page, under the list of common tasks, select New Cluster .

Use the information in the following table to create your cluster :

Creating a cluster may take several minutes, wait for the cluster creation to complete before you continue.

On the Clusters page, wait until the cluster state is Running.

The following steps show you how to import the library your sample needs into the cluster :

1. On the Clusters page, wait until the state of the centralanalysis interactive cluster is Running.

2. Select the cluster and then choose the L ibrar ies tab.

3. On the L ibrar ies tab, choose Install New .

4. On the Install L ibrar y page, choose Maven as the library source.

5. In the Coordinates textbox, enter the following value:

com.microsoft.azure:azure-eventhubs-spark_2.11:2.3.10

6. Choose Install to install the library on the cluster.

7. The library status is now Installed:

Import a Databricks notebook
Use the following steps to import a Databricks notebook that contains the Python code to analyze and visualize

your IoT Central telemetry:

1. Navigate to the Workspace page in your Databricks environment. Select the dropdown next to your

account name and then choose Impor t .

2. Choose to import from a URL and enter the following address: https://github.com/Azure-Samples/iot-

central-docs-samples/blob/master/databricks/IoT%20Central%20Analysis.dbc?raw=true

3. To import the notebook, choose Impor t .

4. Select the Workspace to view the imported notebook:

https://github.com/Azure-Samples/iot-central-docs-samples/blob/master/databricks/IoT Central Analysis.dbc?raw=true

Run analysis

View smoothed data

from pyspark.sql.functions import *
from pyspark.sql.types import *

Event Hub Connection strings
telementryEventHubConfig = {
 'eventhubs.connectionString' : '{your Event Hubs connection string}'
}

5. Edit the code in the first Python cell to add the Event Hubs connection string you saved previously:

To run the analysis, you must attach the notebook to the cluster :

1. Select Detached and then select the centralanalysis cluster.

2. If the cluster isn't running, start it.

3. To start the notebook, select the run button.

You may see an error in the last cell. If so, check the previous cells are running, wait a minute for some data to be

written to storage, and then run the last cell again.

In the notebook, scroll down to cell 14 to see a plot of the rolling average humidity by device type. This plot

continuously updates as streaming telemetry arrives:

View box plots

You can resize the chart in the notebook.

In the notebook, scroll down to cell 20 to see the box plots. The box plots are based on static data so to update

them you must rerun the cell:

https://en.wikipedia.org/wiki/Box_plot

Tidy up

Next steps

You can resize the plots in the notebook.

To tidy up after this how-to and avoid unnecessary costs, delete the IoTCentralAnalysis resource group in the

Azure portal.

You can delete the IoT Central application from the Management page within the application.

In this how-to guide, you learned how to:

Stream telemetry from an IoT Central application using continuous data export.

Create an Azure Databricks environment to analyze and plot telemetry data.

Now that you know how to create custom analytics, the suggested next step is to learn how to Visualize and

analyze your Azure IoT Central data in a Power BI dashboard.

Visualize and analyze your Azure IoT Central data in
a Power BI dashboard
7/21/2020 • 3 minutes to read • Edit Online

Prerequisites

NOTE

Install

This topic applies to administrators and solution developers.

Use the Power BI Solution for Azure IoT Central V3 to create a powerful Power BI dashboard to monitor the

performance of your IoT devices. In your Power BI dashboard, you can:

Track how much data your devices are sending over time

Compare data volumes between different telemetry streams

Filter down to data sent by specific devices

View the most recent telemetry data in a table

This solution sets up a pipeline that reads data from your Continuous Data Export Azure Blob storage account. The

pipeline uses Azure Functions, Azure Data Factory, and Azure SQL Database to process and transform the data. you

can visualize and analyze the data in a Power BI report that you download as a PBIX file. All of the resources are

created in your Azure subscription, so you can customize each component to suit your needs.

To complete the steps in this how-to guide, you need an active Azure subscription. If you don't have an Azure

subscription, create a free account before you begin.

Setting up the solution requires the following resources:

A version 3 IoT Central application. To learn how to check your application version, see About your application.

To learn how to create an IoT Central application, see Create an Azure IoT Central application.

Continuous data export configured to export telemetry, devices, and device templates to Azure Blob storage. To

learn more, see How to export IoT data to destinations in Azure.

Power BI Desktop (latest version). See Power BI downloads.

Power BI Pro (if you want to share the dashboard with others).

Make sure that only your IoT Central application is exporting data to the blob container.

Your devices must send JSON encoded messages. Devices must specify contentType:application/JSON

and contentEncoding:utf-8 or contentEncoding:utf-16 or contentEncoding:utf-32 in the message

system properties.

If you're using a version 2 IoT Central application, see Visualize and analyze your Azure IoT Central data in a Power BI

dashboard on the previous versions documentation site.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/iot-central/core/howto-connect-powerbi.md
file:///T:/seec/scjw/azure/iot-central/core/howto-export-data-blob-storage.html
https://azure.microsoft.com/free/?WT.mc_id=A261C142F
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-messages-d2c
https://powerbi.microsoft.com/downloads/
https://docs.microsoft.com/en-us/previous-versions/azure/iot-central/core/howto-connect-powerbi

Report

Pipeline resources

To set up the pipeline, navigate to the Power BI Solution for Azure IoT Central V3 page on the Microsoft

AppSource site. Select Get it now , and follow the instructions.

When you open the PBIX file, be sure the read and follow the instructions on the cover page. These instructions

describe how to connect your report to your SQL database.

The PBIX file contains the Devices and Telemetr y report shows a historical view of the telemetry that has been

sent by devices. It provides a breakdown of the different types of telemetry, and also shows the most recent

telemetry sent by devices.

You can access all the Azure resources that make up the pipeline in the Azure portal. All the resources are in the

resource group you created when you set up the pipeline.

https://appsource.microsoft.com/product/web-apps/iot-central.power-bi-solution-iot-central

Azure Functions

Azure Data Factory

Azure SQL Database

Estimated costs

Next steps

The following list describes the role of each resource in the pipeline:

The Azure Function app triggers each time IoT Central writes a new file to Blob storage. The functions extract data

from the telemetry, devices, and device templates blobs to populate the intermediate SQL tables that Azure Data

Factory uses.

Azure Data Factory connects to SQL Database as a linked service. It runs stored procedures to process the data and

store it in the analysis tables.

Azure Data Factory runs every 15 minutes to transform the latest batch of data to load into the SQL tables (which is

the current minimal number for the Tumbling Window Tr igger).

Azure Data Factory generates a set of analysis tables for Power BI. You can explore these schemas in Power BI and

use them to build your own visualizations.

The Power BI Solution for Azure IoT Central V3 page on the Microsoft AppSource site includes a link to a cost

estimator for the resources you deploy.

Now that you've learned how to visualize your data in Power BI, the suggested next step is to learn How to manage

devices.

https://appsource.microsoft.com/product/web-apps/iot-central.power-bi-solution-iot-central

Change IoT Central application settings
3/24/2020 • 2 minutes to read • Edit Online

Change application name and URL

NOTE

Delete an application

This article describes how, as an administrator, you can manage application by changing application name and

URL, uploading image, and delete an application in your Azure IoT Central application.

To access and use the Administration section, you must be in the Administrator role for an Azure IoT Central

application. If you create an Azure IoT Central application, you're automatically assigned to the Administrator

role for that application.

In the Application Settings page, you can change the name and URL of your application, then select Save.

If your administrator creates a custom theme for your application, this page includes an option to hide the

Application Name in the UI. This option is useful if the application logo in the custom theme includes the

application name. For more information, see Customize the Azure IoT Central UI.

If you change your URL, your old URL can be taken by another Azure IoT Central customer. If that happens, it is no longer

available for you to use. When you change your URL, the old URL no longer works, and you need to notify your users

about the new URL to use.

Use the Delete button to permanently delete your IoT Central application. This action permanently deletes all

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/iot-central/core/howto-administer.md

NOTE

Manage programmatically

L A N GUA GE REP O SITO RY PA C KA GE

Node https://github.com/Azure/azure-sdk-
for-node

https://www.npmjs.com/package/azure
-arm-iotcentral

Python https://github.com/Azure/azure-sdk-
for-python

https://pypi.org/project/azure-mgmt-
iotcentral

C# https://github.com/Azure/azure-sdk-
for-net

https://www.nuget.org/packages/Micro
soft.Azure.Management.IotCentral

Ruby https://github.com/Azure/azure-sdk-
for-ruby

https://rubygems.org/gems/azure_mg
mt_iot_central

Java https://github.com/Azure/azure-sdk-
for-java

https://search.maven.org/search?
q=a:azure-mgmt-iotcentral

Go https://github.com/Azure/azure-sdk-
for-go

https://github.com/Azure/azure-sdk-
for-go

Next steps

data that's associated with the application.

To delete an application, you must also have permissions to delete resources in the Azure subscription you chose when you

created the application. To learn more, see Use role-based access control to manage access to your Azure subscription

resources.

IoT Central Azure Resource Manager SDK packages are available for Node, Python, C#, Ruby, Java, and Go. You

can use these packages to create, list, update, or delete IoT Central applications. The packages include helpers to

manage authentication and error handling.

You can find examples of how to use the Azure Resource Manager SDKs at

https://github.com/emgarten/iotcentral-arm-sdk-examples.

To learn more, see the following GitHub repositories and packages:

Now that you've learned about how to administer your Azure IoT Central application, the suggested next step is

to learn about Manage users and roles in Azure IoT Central.

https://docs.microsoft.com/en-us/azure/active-directory/role-based-access-control-configure
https://github.com/emgarten/iotcentral-arm-sdk-examples
https://github.com/Azure/azure-sdk-for-node
https://www.npmjs.com/package/azure-arm-iotcentral
https://github.com/Azure/azure-sdk-for-python
https://pypi.org/project/azure-mgmt-iotcentral
https://github.com/Azure/azure-sdk-for-net
https://www.nuget.org/packages/Microsoft.Azure.Management.IotCentral
https://github.com/Azure/azure-sdk-for-ruby
https://rubygems.org/gems/azure_mgmt_iot_central
https://github.com/Azure/azure-sdk-for-java
https://search.maven.org/search?q=a:azure-mgmt-iotcentral
https://github.com/Azure/azure-sdk-for-go
https://github.com/Azure/azure-sdk-for-go

Manage users and roles in your IoT Central
application
3/27/2020 • 6 minutes to read • Edit Online

Add users

This article describes how, as an administrator, you can add, edit, and delete users in your Azure IoT Central

application. The article also describes how to manage roles in your Azure IoT Central application.

To access and use the Administration section, you must be in the Administrator role for an Azure IoT Central

application. If you create an Azure IoT Central application, you're automatically added to the Administrator role

for that application.

Every user must have a user account before they can sign in and access an Azure IoT Central application. Microsoft

Accounts and Azure Active Directory accounts are supported in Azure IoT Central. Azure Active Directory groups

aren't currently supported in Azure IoT Central.

For more information, see Microsoft account help and Quickstart: Add new users to Azure Active Directory.

1. To add a user to an IoT Central application, go to the Users page in the Administration section.

2. To add a user, on the Users page, choose + Add user .

3. Choose a role for the user from the Role drop-down menu. Learn more about roles in the Manage roles

section of this article.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/iot-central/core/howto-manage-users-roles.md
https://support.microsoft.com/products/microsoft-account?category=manage-account
https://docs.microsoft.com/en-us/azure/active-directory/add-users-azure-active-directory

Edit the roles that are assigned to users

NOTE

Delete users

Manage roles

Administrator

Builder

Operator

NOTE
A user who is in a custom role that grants them the permission to add other users, can only add users to a role with

same or fewer permissions than their own role.

If an IoT Central user ID is deleted from Azure Active Directory and then readded, the user won't be able to sign in

the IoT Central application. To re-enable access, the IoT Central administrator should delete and readd the user in

the application.

Roles can't be changed after they're assigned. To change the role that's assigned to a user, delete the user, and then

add the user again with a different role.

The roles assigned are specific to IoT Central application and cannot be managed from the Azure Portal.

To delete users, select one or more check boxes on the Users page. Then select Delete.

Roles enable you to control who within your organization is allowed to do various tasks in IoT Central. There are

three built-in roles you can assign to users of your application. You can also create custom roles if you require

finer-grained control.

Users in the Administrator role can manage and control every part of the application, including billing.

The user who creates an application is automatically assigned to the Administrator role. There must always be at

least one user in the Administrator role.

Users in the Builder role can manage every part of the app, but can't make changes on the Administration or

Continuous Data Export tabs.

Users in the Operator role can monitor device health and status. They aren't allowed to make changes to device

 Create a custom role

Custom role options

Managing devices

N A M E DEP EN DEN C IES

View None

Manage View
Other dependencies: View device instances

Full Control View, Manage
Other dependencies: View device instances

templates or to administer the application. Operators can add and delete devices, manage device sets, and run

analytics and jobs.

If your solution requires finer-grained access controls, you can create custom roles with custom sets of

permissions. To create a custom role, navigate to the Roles page in the Administration section of your

application. Then select + New role, and add a name and description for your role. Select the permissions your

role requires and then select Save.

You can add users to your custom role in the same way that you add users to a built-in role.

When you define a custom role, you choose the set of permissions that a user is granted if they're a member of the

role. Some permissions are dependent on others. For example, if you add the Update application dashboards

permission to a role, the View application dashboards permission is automatically added. The following tables

summarize the available permissions, and their dependencies, you can use when creating custom roles.

Device template permissions

Device instance permissions

N A M E DEP EN DEN C IES

View None
Other dependencies: View device templates and device
groups

Update View
Other dependencies: View device templates and device
groups

Create View
Other dependencies: View device templates and device
groups

Delete View
Other dependencies: View device templates and device
groups

Execute Commands Update, View
Other dependencies: View device templates and device
groups

Full Control View, Update, Create, Delete, Execute Commands
Other dependencies: View device templates and device
groups

N A M E DEP EN DEN C IES

View None
Other dependencies: View device templates and device
instances

Update View
Other dependencies: View device templates and device
instances

Create View, Update
Other dependencies: View device templates and device
instances

Delete View
Other dependencies: View device templates and device
instances

Full Control View, Update, Create, Delete
Other dependencies: View device templates and device
instances

N A M E DEP EN DEN C IES

Read instance None
Other dependencies: View device templates, device groups,
device instances

Device groups permissions

Device connectivity management permissions

Manage instance None

Read global None

Manage global Read Global

Full Control Read instance, Manage instance, Read global, Manage global.
Other dependencies: View device templates, device groups,
device instances

N A M E DEP EN DEN C IES

N A M E DEP EN DEN C IES

View None
Other dependencies: View device templates, device instances,
and device groups

Update View
Other dependencies: View device templates, device instances,
and device groups

Create View, Update
Other dependencies: View device templates, device instances,
and device groups

Delete View
Other dependencies: View device templates, device instances,
and device groups

Execute View
Other dependencies: View device templates, device instances,
and device groups; Update device instances; Execute
commands on device instances

Full Control View, Update, Create, Delete, Execute
Other dependencies: View device templates, device instances,
and device groups; Update device instances; Execute
commands on device instances

N A M E DEP EN DEN C IES

View None
Other dependencies: View device templates

Update View
Other dependencies: View device templates

Create View, Update
Other dependencies: View device templates

Jobs permissions

Rules permissions

Delete View
Other dependencies: View device templates

Full Control View, Update, Create, Delete
Other dependencies: View device templates

N A M E DEP EN DEN C IES

Managing the app

N A M E DEP EN DEN C IES

View None

Update View

Copy View
Other dependencies: View device templates, device instances,
device groups, dashboards, data export, branding, help links,
custom roles, rules

Delete View

Full Control View, Update, Copy, Delete
Other dependencies: View device templates, device groups,
application dashboards, data export, branding, help links,
custom roles, rules

N A M E DEP EN DEN C IES

View None

Export View
Other dependencies: View device templates, device instances,
device groups, dashboards, data export, branding, help links,
custom roles, rules

Full Control View, Export
Other dependencies: View device templates, device groups,
application dashboards, data export, branding, help links,
custom roles, rules

N A M E DEP EN DEN C IES

Manage None

Full Control Manage

Managing users and roles

Application settings permissions

Application template expor t permissions

Billing permissions

Custom roles permissions

N A M E DEP EN DEN C IES

View None

Update View

Create View, Update

Delete View

Full Control View, Update, Create, Delete

N A M E DEP EN DEN C IES

View None
Other dependencies: View custom roles

Add View
Other dependencies: View custom roles

Delete View
Other dependencies: View custom roles

Full Control View, Add, Delete
Other dependencies: View custom roles

NOTE

Customizing the app

N A M E DEP EN DEN C IES

View None

Update View

Create View, Update

Delete View

Full Control View, Update, Create, Delete

N A M E DEP EN DEN C IES

View None

User management permissions

A user who is in a custom role that grants them the permission to add other users, can only add users to a role with same

or fewer permissions than their own role.

Application dashboard permissions

Personal dashboards permissions

Update View

Create View, Update

Delete View

Full Control View, Update, Create, Delete

N A M E DEP EN DEN C IES

N A M E DEP EN DEN C IES

View None

Update View

Full Control View, Update

N A M E DEP EN DEN C IES

View None

Update View

Full Control View, Update

Extending the app

N A M E DEP EN DEN C IES

View None

Update View

Create View, Update

Delete View

Full Control View, Update, Create, Delete

N A M E DEP EN DEN C IES

View None

Create View

Branding, favicon, and colors permissions

Help links permissions

Data expor t permissions

API token permissions

Delete View

Full Control View, Create, Delete

N A M E DEP EN DEN C IES

Next steps
Now that you've learned about how to manage users and roles in your Azure IoT Central application, the

suggested next step is to learn how to Manage your bill.

Manage your bill in an IoT Central application
3/24/2020 • 2 minutes to read • Edit Online

Move from free to standard pricing plan

This article describes how, as an administrator, you can manage your bill in Azure IoT Central application in the

administration section. You will learn how you can move your application from the free pricing plan to a standard

pricing plan, and also how to upgrade or downgrade your pricing plan.

To access and use the Administration section, you must be in the Administrator role or have a custom user role

that allows you to view billing for an Azure IoT Central application. If you create an Azure IoT Central application,

you're automatically assigned to the Administrator role for that application.

Applications that use the free pricing plan are free for seven days before they expire. In order to avoid losing

data you can move them to a standard pricing plan at any time before they expire.

Applications that use a standard pricing plan are charged per device, with the first two devices free, per

application.

Learn more about pricing on the Azure IoT Central pricing page.

In the pricing section, you can move your application from the free to a standard pricing plan.

To complete this self-service process, follow these steps:

1. Go to the Pr icing page in the Administration section.

2. Select Conver t to a paid plan .

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/iot-central/core/howto-view-bill.md
https://azure.microsoft.com/pricing/details/iot-central/

NOTE

How to change your application pricing plan

3. Select the appropriate Azure Active Directory, and then the Azure subscription to use for your application

that uses a paid plan.

4. After you select Conver t , your application now uses a paid plan and you start getting billed.

By default, you are converted to a Standard 2 pricing plan.

Applications that use a standard pricing plan are charged per device, with the first two devices free, per application.

In the pricing section, you can upgrade or downgrade your Azure IoT pricing plan at any time.

1. Go to the Pr icing page in the Administration section.

View your bill

NOTE

Next steps

2. Select the Plan and click Save to upgrade or downgrade.

1. Select the appropriate Azure Active Directory, and then the Azure subscription to use for your application

that uses a paid plan.

2. After you select Conver t , your application now uses a paid plan and you start getting billed.

By default, you are converted to a Standard 2 pricing plan.

Now that you've learned about how to manage your bill in Azure IoT Central application, the suggested next step is

to learn about Customize application UI in Azure IoT Central.

Customize the Azure IoT Central UI
3/24/2020 • 2 minutes to read • Edit Online

This article describes how, as an administrator, you can customize the UI of your application by applying custom

themes and modifying the help links to point to your own custom help resources.

The following screenshot shows a page using the standard theme:

The following screenshot shows a page using a custom screenshot with the customized UI elements highlighted:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/iot-central/core/howto-customize-ui.md

Create theme
To create a custom theme, navigate to the Customize your application page in the Administration section:

Application logo

Browser icon (favicon)

Browser colors

NOTE

Changes for operators

Replace help links

On this page, you can customize the following aspects of your application:

A PNG image, no larger than 1 MB, with a transparent background. This logo displays to the left on the IoT Central

application title bar.

If your logo image includes the name of your application, you can hide the application name text. For more

information, see Manage your application.

A PNG image, no larger than 32 x 32 pixels, with a transparent background. A web browser can use this image in

the address bar, history, bookmarks, and browser tab.

You can change the color of the page header and the color used for accenting buttons and other highlights. Use a

six character hex color value in the format ##ff6347 . For more information about HEX Value color notation, see

HTML Colors.

You can always revert back to the default options on the Customize your application page.

If an administrator creates a custom theme, then operators and other users of your application can no longer

choose a theme in Settings .

To provide custom help information to your operators and other users, you can modify the links on the application

Help menu.

To modify the help links, navigate to the Customize help page in the Administration section:

https://www.w3schools.com/html/html_colors.asp

NOTE

Next steps

You can also add new entries to the help menu and remove default entries:

You can always revert back to the default help links on the Customize help page.

Now that you've learned how to customize the UI in your IoT Central application, here are some suggested next

steps:

Administer your application

Add tiles to your dashboard

Export your application
7/21/2020 • 3 minutes to read • Edit Online

Copy your application

This article describes how, as a solution manager, to export an IoT Central application to be able to reuse it.

You have two options:

You can create a copy of your application if you just need to create a duplicate copy of your application.

You can create an application template from your application if you plan to create multiple copies.

You can create a copy of any application, minus any device instances, device data history, and user data. The copy

uses a standard pricing plan that you'll be billed for. You can't create an application that uses the free pricing plan

by copying an application.

Select Copy . In the dialog box, enter the details for the new application. Then select Copy to confirm that you want

to continue. To learn more about the fields in the form, see the Create an application quickstart.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/iot-central/core/howto-use-app-templates.md

After the app copy operation succeeds, you can navigate to the new application using the link.

WARNING

Create an application template

WARNING

Copying an application also copies the definition of rules and email action. Some actions, such as Flow and Logic

Apps, are tied to specific rules via the Rule ID. When a rule is copied to a different application, it gets its own Rule

ID. In this case, users will have to create a new action and then associate the new rule with it. In general, it's a good

idea to check the rules and actions to make sure they're up-to-date in the new app.

If a dashboard includes tiles that display information about specific devices, then those tiles show The requested resource

was not found in the new application. You must reconfigure these tiles to display information about devices in your new

application.

When you create an Azure IoT Central application, you have a choice of built-in sample templates. You can also

create your own application templates from existing IoT Central applications. You can then use your own

application templates when you create new applications.

When you create an application template, it includes the following items from your existing application:

The default application dashboard, including the dashboard layout and all the tiles you've defined.

Device templates, including measurements, settings, properties, commands, and dashboard.

Rules. All rule definitions are included. However actions, except for email actions, aren't included.

Device sets, including their conditions and dashboards.

If a dashboard includes tiles that display information about specific devices, then those tiles show The requested resource

was not found in the new application. You must reconfigure these tiles to display information about devices in your new

application.

When you create an application template, it doesn't include the following items:

Devices

Users

Use an application template

Continuous data export definitions

Add these items manually to any applications created from an application template.

To create an application template from an existing IoT Central application:

1. Go to the Administration section in your application.

2. Select Application Template Expor t .

3. On the Application Template Expor t page, enter a name and description for your template.

4. Select the Expor t button to create the application template. You can now copy the Shareable L ink that enables

someone to create a new application from the template:

To use an application template to create a new IoT Central application, you need a previously created Shareable

Link . Paste the Shareable L ink into your browser's address bar. The Create an application page displays with

your custom application template selected:

Manage application templates

Next steps

Select your pricing plan and fill out the other fields on the form. Then select Create to create a new IoT Central

application from the application template.

On the Application Template Expor t page, you can delete or update the application template.

If you delete an application template, you can no longer use the previously generated shareable link to create new

applications.

To update your application template, change the template name or description on the Application Template

Expor t page. Then select the Expor t button again. This action generates a new Shareable link and invalidates

any previous Shareable link URL.

Now that you've learned how to use application templates, the suggested next step is to learn how to Monitor the

overall health of the devices connected to an IoT Central application

Monitor the overall health of the devices connected
to an IoT Central application
7/21/2020 • 3 minutes to read • Edit Online

Trial applications

View metrics in the Azure portal

Azure portal permissions

IoT Central metrics

M ET RIC
M ET RIC DISP L AY
N A M E UN IT A GGREGAT IO N T Y P E DESC RIP T IO N

connectedDeviceCoun
t

Total Connected
Devices

Count Total Number of devices
connected to IoT
Central

c2d.property.read.suc
cess

Successful Device
Property Reads from
IoT Central

Count Total The count of all
successful property
reads initiated from
IoT Central

This article applies to operators and administrators.

In this article, you learn how to use the set of metrics provided by IoT Central to assess the overall health of the

devices connected to your IoT Central application.

Metrics are enabled by default for your IoT Central application and you access them from the Azure portal. The

Azure Monitor data platform exposes these metrics and provides several ways for you to interact with them. For

example, you can use charts in the Azure portal, a REST API, or queries in PowerShell or the Azure CLI.

Applications that use the free trial plan don't have an associated Azure subscription and so don't support Azure

Monitor metrics. You can convert an application to a standard pricing plan and get access to these metrics.

The following steps assume you have an IoT Central application with some connected devices.

To view IoT Central metrics in the portal:

1. Navigate to your IoT Central application resource in the portal. By default, IoT Central resources are located in a

resource group called IOTC.

2. To create a chart from your application's metrics, select Metr ics in the Monitor ing section.

Access to metrics in the Azure portal is managed by Azure role based access control. Use the Azure portal to add

users to the IoT Central application/resource group/subscription to grant them access. You must add a user in the

portal even they're already added to the IoT Central application. Use Azure built-in roles for finer grained access

control.

The following table describes the metrics that are currently available for IoT Central:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/iot-central/core/howto-monitor-application-health.md
https://portal.azure.com/
https://docs.microsoft.com/en-us/azure/azure-monitor/platform/data-platform-metrics
https://docs.microsoft.com/en-us/azure/role-based-access-control/overview
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles

c2d.property.read.failu
re

Failed Device Property
Reads from IoT
Central

Count Total The count of all failed
property reads
initiated from IoT
Central

d2c.property.read.suc
cess

Successful Device
Property Reads from
Devices

Count Total The count of all
successful property
reads initiated from
devices

d2c.property.read.failu
re

Failed Device Property
Reads from Devices

Count Total The count of all failed
property reads
initiated from devices

c2d.property.update.s
uccess

Successful Device
Property Updates
from IoT Central

Count Total The count of all
successful property
updates initiated from
IoT Central

c2d.property.update.f
ailure

Failed Device Property
Updates from IoT
Central

Count Total The count of all failed
property updates
initiated from IoT
Central

d2c.property.update.s
uccess

Successful Device
Property Updates
from Devices

Count Total The count of all
successful property
updates initiated from
devices

d2c.property.update.f
ailure

Failed Device Property
Updates from Devices

Count Total The count of all failed
property updates
initiated from devices

M ET RIC
M ET RIC DISP L AY
N A M E UN IT A GGREGAT IO N T Y P E DESC RIP T IO N

Metrics and invoices

Next steps

Metrics may differ from the numbers shown on your Azure IoT Central invoice. This situation occurs for a number

of reasons such as:

IoT Central standard pricing plans include two devices and varying message quotas for free. While the free

items are excluded from billing, they're still counted in the metrics.

IoT Central autogenerates one test device ID for each device template in the application. This device ID is

visible on the Manage test device page for a device template. Solution builders may choose to validate

their device templates before publishing them by generating code that uses these test device IDs. While

these devices are excluded from billing, they're still counted in the metrics.

While metrics may show a subset of device-to-cloud communication, all communication between the device

and the cloud counts as a message for billing.

Now that you've learned how to use application templates, the suggested next step is to learn how to Manage IoT

Central from the Azure portal

https://azure.microsoft.com/pricing/details/iot-central/
https://azure.microsoft.com/pricing/details/iot-central/

About your application
7/21/2020 • 2 minutes to read • Edit Online

Get information about your application

Next steps

This article shows you how to get information about your IoT Central application. You may need:

This information if you contact support.

The Azure subscription your application uses to locate billing information in the Azure portal.

The application's ID when you're working with the REST API.

The application's version to complete tasks such as adding a connector.

To get information about your IoT Central application:

1. Select the Help link on the top menu.

2. Select About your app.

3. The About your app page shows information about your application:

Use the Copy info button to copy the information to the clipboard.

Now that you know how to find the version of your IoT Central application, a suggested next step is to continue

exploring the how-to articles for administrators: Change IoT Central application settings.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/iot-central/core/howto-get-app-info.md

Manage IoT Central from the Azure portal
3/24/2020 • 2 minutes to read • Edit Online

Create IoT Central applications

Instead of creating and managing IoT Central applications on the Azure IoT Central application manager website,

you can use the Azure portal to manage your applications.

To create an application, navigate to the Azure portal and select Create a resource.

In Search the Marketplace bar, type IoT Central:

Select the IoT Central Application tile in the search results:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/iot-central/core/howto-manage-iot-central-from-portal.md
https://aka.ms/iotcentral
https://portal.azure.com
https://ms.portal.azure.com

Now, select Create:

Fill in all the fields in the form. This form is similar to the form you fill out to create applications on the Azure IoT

Central application manager website. For more information, see the Create an IoT Central application quickstart.

https://aka.ms/iotcentral

Manage existing IoT Central applications

NOTE

Location is the geography where you'd like to create your application. Typically, you should choose the location

that's physically closest to your devices to get optimal performance. Azure IoT Central is currently available in the

Australia , Asia Pacific, Europe, United States , United Kingdom, and Japan geographies. Once you choose a

location, you can't move your application to a different location later.

After filling out all fields, select Create.

If you already have an Azure IoT Central application you can delete it, or move it to a different subscription or

resource group in the Azure portal.

You can't see applications created on the free pricing plan in the Azure portal because they are not associated with your

subscription.

To get started, select All resources in the portal. Select Show hidden types and start typing the name of your

application in Filter by name to find it. Then select the IoT Central application you'd like to manage.

To navigate to the application, select the IoT Central Application URL :

https://azure.microsoft.com/global-infrastructure/geographies/

Next steps

To move the application to a different resource group, select change beside the resource group. On the Move

resources page, choose the resource group you'd like to move this application to:

To move the application to a different subscription, select change beside the subscription. On the Move

resources page, choose the subscription you'd like to move this application to:

Now that you've learned how to manage Azure IoT Central applications from the Azure portal, here is the

suggested next step:

Administer your application

Manage IoT Central from Azure CLI
5/5/2020 • 4 minutes to read • Edit Online

Prerequisites

Use Azure Cloud Shell

O P T IO N EXA M P L E/ L IN K

Select Tr y It in the upper-right corner of a code block.
Selecting Tr y It doesn't automatically copy the code to Cloud
Shell.

Go to https://shell.azure.com, or select the Launch Cloud
Shell button to open Cloud Shell in your browser.

Select the Cloud Shell button on the menu bar at the upper
right in the Azure portal.

TIP

Install the extension

Instead of creating and managing IoT Central applications on the Azure IoT Central application manager website,

you can use Azure CLI to manage your applications.

If you don't have an Azure subscription, create a free account before you begin.

Azure hosts Azure Cloud Shell, an interactive shell environment that you can use through your browser. You can

use either Bash or PowerShell with Cloud Shell to work with Azure services. You can use the Cloud Shell

preinstalled commands to run the code in this article without having to install anything on your local environment.

To start Azure Cloud Shell:

To run the code in this article in Azure Cloud Shell:

1. Start Cloud Shell.

2. Select the Copy button on a code block to copy the code.

3. Paste the code into the Cloud Shell session by selecting Ctr l +Shift+V on Windows and Linux or by

selecting Cmd+Shift+V on macOS.

4. Select Enter to run the code.

If you prefer to run Azure CLI on your local machine, see Install the Azure CLI. When you run Azure CLI locally, use

the az login command to sign in to Azure before you try the commands in this article.

If you need to run your CLI commands in a different Azure subscription, see Change the active subscription.

The commands in this article are part of the azure-iot CLI extension. Run the following command to install the

extension:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/iot-central/core/howto-manage-iot-central-from-cli.md
https://aka.ms/iotcentral
https://docs.microsoft.com/en-us/cli/azure/
https://azure.microsoft.com/free/?WT.mc_id=A261C142F
https://shell.azure.com
https://shell.azure.com
https://portal.azure.com
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/manage-azure-subscriptions-azure-cli?view=azure-cli-latest#change-the-active-subscription

az extension add --name azure-iot

Create an application

Create a resource group for the IoT Central application
az group create --location "East US" \
 --name "MyIoTCentralResourceGroup"

Create an IoT Central application
az iot central app create \
 --resource-group "MyIoTCentralResourceGroup" \
 --name "myiotcentralapp" --subdomain "mysubdomain" \
 --sku ST1 --template "iotc-pnp-preview" \
 --display-name "My Custom Display Name"

PA RA M ET ER DESC RIP T IO N

resource-group The resource group that contains the application. This
resource group must already exist in your subscription.

location By default, this command uses the location from the resource
group. Currently, you can create an IoT Central application in
the Australia, Asia Pacific, Europe, United States , United
Kingdom, and Japan geographies.

name The name of the application in the Azure portal.

subdomain The subdomain in the URL of the application. In the example,
the application URL is
https://mysubdomain.azureiotcentral.com .

sku Currently, you can use either ST1 or ST2 . See Azure IoT
Central pricing.

template The application template to use. For more information, see the
following table.

display-name The name of the application as displayed in the UI.

T EM P L AT E N A M E DESC RIP T IO N

iotc-pnp-preview Custom application Creates an empty application for you to
populate with your own device
templates and devices.

Use the az iot central app create command to create an IoT Central application in your Azure subscription. For

example:

These commands first create a resource group in the east US region for the application. The following table

describes the parameters used with the az iot central app create command:

Application templates

https://docs.microsoft.com/en-us/cli/azure/iot/central/app?view=azure-cli-latest#az-iot-central-app-create
https://azure.microsoft.com/pricing/details/iot-central/

iotc-default Custom application (legacy) Creates an empty legacy application for
you to populate with your own device
templates and devices.

iotc-condition In-store Analytics – Condition
Monitoring

Creates an application to connect and
monitor a store environment.

iotc-consumption Water Consumption Monitoring Creates an application to monitor and
control water flow.

iotc-distribution Digital Distribution Center Creates an application to improve
warehouse output efficiency by
digitizing key assets and actions.

iotc-inventory Smart Inventory Management Creates an application to automate
receiving, product movement, cycle
counting, and tracking.

iotc-logistics Connected Logistics Creates an application to track your
shipments in real time across air, water,
and land with location and condition
monitoring.

iotc-meter Smart Meter Analytics Creates an application to monitor
energy consumption, network status,
and identify trends to improve
customer support and smart meter
management.

iotc-mfc Micro-fulfillment Center Creates an application to digitally
connect and manage a fully automated
fulfillment center.

iotc-patient Continuous Patient Monitoring Creates an application to extend patient
care, reduce readmissions, and manage
diseases.

iotc-power Solar Power Monitoring Creates an application to monitor solar
panel status and energy generation
trends.

iotc-quality Water Quality Monitoring Creates an application to digitally
monitor water quality.

iotc-store In-store Analytics – Checkout Creates an application to monitor and
manage the checkout flow inside your
store.

iotc-waste Connected Waste Management Creates an application to monitor waste
bins and dispatch field operators.

T EM P L AT E N A M E DESC RIP T IO N

View your applications
Use the az iot central app list command to list your IoT Central applications and view metadata.

https://docs.microsoft.com/en-us/cli/azure/iot/central/app?view=azure-cli-latest#az-iot-central-app-list

Modify an application

az iot central app update --name myiotcentralapp \
 --resource-group MyIoTCentralResourceGroup \
 --set displayName="My new display name"

Remove an application

az iot central app delete --name myiotcentralapp \
 --resource-group MyIoTCentralResourceGroup

Next steps

Use the az iot central app update command to update the metadata of an IoT Central application. For example, to

change the display name of your application:

Use the az iot central app delete command to delete an IoT Central application. For example:

Now that you've learned how to manage Azure IoT Central applications from Azure CLI, here is the suggested next

step:

Administer your application

https://docs.microsoft.com/en-us/cli/azure/iot/central/app?view=azure-cli-latest#az-iot-central-app-update
https://docs.microsoft.com/en-us/cli/azure/iot/central/app?view=azure-cli-latest#az-iot-central-app-delete

Manage IoT Central from Azure PowerShell
5/5/2020 • 4 minutes to read • Edit Online

Prerequisites

Use Azure Cloud Shell

O P T IO N EXA M P L E/ L IN K

Select Tr y It in the upper-right corner of a code block.
Selecting Tr y It doesn't automatically copy the code to Cloud
Shell.

Go to https://shell.azure.com, or select the Launch Cloud
Shell button to open Cloud Shell in your browser.

Select the Cloud Shell button on the menu bar at the upper
right in the Azure portal.

TIP

Install the IoT Central module

Instead of creating and managing IoT Central applications on the Azure IoT Central application manager website,

you can use Azure PowerShell to manage your applications.

If you don't have an Azure subscription, create a free account before you begin.

Azure hosts Azure Cloud Shell, an interactive shell environment that you can use through your browser. You can

use either Bash or PowerShell with Cloud Shell to work with Azure services. You can use the Cloud Shell

preinstalled commands to run the code in this article without having to install anything on your local environment.

To start Azure Cloud Shell:

To run the code in this article in Azure Cloud Shell:

1. Start Cloud Shell.

2. Select the Copy button on a code block to copy the code.

3. Paste the code into the Cloud Shell session by selecting Ctr l +Shift+V on Windows and Linux or by

selecting Cmd+Shift+V on macOS.

4. Select Enter to run the code.

If you prefer to run Azure PowerShell on your local machine, see Install the Azure PowerShell module. When you

run Azure PowerShell locally, use the Connect-AzAccount cmdlet to sign in to Azure before you try the cmdlets

in this article.

If you need to run your PowerShell commands in a different Azure subscription, see Change the active subscription.

Run the following command to check the IoT Central module is installed in your PowerShell environment:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/iot-central/core/howto-manage-iot-central-from-powershell.md
https://aka.ms/iotcentral
https://docs.microsoft.com/en-us/powershell/azure/overview
https://azure.microsoft.com/free/?WT.mc_id=A261C142F
https://shell.azure.com
https://shell.azure.com
https://portal.azure.com
https://docs.microsoft.com/en-us/powershell/azure/install-az-ps
https://docs.microsoft.com/en-us/powershell/azure/manage-subscriptions-azureps?view=azps-3.4.0#change-the-active-subscription
https://docs.microsoft.com/en-us/powershell/module/az.iotcentral/

Get-InstalledModule -name Az.I*

Install-Module Az.IotCentral

Create an application

Create a resource group for the IoT Central application
New-AzResourceGroup -ResourceGroupName "MyIoTCentralResourceGroup" `
 -Location "East US"

Create an IoT Central application
New-AzIotCentralApp -ResourceGroupName "MyIoTCentralResourceGroup" `
 -Name "myiotcentralapp" -Subdomain "mysubdomain" `
 -Sku "ST1" -Template "iotc-pnp-preview" `
 -DisplayName "My Custom Display Name"

PA RA M ET ER DESC RIP T IO N

ResourceGroupName The resource group that contains the application. This
resource group must already exist in your subscription.

Location By default, this cmdlet uses the location from the resource
group. Currently, you can create an IoT Central application in
the Australia, Asia Pacific, Europe, United States ,
United Kingdom, and Japan geographies.

Name The name of the application in the Azure portal.

Subdomain The subdomain in the URL of the application. In the example,
the application URL is
https://mysubdomain.azureiotcentral.com .

Sku Currently, you can use either ST1 or ST2 . See Azure IoT
Central pricing.

Template The application template to use. For more information, see
the following table.

DisplayName The name of the application as displayed in the UI.

T EM P L AT E N A M E DESC RIP T IO N

If the list of installed modules doesn't include Az.IotCentral , run the following command:

Use the New-AzIotCentralApp cmdlet to create an IoT Central application in your Azure subscription. For example:

The script first creates a resource group in the east US region for the application. The following table describes the

parameters used with the New-AzIotCentralApp command:

Application templates

https://docs.microsoft.com/en-us/powershell/module/az.iotcentral/new-aziotcentralapp
https://azure.microsoft.com/pricing/details/iot-central/

iotc-pnp-preview Custom application Creates an empty application for you to
populate with your own device
templates and devices.

iotc-default Custom application (legacy) Creates an empty legacy application for
you to populate with your own device
templates and devices.

iotc-condition In-store Analytics – Condition
Monitoring

Creates an application to connect and
monitor a store environment.

iotc-consumption Water Consumption Monitoring Creates an application to monitor and
control water flow.

iotc-distribution Digital Distribution Center Creates an application to improve
warehouse output efficiency by
digitizing key assets and actions.

iotc-inventory Smart Inventory Management Creates an application to automate
receiving, product movement, cycle
counting, and tracking.

iotc-logistics Connected Logistics Creates an application to track your
shipments in real time across air, water,
and land with location and condition
monitoring.

iotc-meter Smart Meter Analytics Creates an application to monitor
energy consumption, network status,
and identify trends to improve
customer support and smart meter
management.

iotc-mfc Micro-fulfillment Center Creates an application to digitally
connect and manage a fully automated
fulfillment center.

iotc-patient Continuous Patient Monitoring Creates an application to extend patient
care, reduce readmissions, and manage
diseases.

iotc-power Solar Power Monitoring Creates an application to monitor solar
panel status and energy generation
trends.

iotc-quality Water Quality Monitoring Creates an application to digitally
monitor water quality.

iotc-store In-store Analytics – Checkout Creates an application to monitor and
manage the checkout flow inside your
store.

iotc-waste Connected Waste Management Creates an application to monitor waste
bins and dispatch field operators.

T EM P L AT E N A M E DESC RIP T IO N

View your IoT Central applications

Modify an application

Set-AzIotCentralApp -Name "myiotcentralapp" `
 -ResourceGroupName "MyIoTCentralResourceGroup" `
 -DisplayName "My new display name"

Remove an application

Remove-AzIotCentralApp -ResourceGroupName "MyIoTCentralResourceGroup" `
 -Name "myiotcentralapp"

Next steps

Use the Get-AzIotCentralApp cmdlet to list your IoT Central applications and view metadata.

Use the Set-AzIotCentralApp cmdlet to update the metadata of an IoT Central application. For example, to change

the display name of your application:

Use the Remove-AzIotCentralApp cmdlet to delete an IoT Central application. For example:

Now that you've learned how to manage Azure IoT Central applications from Azure PowerShell, here is the

suggested next step:

Administer your application

https://docs.microsoft.com/en-us/powershell/module/az.iotcentral/get-aziotcentralapp
https://docs.microsoft.com/en-us/powershell/module/az.iotcentral/set-aziotcentralapp
https://docs.microsoft.com/en-us/powershell/module/az.iotcentral/remove-aziotcentralapp

Manage IoT Central programmatically
5/21/2020 • 2 minutes to read • Edit Online

Install the SDK

SDK REP O SITO RY PA C KA GE IN STA L L

Azure IotCentralClient SDK for JavaScript npm install @azure/arm-iotcentral

Microsoft Azure SDK for Python pip install azure-mgmt-iotcentral

Azure SDK for .NET dotnet add package
Microsoft.Azure.Management.IotCentral

Microsoft Azure SDK for Ruby - Resource Management
(preview)

gem install azure_mgmt_iot_central

Azure SDK for Java Maven package

Azure SDK for Go Package releases

Samples

Next steps

Instead of creating and managing IoT Central applications on the Azure IoT Central application manager website,

you can manage your applications programmatically using the Azure SDKs. Supported languages include

JavaScript, Python, C#, Ruby, and Go.

The following table lists the SDK repositories and package installation commands:

The Azure IoT Central ARM SDK samples repository has code samples for multiple programming languages that

show you how to create, update, list, and delete Azure IoT Central applications.

Now that you've learned how to manage Azure IoT Central applications programmatically, a suggested next step is

to learn more about the Azure Resource Manager service.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/iot-central/core/howto-manage-iot-central-programmatically.md
https://aka.ms/iotcentral
https://github.com/Azure/azure-sdk-for-js/tree/master/sdk/iotcentral/arm-iotcentral
https://github.com/Azure/azure-sdk-for-python/tree/master/sdk/iothub/azure-mgmt-iotcentral/azure/mgmt/iotcentral
https://github.com/Azure/azure-sdk-for-net/tree/master/sdk/iotcentral/Microsoft.Azure.Management.IotCentral
https://github.com/Azure/azure-sdk-for-ruby/tree/master/management/azure_mgmt_iot_central/lib/2018-09-01/generated/azure_mgmt_iot_central
https://github.com/Azure/azure-sdk-for-java/tree/master/sdk/iotcentral
https://search.maven.org/search?q=a:azure-mgmt-iotcentral
https://github.com/Azure/azure-sdk-for-go/tree/master/services/iotcentral/mgmt/2018-09-01/iotcentral
https://github.com/Azure/azure-sdk-for-go/releases
https://docs.microsoft.com/en-us/samples/azure-samples/azure-iot-central-arm-sdk-samples/azure-iot-central-arm-sdk-samples/
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/overview

Create and manage an Azure IoT Central application
from the CSP portal
4/8/2020 • 3 minutes to read • Edit Online

The Microsoft Cloud Solution Provider (CSP) program is a Microsoft Reseller program. Its intent is to provide our

channel partners with a one-stop program to resell all Microsoft Commercial Online Services. Learn more about

the Cloud Solution Provider program.

As a CSP, you can create and manage Microsoft Azure IoT Central applications on behalf of your customers through

the Microsoft Partner Center. When Azure IoT Central applications are created on behalf of customers by CSPs, just

like with other CSP managed Azure services, CSPs manage billing for customers. A charge for Azure IoT Central will

appear in your total bill in the Microsoft Partner Center.

To get started, sign-in to your account on the Microsoft Partner Portal and select a customer for whom you want to

create an Azure IoT Central application. Navigate to Service Management for the customer from the left nav.

Azure IoT Central is listed as a service available to administer. Select the Azure IoT Central link on the page to create

new applications or manage existing applications for this customer.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/iot-central/core/howto-create-and-manage-applications-csp.md
https://partner.microsoft.com/cloud-solution-provider
https://partnercenter.microsoft.com/partner/home

You land on the Azure IoT Central Application Manager page. Azure IoT Central keeps context that you came from

the Microsoft Partner Center and that you came to manage that particular customer. You see this acknowledged in

the header of the Application Manager page. From here, you can either navigate to an existing application you had

created earlier for this customer to manage or create a new application for the customer.

To create an Azure IoT Central application, select Build in the left menu. Choose one of the industry templates, or

choose Custom app to create an application from scratch. This will load the Application Creation page. You must

complete all the fields on this page and then choose Create. You find more information about each of the fields

below.

Pricing plan

Application name

Application URL

Directory

You can only create applications that use a standard pricing plan as a CSP. To showcase Azure IoT Central to your

customer, you can create an application that uses the free pricing plan separately. Learn more about the free and

standard pricing plans on the Azure IoT Central pricing page.

You can only create applications that use a standard pricing plan as a CSP. To showcase Azure IoT Central to your

customer, you can create an application that uses the free pricing plan separately. Learn more about the free and

standard pricing plans on the Azure IoT Central pricing page.

The name of your application is displayed on the Application Manager page and within each Azure IoT Central

application. You can choose any name for your Azure IoT Central application. Choose a name that makes sense to

you and to others in your organization.

The application URL is the link to your application. You can save a bookmark to it in your browser or share it with

others.

When you enter the name for your application, your application URL is autogenerated. If you prefer, you can choose

a different URL for your application. Each Azure IoT Central URL must be unique within Azure IoT Central. You see

an error message if the URL you choose has already been taken.

Since Azure IoT Central has context that you came to manage the customer you selected in the Microsoft Partner

Portal, you see just the Azure Active Directory tenant for that customer in the Directory field.

https://azure.microsoft.com/pricing/details/iot-central/
https://azure.microsoft.com/pricing/details/iot-central/

Azure subscription

Location

Application template

Next steps

An Azure Active Directory tenant contains user identities, credentials, and other organizational information.

Multiple Azure subscriptions can be associated with a single Azure Active Directory tenant.

To learn more, see Azure Active Directory.

An Azure subscription enables you to create instances of Azure services. Azure IoT Central automatically finds all

Azure Subscriptions of the customer to which you have access, and displays them in a dropdown on the Create

Application page. Choose an Azure subscription to create a new Azure IoT Central Application.

If you don't have an Azure subscription, you can create one in the Microsoft Partner Center. After you create the

Azure subscription, navigate back to the Create Application page. Your new subscription appears in the Azure

Subscr iption drop-down.

To learn more, see Azure subscriptions.

Location is the geography where you'd like to create the application. Typically, you should choose the location

that's physically closest to your devices to get optimal performance. Currently, you can create an IoT Central

application in the Australia , Asia Pacific, Europe, United States , United Kingdom, and Japan geographies.

Once you choose a location, you can't later move your application to a different location.

Choose the application template you want to use for your application.

Now that you have learned how to create an Azure IoT Central application as a CSP, here is the suggested next step:

Administer your application

https://docs.microsoft.com/en-us/azure/active-directory/
https://docs.microsoft.com/en-us/azure/guides/developer/azure-developer-guide#understanding-accounts-subscriptions-and-billing
https://azure.microsoft.com/global-infrastructure/geographies/

Manage your personal application preferences
3/24/2020 • 2 minutes to read • Edit Online

Changing language

Changing theme

NOTE

This article applies to operators, builders, and administrators.

IoT Central provides the flexibility to customize your applications to fit your need. We also provide some flexibility

on a per-user basis to customize your own view. This article describes the various customization options that a

user can apply to their profile.

IoT Central is supported in multiple languages. You can switch your preferred language by using the language

picker on the settings icon on the top navigation bar. Once you've changed your language, IoT Central remembers

your selection and applies it across all your applications. Customization within the application such dashboard

images aren't localized.

We have support for both dark theme and light theme. While the light theme is the default, you can change the

theme by selecting the settings icon on the top navigation bar.

The option to choose between light and dark themes isn't available if your administrator has configured a custom theme for

the application.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/iot-central/core/howto-manage-preferences.md

Next steps
Now that you've learned how to manage your profile in Azure IoT Central, here is the suggested next step:

Toggle live chat

Toggle live chat
3/24/2020 • 2 minutes to read • Edit Online

NOTE

Chat with us

This how-to article shows you how to toggle the live chat in your IoT Central application. You can use live chat to

access technical support.

The chat option is available only for applications created using the free pricing plan.

To get technical support, open your IoT Central application and select Chat with us .

You can type a question as shown in the following screenshot:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/iot-central/core/howto-show-hide-chat.md

Hide chat

Enable chat

Next steps

To hide the chat, choose Hide Chat in the Help panel:

To show the chat, choose Show Chat in the Help panel:

Now that you've learned how to toggle live chat in Azure IoT Central, here is the suggested next step:

Add tiles to your dashboard

Building retail solutions with Azure IoT Central
4/9/2020 • 7 minutes to read • Edit Online

Connected logistics

Azure IoT Central is an IoT app platform that reduces the burden and cost associated with developing, managing,

and maintaining enterprise-grade IoT solutions. Choosing to build with Azure IoT Central gives you the

opportunity to focus your time, money, and energy on transforming your business with IoT data, rather than just

maintaining and updating a complex and continually evolving IoT infrastructure.

This article, describes several retail-specific IoT Central application templates. As a solution builder, you can use

these templates to build IoT solutions that optimize supply chains, improve in-store experiences for customers, and

track inventory more efficiently.

The following sections describe the capabilities of these application templates:

Global logistics spending is expected to reach $10.6 trillion in 2020. Transportation of goods accounts for the

majority of this spending and shipping providers are under intense competitive pressure and constraints.

You can use IoT sensors to collect and monitor ambient conditions such as temperature, humidity, tilt, shock, light,

and the location of a shipment. You can combine telemetry gathered from IoT sensors and devices with other data

sources such as weather and traffic information in cloud-based business intelligence systems.

The benefits of a connected logistics solution include:

Shipment monitoring with real-time tracing and tracking.

Shipment integrity with real-time ambient condition monitoring.

Security from theft, loss, or damage of shipments.

Geo-fencing, route optimization, fleet management, and vehicle analytics.

Forecasting for predictable departure and arrival of shipments.

The following screenshots show the out-of-the-box dashboard in the application template. The dashboard is fully

customizable to meet your specific solution requirements:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/iot-central/retail/overview-iot-central-retail.md

Digital distribution center

To learn more, see the Deploy and walk through a connected logistics application template tutorial.

https://docs.microsoft.com/en-us/azure/iot-central/retail/tutorial-iot-central-connected-logistics

As manufacturers and retailers establish worldwide presences, their supply chains branch out and become more

complex. Consumers now expect large selections of products to be available, and for those goods to arrive within

one or two days of purchase. Distribution centers must adapt to these trends while overcoming existing

inefficiencies.

Today, a reliance on manual labor means that picking and packing accounts for 55-65% of distribution center costs.

Manual picking and packing are also typically slower than automated systems, and rapidly fluctuating staffing

needs make it even harder to meet shipping volumes. This seasonal fluctuation results in high staff turnover and

increase the likelihood of costly errors.

Solutions based on IoT enabled cameras can deliver transformational benefits by enabling a digital feedback loop.

Data from across the distribution center leads to actionable insights that, in turn, results in better data.

The benefits of a digital distribution center include:

Cameras monitor goods as they arrive and move through the conveyor system.

Automatic identification of faulty goods.

Efficient order tracking.

Reduced costs, improved productivity, and optimized usage.

The following screenshot shows the out-of-the-box dashboard in the application template. The dashboard is fully

customizable to meet your specific solution requirements:

In-store analytics - condition monitoring

To learn more, see the Deploy and walk through a digital distribution center application template tutorial.

For many retailers, environmental conditions within their stores are a key differentiator from their competitors.

Retailers want to maintain pleasant conditions within their stores for the benefit of their customers.

As a solution builder, you can use the IoT Central in-store analytics condition monitoring application template to

build an end-to-end solution. The application template lets you digitally connect to and monitor a retail store

environment using of different kinds of sensor devices. These sensor devices generate telemetry that you can

convert into business insights helping the retailer to reduce operating costs and create a great experience for their

customers.

Use the application template to:

Connect a variety of IoT sensors to an IoT Central application instance.

Monitor and manage the health of the sensor network as well as any gateway devices in the environment.

Create custom rules around the environmental conditions within a store to trigger alerts for store managers.

Transform the environmental conditions within your store into insights that the retail store team can use to

improve the customer experience.

Export the aggregated insights into existing or new business applications to provide useful and timely

information to retail staff.

The application template comes with a set of device templates and uses a set of simulated devices to populate the

dashboard.

The following screenshot shows the out-of-the-box dashboard in the application template. The dashboard is fully

customizable to meet your specific solution requirements:

https://docs.microsoft.com/en-us/azure/iot-central/retail/tutorial-iot-central-digital-distribution-center

In-store analytics - checkout

To learn more, see the Create an in-store analytics application in Azure IoT Central tutorial.

For some retailers, the checkout experience within their stores is a key differentiator from their competitors.

Retailers want to deliver a smooth checkout experience within their stores to encourage customers to return.

As a solution builder, you can use the IoT Central in-store analytics checkout application template to build a

solution that delivers insights from around the checkout zone of a store to retail staff. For example, sensors can

provide information about queue lengths and average wait times for each checkout lane.

Use the application template to:

Connect a variety of IoT sensors to an IoT Central application instance.

Monitor and manage the health of the sensor network as well as any gateway devices in the environment.

Create custom rules around the checkout condition within a store to trigger alerts for retail staff.

Transform the checkout conditions within the store into insights that the retail store team can use to improve

the customer experience.

Export the aggregated insights into existing or new business applications to provide useful and timely

information to retail staff.

The application template comes with a set of device templates and uses a set of simulated devices to populate the

dashboard with lane occupancy data.

The following screenshot shows the out-of-the-box dashboard in the application template. The dashboard is fully

customizable to meet your specific solution requirements:

https://docs.microsoft.com/en-us/azure/iot-central/retail/tutorial-in-store-analytics-create-app

Smart inventory management

To learn more, see the Create an in-store analytics application in Azure IoT Central tutorial.

Inventory is the stock of goods a retailer holds. Inventory management is critical to ensure the right product is in

the right place at the right time. A retailer must balance the costs of storing too much inventory against the costs

of not having sufficient items in stock to meet demand.

IoT data generated from radio-frequency identification (RFID) tags, beacons, and cameras provide opportunities to

improve inventory management processes. You can combine telemetry gathered from IoT sensors and devices

with other data sources such as weather and traffic information in cloud-based business intelligence systems.

The benefits of smart inventory management include:

Reducing the risk of items being out of stock and ensuring the desired customer service level.

In-depth analysis and insights into inventory accuracy in near real time.

Tools to help decide on the right amount of inventory to hold to meet customer orders.

This application template focuses on device connectivity, and the configuration and management of RFID and

Bluetooth low energy (BLE) reader devices.

The following screenshot shows the out-of-the-box dashboard in the application template. The dashboard is fully

customizable to meet your specific solution requirements:

https://docs.microsoft.com/en-us/azure/iot-central/retail/tutorial-in-store-analytics-create-app

Micro-fulfillment center

To learn more, see the Deploy and walk through a smart inventory management application template tutorial.

In the increasingly competitive retail landscape, retailers constantly face pressure to close the gap between

demand and fulfillment. A new trend that has emerged to address the growing consumer demand is to house

inventory near the end customers and the stores they visit.

The IoT Central micro-fulfillment center application template enables solution builders to monitor and manage all

aspects of their fully automated fulfillment centers. The template includes a set of simulated condition monitoring

sensors and robotic carriers to accelerate the solution development process. These sensor devices capture

meaningful signals that can be converted into business insights allowing retailers to reduce their operating costs

and create experiences for their customers.

The application template enables you to:

Seamlessly connect different kinds of IoT sensors such as robots or condition monitoring sensors to an IoT

Central application instance.

Monitor and manage the health of the sensor network, and any gateway devices in the environment.

Create custom rules around the environmental conditions within a fulfillment center to trigger appropriate

alerts.

Transform the environmental conditions within your fulfillment center into insights that can be leveraged by the

retail warehouse team.

Export the aggregated insights into existing or new business applications for the benefit of the retail staff

members.

The following screenshot shows the out-of-the-box dashboard in the application template. The dashboard is fully

https://docs.microsoft.com/en-us/azure/iot-central/retail/tutorial-iot-central-smart-inventory-management

Next steps

customizable to meet your specific solution requirements:

To learn more, see the Deploy and walk through the micro-fulfillment center application template tutorial.

To get started building a retail solution:

Get started with the Create an in-store analytics application in Azure IoT Central tutorial that walks you through

how to build a solution with one of the in-store analytics application templates.

Deploy and walk through a connected logistics application template.

Deploy and walk through a digital distribution center application template.

Deploy and walk through a smart inventory management application template.

Deploy and walk through the micro-fulfillment center application template.

Learn more about IoT Central in the IoT Central overview.

https://docs.microsoft.com/en-us/azure/iot-central/retail/tutorial-micro-fulfillment-center
https://docs.microsoft.com/en-us/azure/iot-central/retail/tutorial-in-store-analytics-create-app
https://docs.microsoft.com/en-us/azure/iot-central/retail/tutorial-iot-central-connected-logistics
https://docs.microsoft.com/en-us/azure/iot-central/retail/tutorial-iot-central-digital-distribution-center
https://docs.microsoft.com/en-us/azure/iot-central/retail/tutorial-iot-central-smart-inventory-management
https://docs.microsoft.com/en-us/azure/iot-central/retail/tutorial-micro-fulfillment-center
file:///T:/seec/scjw/azure/iot-central/preview/overview-iot-central.html

Build energy solutions with IoT Central
2/4/2020 • 2 minutes to read • Edit Online

What is the smart meter monitoring application?

Smart meters and solar panels are playing an important role in the energy industry transformation. The smart

meters give more controls and real-time insights about energy consumptions and solar panels growth is driving

breakthrough in renewable energy generation. The smart meter and solar panel monitoring apps are sample

templates to show the various capabilities. Partners can leverage these templates to build energy solutions with IoT

Central for their specific needs. No new coding and no additional cost are required to deploy and use these

applications. Learn more about energy application templates and their capabilities.

The smart meters not only enable automated billing, but also advanced metering use cases such as real-time

readings and bi-directional communication. The smart meter app template enables utilities and partners to

monitor smart meters status and data, define alarms and notifications. It provides sample commands, such as

disconnect meter and update software. The meter data can be set up to egress to other business applications and

to develop custom solutions.

App's key functionalities:

Meter sample device model

Meter info and live status

Meter readings such as energy, power, and voltages

Meter command samples

Built-in visualization and dashboards

Extensibility for custom solution development

You can try the smart meter monitoring app for free without an Azure subscription, and any commitments.

After you deploy the app, you'll see the simulated meter data on the dashboard, as shown in the figure below. This

template is a sample app that you can easily extend and customize for your specific use cases.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/iot-central/energy/overview-iot-central-energy.md
https://apps.azureiotcentral.com/build/new/smart-meter-monitoring

What is the solar panel monitoring application?
The solar panel monitoring app enables utilities and partners to monitor solar panels, such as their energy

generation and connection status in near real time. It can send notifications based on defined threshold criteria. It

provides sample commands, such as update firmware and other properties. The solar panel data can be set up to

egress to other business applications and to develop custom solutions.

App's key functionalities:

Solar panel sample device model

Solar Panel info and live status

Solar energy generation and other readings

Command and control samples

Built-in visualization and dashboards

Extensibility for custom solution development

You can try the solar panel monitoring app for free without an Azure subscription and any commitments.

After you deploy the app, you'll see the simulated solar panel data within 1-2 minutes, as shown in the dashboard

below. This template is a sample app that you can easily extend and customize for your specific use cases.

https://apps.azureiotcentral.com/build/new/solar-panel-monitoring

Next steps
To get started building an energy solution:

Create application templates for free: smart meter app, solar panel app

Learn about smart meter monitoring app concepts

Learn about solar panel monitoring app concepts

Learn about IoT Central platform

https://apps.azureiotcentral.com/build/new/smart-meter-monitoring
https://apps.azureiotcentral.com/build/new/solar-panel-monitoring
https://docs.microsoft.com/en-us/azure/iot-central/energy/concept-iot-central-smart-meter-app
https://docs.microsoft.com/en-us/azure/iot-central/energy/concept-iot-central-solar-panel-app
https://docs.microsoft.com/en-us/azure/iot-central/

Building government solutions with Azure IoT Central
2/4/2020 • 2 minutes to read • Edit Online

What is Water Quality Monitoring application template?

What is Water Consumption Monitoring application template?

Get started with building smart city solutions using Azure IoT Central application templates. Start now with water

quality monitor ing , water consumption monitor ing , and connected waste management.

Traditional water quality monitoring relies on manual sampling techniques and field laboratory analysis, which is

time consuming and costly. By remotely monitoring water quality in real-time, water quality issues can be

managed before citizens are affected. Moreover, with advanced analytics, water utilities, and environmental

agencies can act on early warnings on potential water quality issues and plan on water treatment in advance.

Water Quality Monitoring app is an IoT Central app template to help you kickstart your IoT solution development

and enable water utilities to digitally monitor water quality in smart cities.

The App template consists of:

Sample operator dashboards

Sample water quality monitor device templates

Simulated water quality monitor devices

Pre-configured rules and jobs

Branding using white labeling

Get started with the Water Quality Monitoring application tutorial.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/iot-central/government/overview-iot-central-government.md
https://docs.microsoft.com/en-us/azure/iot-central/government/tutorial-water-quality-monitoring

What is Connected Waste Management application template?

Traditional water consumption tracking relies on water operators manually reading water consumption meters at

the meter sites. More and more cities are replacing traditional meters with advanced smart meters enabling

remote monitoring of consumption and remotely controlling valves to control water flow. Water consumption

monitoring coupled with digital feedback message to the citizen can increase awareness and reduce water

consumption.

Water Consumption Monitoring app is an IoT Central app template to help you kickstart your IoT solution

development to enable water utilities and cities to remotely monitor and control water flow to reduce

consumption.

The Water Consumption Monitoring app template consists of pre-configured:

Sample operator dashboards

Sample water quality monitor device templates

Simulated water quality monitor devices

Pre-configured rules and jobs

Branding using white labeling

Get started with the Water Consumption Monitoring application tutorial.

Connected Waste Management app is an IoT Central app template to help you kickstart your IoT solution

development to enable smart cities to remotely monitor to maximize efficient waste collection.

https://docs.microsoft.com/en-us/azure/iot-central/government/tutorial-water-consumption-monitoring

Next steps

The Connected Waste Management app template consist of pre-configured:

Sample operator dashboards

Sample connected waste bin device templates

Simulated connected waste bin devices

Pre-configured rules and jobs

Branding using white labeling

Get started with the Connected Waste Management application tutorial.

Try any of the Government application templates in IoT Central for free create app

Learn about Water Quality Monitoring concepts

Learn about Water Consumption Monitoring concepts

Learn about Connected Waste Management concepts

Learn about IoT Central, see IoT Central overview

https://docs.microsoft.com/en-us/azure/iot-central/government/tutorial-connected-waste-management
https://apps.azureiotcentral.com/build/government
https://docs.microsoft.com/en-us/azure/iot-central/government/concepts-waterqualitymonitoring-architecture
https://docs.microsoft.com/en-us/azure/iot-central/government/concepts-waterconsumptionmonitoring-architecture
https://docs.microsoft.com/en-us/azure/iot-central/government/concepts-connectedwastemanagement-architecture
https://docs.microsoft.com/en-us/azure/iot-central/core/overview-iot-central

Building healthcare solutions with Azure IoT Central
2/4/2020 • 2 minutes to read • Edit Online

What is continuous patient monitoring template?

Learn to build healthcare solutions with Azure IoT Central using application templates.

In the healthcare IoT space, Continuous Patient Monitoring is one of the key enablers of reducing the risk of

readmissions, managing chronic diseases more effectively, and improving patient outcomes. Continuous Patient

Monitoring can be split into two major categories:

1. In-patient monitor ing : Using medical wearables and other devices in the hospital, care teams can monitor

patient vital signs and medical conditions without having to send a nurse to check up on a patient multiple

times a day. Care teams can understand the moment that a patient needs critical attention through notifications

and prioritizes their time effectively.

2. Remote patient monitor ing : By using medical wearables and patient reported outcomes (PROs) to monitor

patients outside of the hospital, the risk of readmission can be lowered. Data from chronic disease patients and

rehabilitation patients can be collected to ensure that patients are adhering to care plans and that alerts of

patient deterioration can be surfaced to care teams before they become critical.

This application template can be used to build solutions for both categories of Continuous Patient Monitoring. The

benefits include:

Seamlessly connect different kinds of medical wearables to an IoT Central instance.

Monitor and manage the devices to ensure they remain healthy.

Create custom rules around device data to trigger appropriate alerts.

Export your patient health data to the Azure API for FHIR, a compliant data store.

Export the aggregated insights into existing or new business applications.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/iot-central/healthcare/overview-iot-central-healthcare.md

Next steps
To get started building a Continuous Patient monitoring solution:

Deploy the application template

See an example architecture

https://docs.microsoft.com/en-us/azure/iot-central/healthcare/tutorial-continuous-patient-monitoring
https://docs.microsoft.com/en-us/azure/iot-central/healthcare/concept-continuous-patient-monitoring-architecture

Azure IoT Central customer data request features
7/21/2020 • 2 minutes to read • Edit Online

NOTE

Identifying customer data

Deleting customer data

Exporting customer data

Links to additional documentation

Azure IoT Central is a fully managed Internet of Things (IoT) software-as-a-service solution that makes it easy to

connect, monitor, and manage your IoT assets at scale, create deep insights from your IoT data, and take informed

action.

This article provides steps for how to delete personal data from the device or service and can be used to support your

obligations under the GDPR. If you’re looking for general info about GDPR, see the GDPR section of the Service Trust portal.

Azure Active Directory Object-IDs are used to identify users and assign roles. The Azure IoT Central portal displays

user email addresses for role assignments but only the Azure Active Directory Object-ID is stored, the email

address is dynamically queried from Azure Active Directory. Azure IoT Central administrators can view, export, and

delete application users in the user administration section of an Azure IoT Central application.

Within the application, email addresses can be configured to receive alerts. In this case, email addresses are stored

within IoT Central and must be managed from the in-app account administration page.

Regarding devices, Microsoft maintains no information and has no access to data that enables device to user

correlation. Many of the devices managed in Azure IoT Central are not personal devices, for example a vending

machine or coffee maker. Customers may, however, consider some devices to be personally identifiable and at their

discretion may maintain their own asset or inventory tracking systems that tie devices to individuals. Azure IoT

Central manages and stores all data associated with devices as if it were personal data.

When you use Microsoft enterprise services, Microsoft generates some information, known as system-generated

logs. These logs constitute factual actions conducted within the service and diagnostic data related to individual

devices, and are not related to user activity. Azure IoT Central system-generated logs are not accessible or

exportable by application administrators.

The ability to delete user data is only provided through the IoT Central administration page. Application

administrators can select the user to be deleted and select Delete in the upper right corner of the application to

delete the record. Application administrators can also remove individual accounts that are no longer associated

with the application in question.

After a user is deleted, no further alerts are emailed to them. However, their email address must be individually

removed from each configured alert.

The ability to export data is only provided through the IoT Central administration page. Customer data, including

assigned roles, can be selected, copied, and pasted by an application administrator.

For more information about account administration, including role definitions, see How to administer your

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/iot-central/core/iot-central-customer-data-requests.md
https://servicetrust.microsoft.com/ViewPage/GDPRGetStarted

application.

Supported browsers for Azure IoT Central
10/27/2019 • 2 minutes to read • Edit Online

Supported browsers

Required protocols

This article applies to operators, builders, and administrators.

Azure IoT Central can be accessed across most modern desktops, tablets, and browsers. The following article

outlines the list of supported browsers and required connectivity.

We recommend that you use the most up-to-date browser that's compatible with your operating system. The

following browsers are supported:

Microsoft Edge (latest version)

Safari (latest version, Mac only)

Chrome (latest version)

Firefox (latest version)

Azure IoT Central requires that your network supports both the HTTPS and WebSocket protocols for outbound

connectivity.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/iot-central/core/iot-central-supported-browsers.md

	Cover Page
	Azure IoT Central documentation
	Overview
	What is Azure IoT Central
	Tour of the UI
	Develop devices
	Recent updates
	June 2020 new and updated features
	June 2020 UI and documentation updates
	May 2020 jobs and metrics updates
	May 2020 dashboard updates
	April 2020 new features
	April 2020 updates
	March 2020

	Quickstarts
	1. Create a new application
	2. Add a simulated device
	3. Configure rules and actions
	4. Monitor your devices

	Tutorials
	Get connected
	Connect a device (Node.js)
	Connect a device (Python)
	Connect a Plug and Play (preview) device
	Create a gateway device template
	Connect an IoT Edge device

	Stay connected
	Create a device group

	Transform
	Create a rule
	Explore the IoT Central APIs

	Concepts
	Architecture
	What are application templates?
	What are device templates?
	Device connectivity
	Connect IoT Edge devices

	How-to guides
	Get connected
	Set up a device template
	Prepare and connect an MXChip IoT DevKit
	Prepare and connect an Azure Sphere DevKit
	Prepare and connect a RuuviTag device
	Prepare and connect a Rigado Cascade 500
	Connect other IoT clouds

	Stay connected
	Monitor device connectivity using Azure CLI
	Version device template
	Manage your devices
	Configure rules
	Analyze your device data
	Add tiles to your dashboard
	Create Azure IoT Central personal dashboards
	Run a job

	Transform
	Export data to destinations in Azure
	Create webhooks on rules
	Use workflows to integrate with other services
	Connect Azure Monitor action groups on rules
	Create custom rules
	Create custom analytics with Databricks
	Visualize your data in Power BI

	Administration
	Manage your application
	Change application settings
	Manage users and roles
	Manage your bill
	Customize application UI
	Export your application
	Monitor application health
	About your application

	Manage from other places
	Manage from the Azure portal
	Manage from Azure CLI
	Manage from Azure PowerShell
	Manage programmatically
	Manage from CSP portal

	Personalize application
	Manage your personal preferences
	Toggle live chat

	Reference
	Azure CLI

	Resources
	Support and help options
	Industry application templates
	Retail
	Energy
	Government
	Healthcare

	Azure IoT services
	IoT Hub
	IoT Hub Device Provisioning Service
	IoT Central
	IoT Edge
	IoT solution accelerators
	IoT Plug and Play
	Azure Maps
	Time Series Insights

	Azure IoT SDKs
	IoT Service SDKs
	IoT Device SDKs

	IoT Central API reference
	Customer data requests
	Supported browsers
	Azure IoT Central (legacy templates)

