


dotnet Report Builder – an Overview

dotnet Report Builder allows .Net developers to add Do It Yourself Ad Hoc 
reporting feature to their software. This means that your end users can 
quickly and easily build custom reports.  While some software may allow 
users to generate reports, those reports are often confined to a handful of 
different templates.  With .Net Report Builder, end users decide what fields 
are added to the report? How it’s formatted? and much more with a very 
friendly and intuitive Report Wizard. This is all done from inside your 
application. There’s no need to export data or run another program.

Who Needs Report Builder?
This software is for any Programmer or Software Company using ASP .Net 
Web Technology.  It’s especially useful for SaaS providers in accounting, 
record keeping, CRM, e-Commerce and other database solutions. 
Specifically where users will often want to create different reports that 
represent different types of data.  For example, in accounting, a user may 
need to create reports for income, expenses, profit and loss within a 
specific time frame, income from specific sources, and other custom 
reports.

What Does it Require?
Incorporating .Net Report Builder into an existing software takes very little 
time or coding. If the requirement is to build a standalone app for reporting 
only, that’s even simpler. First, the developer needs to set up the database 
schema in .Net Report Builder, which is easily done using the admin tool.  
Next, the developer has to setup the front end in an existing Visual Studio 
Project or a new one by simply adding .Net Report Builder’s nuget 
package contains the Controller, View and Script files will be added directly 
to the Visual Studio Solution.

https://dotnetreport.com/
https://www.nuget.org/packages/dotNetReport/
https://www.nuget.org/packages/dotNetReport/


The next step is adding the Api keys to the web.config file.  Once that’s 
done, you can open your application and see how Report Builder runs 
within it.  You can easily make style, labels or other cosmetic changes if 
you need to.

Note that setting up Report Builder does not require our company to have 
access to your client’s database or other information.  We understand that 
most Companies will be especially concerned about the security of their 
information, but you can rest assure that we never need access to your 
client’s data or your SQL connection.

Why Chose Report Builder over Similar Solutions?
There are two major reasons Report Builder is a great reporting solution.  
The first, as outlined above, is that it’s very small and easy to install.  It 
won’t add any considerable bulk to your program, nor will it take up hours 
of your programmers’ time in installing and configuring it.

The second reason Report Builder outclasses similar programs is that it’s 
very customizable.  You can incorporate Report Builder so deeply into your 



application that it’s virtually 
unidentifiable as a separate module.  
You can make it perfectly match 
everything you’ve done so that it 
doesn’t stand out at all. So it goes 
beyond white labelling.

Advantages of .Net Report 
Builder
Report Builder offers many advantages 
over designing your own reports and 
templates.  By allowing end users to 
create their own ad hoc reports, you 
don’t have to spend development time 
to create new report templates for them whenever they need one.  With 
that task off your developer’s plate, you’ll be able to focus on other clients 
and building new features or applications.

It’s very user-friendly and intuitive.  Even simple end users won’t face much 
of a learning curve thanks to the easy to use interface.  The Report Wizard 
makes selecting fields and applying filters very easy.  Once created, a 
custom report can be saved and updated or ran at any time in the future.

Getting Started with dotnet Report
Getting started with dotnet Report builder is very easy and quick. You can 
actually be up and running reports in less than 10 minutes!

This video explains all the steps you need to get going.

Click here to watch the tutorial video >>, or enable JavaScript if it is \

disabled in your browser.

https://dotnetreport.com/demo/report
http://www.youtube.com/watch?v=UcwZ6MQzxLk


Here are the steps described in detail:
Step 1: Create an online account and Data Connection

Even though dotnet Report Builder runs all data queries and connections 
locally in your environment, the API Service it uses is hosted on the cloud, 
and you need to start with an online account. This can easily be transferred 
to run on-prem on your local environment later if you decide to upgrade to 
the Enterprise version. Creating the online account is absolutely free and 
you don’t need to provide a lot of information or a credit card.

However, you do need the API keys provided in the online account to 
connect to the service, so head over to the signup page, and create an 
account and log in. You would also need to add a “Data Connection” for 
each database you would like to use to build reports, so add one by clicking 
on “Setup Database”.

Step 2: Install the nuget package in your Visual Studio Project

The next thing to do is open up Visual Studio and either start up a new 
project or open an existing one, and install the dotnet Report Nuget 
Package. You should note that dotnet Report adds all the Controller, Views 

https://dotnetreport.com/account/register
https://www.nuget.org/packages/dotNetReport/
https://www.nuget.org/packages/dotNetReport/


and javascript files directly in to your application. If you are using Web 
Forms, install the Web Forms nuget package.

Step 3: Enter your API Keys from the online portal in your web.confg.

The next thing after the nuget package is installed is to setup your API keys 
from the online portal in your application. To do that, you have to copy 
some settings in to your web.config file. The nuget package installation will 
add the following to your appSettings:
<add key=”dotNetReport.accountApiToken” value=”Your Public Account Api Token” /> 
<add key=”dotNetReport.dataconnectApiToken” value=”Your Data Connect Api Token” /> 
<add key=”dotNetReport.privateApiToken” value=”Your Private Account Api Token” />

Login to your account in https://dotnetreport.com and click on “Get Api 
Keys”. Locate your keys and copy and paste them in to your web.config 
file.

Note: You also need to add your connection string corresponding to the 
Data Connection you had setup.

Step 4: Setup your Database Tables and Views to be used by dotnet 
Report

Next step is to build and run the project, and navigate to the /
dotnetsetup route. This will bring up the administrator/developer screen 
that should connect to the database you provided in web.config and list all 
the Tables and Views in it. Your task is to select the tables, views and the 
columns you want dotnet Report Builder to use to let you or your end users 
create reports. You would also have to setup the database relations. This is 
a pretty easy and intuitive interface, and is meant only for developers as an 
initial configuration. You can always come back to it and add more tables or 
columns.

So check the tables you want to use, and click Save.

https://dotnetreport.com/


And that’s really pretty much it to get you started and going.

At this point, you should be create, save and Run Reports! You have to run 
the project and then navigate to the /dotnetreport route to navigate to the 
Report Builder.

There are many features to learn about and try out, so next you can read 
about them here in the knowledge base.

https://dotnetreport.com/blog


Case Study: Mobilitie
Enabling Executives to create 
custom reports in an Intuitive Self 
Serve interface, freeing up 
Developers time to purse high value objectives

Infrastructure giants seeking flexibility with self serviced Reports find 
help

The Challenge
Mobilitie is an infrastructure company and works with venues and wireless 
carriers to ensure their customers are better connected. For the executives, 
the IT Team used to provide reports about all the assets managed by the 
company varying in terms and conditions. With the increase in business 
and volume of data, multiple different types of reports were needed, and 
the report format was customized as per user. A dedicated resource of the 
IT Team was required just to manually create these reports every day and 
thereby was not able to utilize their development skills. Also, it was 
nuisance for business teams to give requirements for the reports and then 
wait for them to be created manually. Unfortunately, IT Team did not have 
enough time to develop custom report in-house and at that time search for 
available reporting tools in market started.

The Solution
We came across dotnet Report and tested with other applications. It was 
wonderful. It was very easy to integrate into our existing application. We 
contacted Ahmed and the team at dotnet Report, and they were very 
helpful and gave us a detailed understanding of their complete reporting 
tool. It provides detailed level of reporting and all the customization features 
which we were looking for.



The Results
dotnet Report's self service reporting 
solution enables our users to create 
their own reports, saving 30% of our 
developers' time. Not only users are 
happy but IT team is also more productive as they don’t have to create 
manual reports anymore. End users have more flexibility with the range of 
filters and different type of reports they can build. dotnet Report 
development team is also very co-operative and pay attention to any 
specific user demands. Their turnaround time for any new development is 
also very fast. We are pleased to work with dotnet Report.

Case Study: ProxiGroup

RaaS leaders transitioned from non-reporting platforms to full on 
demand Custom Reports

The Challenge
ProxiTrak Platform delivers RFID as a Service (RaaS), a model highly 
desired by the industry in many vertical markets. Real time tags and 
sensors tracking, virtual 3D environment and unique cloud architecture 
make our platform a real disruptive technology accelerating the Industry 4.0 
revolution. However, with our complex and advanced software, it was 
missng adequate reporting for our customers.

The Solution
dotnet Report was able to transition us from non-reporting platforms to 
process improvement offers in the RFID arena with ability to negotiate our 
clients reporting needs very adeptly. Extremely professional, patient and a 
true genuine desire to help as I missed several meetings with them and it 



was all ways met with benevolence. Their commitment to service level 
support is unbelievably superb. We will stay with this company as our long 
term solution for RFID/IoT software Reporting provisions.

The Results
dotnet Report improved the productivity of of our clients in the arena of IoT/
RFID Reporting Improved knowledge discovery process time and cost 
effective. Allowed better deterministic decisions quickly without loss of 
service. Eliminated inaccurate forecasting with our clients regarding RFID/
IoT asset tracking reporting.



Sign up for a Free Trial
We've been there, building Reports from scratch is frustrating for 
Developers. That's why we started dotnet Report, to make Reporting 
simple and help other Software Developers! Dotnet Report will save you 
precious coding hours and your users will love the ability to manage their 
own reports.

Click here to try it out for free! >>

https://dotnetreport.com/account/register

	dotnetreport-lm-cover-v1.1
	dotnetreport-lm-v1.3

