
Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025)

SQL2022

Server Documentation

Contact Information

AI-DBA Software Inc.

1500 West Georgia St. Vancouver, British Columbia V6G2Z6, Canada.

www.AI-DBA.net

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025)

DISCLAIMER

This document contains proprietary information. It is intended for the exclusive use of End-User/AI-DBA Subscriber. Unauthorized use

or reproduction of this document is prohibited.

This document is intended only for the use of the individual or entity to which it is addressed and may contain

information that is privileged, and exempt from disclosure under applicable law. If the reader of this

disclaimer is not the intended recipient, you are hereby notified that any dissemination, distribution or copying of this

document is strictly prohibited. If you received this document in error, please notify us immediately by telephone and

return the original document to us at 1500 West Georgia Street, Suite 1300, Vancouver BC, V6G2Z6 Canada.

If you have received an electronic copy of the document, please remove it immediately after reading this disclaimer.

Table of Content

Action Required by Administrator 4

SQL Server Instance Health Overview 5

Warnings and Predictions 7

SQL Server Instance Evaluation and Scores 20

Hardware Specification 22

Server Insight 23

SQL Server Environment 24

SQL Server Installed Services 25

SQL Server Instance Configuration 27

Instance Maximum Consumption Rate (MCR) 30

Database Configuration 32

Database Consistency Check 33

Database Insight 35

Database Growth 50

Database Input/Output Per Second 52

Database Long Running Queries 53

Database Backup Verification 62

Database Warnings 65

Database Missing Indexes 66

Database Unused Indexes 67

Login Credentials and Permissions 68

SQL Agent Objects 69

SQL Agent Jobs History 70

Windows and SQL Server Severe Alerts and Errors 74

Appendix A: Query Performance Comparison 74

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 3

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 3

Action Required by Administrator

Database administrator is required to pay attention to the following recommendations.

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 4

SQL Server Instance Health Overview

Provided to give you a glance of SQL Server instance health status.

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 5

Physical Memory (MB) Plan Cache (MB) Pressure % Description

32,766.0 2,867.0 37.1 Plan Cache - Normal Situation

Processor Wait Signal Resource Wait Signal Description

4.3 95.7 Signal Waits later 15-17% is usually a

sign of CPU pressure

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 6

Warnings and Predictions

Title: The current patch is outdated. It is required to patch to the latest cumulative update (CU) with , released

on September 22,2022.

Category: Warning

ImpactLevel: High

Frequency: Medium

WhyIsItImportant?:

It is important to update the patch to the latest cumulative update (CU) because it provides necessary bug

fixes, security enhancements, and performance improvements. Outdated patches may have vulnerabilities

that can be exploited by hackers or impact system stability and reliability. Updating to the latest CU ensures

that your system is up-to-date with the most recent advancements in SQL Server technology, ensuring

optimal functionality and protection.

HowToResolveIt?:

To mitigate/resolve the issue of an outdated patch, it is recommended to install the latest cumulative update

(CU) for SQL Server. The CU released on September 22, 2022 should be installed to ensure that all

necessary bug fixes and security updates are in place. This will help address any known issues or

vulnerabilities and keep the system up-to-date with the latest patches from Microsoft.

Type: n/a

Title: The database memory consumption has increased significantly since February 02,2025.

Category: Warning

ImpactLevel: High

Frequency: Medium

WhyIsItImportant?:

It is important to address the increased database memory consumption as it can have various negative

impacts on system performance and stability. When a database consumes excessive memory, it can lead to

slower query execution times, longer transaction durations, increased disk I/O operations, and potential

system crashes or outages. By investigating and resolving the cause of this increase in memory consumption,

administrators can ensure optimal performance and reliability of the SQL Server system.

HowToResolveIt?:

To mitigate the increased database memory consumption, you can start by analyzing and identifying any

recent changes in the server environment or application that may have caused this increase. Next, review the

database configuration settings such as maximum server memory and optimize them accordingly to ensure

efficient memory usage. Furthermore, identify any long-running queries or processes and optimize their

performance to minimize memory impact. Lastly, consider upgrading hardware resources such as increasing

RAM capacity if necessary to accommodate the increased workload.

Type: n/a

Title: The [Adv2022ShalevSoft] database has 3 corrupted pages, possibly caused by IO noises or a faulty

storage system. The most recent IO corruption was reported on November 26,2024 01:29:14.

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 7

Category: Warning

ImpactLevel: High

Frequency: Low

WhyIsItImportant?:

It is important to address the issue of corrupted pages in the [Adv2022ShalevSoft] database as it can

significantly impact the integrity and reliability of the data. Corrupted pages can lead to data inconsistencies,

errors, and even data loss if not resolved promptly. Identifying and resolving the source of corruption, such as

IO noises or a faulty storage system, is crucial to ensuring the database's stability and maintaining data

integrity.

HowToResolveIt?:

To mitigate/resolve the corruption issue in the [Adv2022ShalevSoft] database, you can follow these steps.

First, identify and address any IO noises or faults in the storage system to prevent further corruption. Then,

restore the affected pages from a previous backup taken before November 26, 2024 01:29:14 when the most

recent corruption was reported. Verify the integrity of the restored pages and run a consistency check on the

entire database to ensure there are no additional corruptions.

Type: n/a

Title: The [Advnew2022] database has 3 corrupted pages, possibly caused by IO noises or a faulty storage

system. The most recent IO corruption was reported on November 26,2024 01:29:34.

Category: Warning

ImpactLevel: High

Frequency: Low

WhyIsItImportant?:

It is important to address the issue of corrupted pages in the [Advnew2022] database because they can lead

to data loss and inconsistencies. Corrupted pages can result from various factors such as IO noises or a

faulty storage system. By investigating and resolving this issue promptly, potential data corruption and

subsequent problems can be avoided, ensuring the integrity and reliability of the database.

HowToResolveIt?:

To mitigate/resolve the issue of corrupted pages in the [Advnew2022] database, you can follow these steps:

1. Identify and fix any underlying issues with IO noises or a faulty storage system that may have caused the

corruption.

2. Restore the affected pages from a valid backup if available, ensuring data integrity.

3. Run consistency checks like DBCC CHECKDB to identify and repair any additional corruption within the

database.

4. Monitor the system closely to prevent further corruptions and consider implementing measures such as

regular backups, redundant storage systems, and timely hardware maintenance to minimize future

occurrences.

Type: n/a

Title: The [Advnew2022Moved] database has 3 corrupted pages, possibly caused by IO noises or a faulty

storage system. The most recent IO corruption was reported on November 26,2024 01:29:39.

Category: Warning

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 8

ImpactLevel: High

Frequency: Low

WhyIsItImportant?:

It is important to address the corruption issues in the [Advnew2022Moved] database because corrupted

pages can lead to data loss or inconsistency, which can affect various operations and functionality of the

database. It is crucial to identify and fix the underlying cause of corruption, such as IO noises or a faulty

storage system, to prevent any further damage and ensure the integrity and reliability of the database.

HowToResolveIt?:

To mitigate and resolve the issue of corrupted pages in the [Advnew2022Moved] database, you can take the

following steps:

1. Identify the extent of corruption: Run a DBCC CHECKDB command to identify all corrupted pages in the

database.

2. Restore from backups: If you have recent valid backups, restore them on a separate system or instance to

ensure data integrity.

3. Fix corrupt pages: Attempt to repair or fix the corrupt pages using DBCC PAGE or other appropriate

methods recommended by Microsoft support.

4. Address underlying issues: Investigate and address any potential causes for IO noises or faulty storage

systems that could be leading to page corruptions.

5. Monitor for recurrence: Continuously monitor your system for any further occurrences of corrupted pages

and take necessary actions promptly if such incidents happen again.

Note: It is highly recommended to involve experienced Database Administrators (DBAs) in this process as

dealing with page corruption requires advanced knowledge of SQL Server internals and troubleshooting

techniques.

Type: n/a

Title: The [Test33] database has 3 corrupted pages, possibly caused by IO noises or a faulty storage system.

The most recent IO corruption was reported on November 26,2024 01:30:14.

Category: Warning

ImpactLevel: High

Frequency: Low

WhyIsItImportant?:

It is important to address the corrupted pages in the [Test33] database because they can lead to data loss

and potential system crashes. Corrupted pages may result from various factors such as IO noises or a faulty

storage system. By identifying and resolving these issues, it ensures data integrity and maintains a stable and

reliable database environment.

HowToResolveIt?:

To mitigate and resolve the corruption issues in the [Test33] database, you can follow these steps:

1. Identify the root cause: Investigate whether there are any IO noises or issues with the storage system that

could be causing corruption.

2. Fix IO noises or replace faulty hardware: If you determine that IO noises or a faulty storage system is

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 9

causing the corruption, take necessary actions to fix them. This might involve replacing malfunctioning

hardware components or optimizing disk configurations.

3. Restore from backup: If you have a recent backup of the [Test33] database before the reported corruption

date (November 26,2024 01:30:14), restore it to recover from corrupted pages.

4. Run DBCC CHECKDB command: After restoring from backup, run DBCC CHECKDB command to identify

and repair any remaining errors within the database.

5. Monitor for further issues: Continuously monitor your server and databases for signs of recurring corruption

after mitigation efforts, keeping an eye on IO performance metrics and reviewing error logs regularly.

Remember to always have proper backups in place to ensure data recovery in case of such incidents.

Type: n/a

Title: The size of the [Adv2022ShalevSoft] database files is misaligned, which can result in one or more files

growing faster compared to others.

Category: Warning

ImpactLevel: Low

Frequency: Medium

WhyIsItImportant?:

It is important to address misalignment in database file sizes because it can lead to uneven growth among

files. This imbalance can impact performance and hinder efficient resource utilization. By aligning the sizes of

all database files, you can promote balanced growth and ensure optimal performance for your SQL Server

database.

HowToResolveIt?:

To resolve the misalignment issue and ensure balanced growth of database files, you can follow these steps:

1. Identify the file(s) that are growing faster compared to others by monitoring the file size changes over time.

2. Use ALTER DATABASE command with MODIFY FILE option to resize and align the misaligned file(s)

according to your desired growth pattern.

3. Implement a proper database maintenance plan, including regular file size monitoring and adjustment as

needed, to prevent future misalignments.

4. Consider implementing autogrowth settings appropriately on all files in order to avoid sudden unexpected

growth issues.

Make sure to always have sufficient disk space available for accommodating planned increases in file sizes.

Type: n/a

Title: The size of the [AdvDest20240317] database files is misaligned, which can result in one or more files

growing faster compared to others.

Category: Warning

ImpactLevel: Low

Frequency: Medium

WhyIsItImportant?:

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 10

It is important to address misalignment in database files because it can lead to uneven growth rates among

the files. This can result in performance issues and disk space inefficiencies, as some files may reach their

maximum capacity while others have plenty of unused space. By ensuring proper alignment, database

administrators can optimize storage utilization and prevent bottlenecks in data access and retrieval.

HowToResolveIt?:

To mitigate or resolve the misalignment issue with the database files, you can follow these steps. First,

analyze the growth patterns of each file in the database to identify which files are growing faster than others.

Next, reallocate the file sizes by adjusting their initial size and enabling autogrowth settings appropriately

based on their respective growth patterns. This will ensure that all files grow proportionally and prevent any

one file from becoming significantly larger than others. Finally, monitor and regularly optimize the database to

maintain a balanced distribution of data across all files.

Type: n/a

Title: The size of the [AdventureWorks] database files is misaligned, which can result in one or more files

growing faster compared to others.

Category: Warning

ImpactLevel: Low

Frequency: Medium

WhyIsItImportant?:

It is important to address the misalignment of database file sizes in order to maintain optimal performance and

manage the usage of storage resources effectively. When files within a database grow at different rates, it can

cause imbalances in disk space utilization and potentially lead to issues such as uneven data distribution,

slower query execution times, and inefficient use of storage capacity. Regular monitoring and alignment of

database file sizes are necessary for maintaining a healthy and well-performing system.

HowToResolveIt?:

To mitigate/resolve the misalignment issue with the [AdventureWorks] database files, you can perform a

manual realignment of the files. This involves monitoring each file's size and adjusting it as needed to

maintain proportional growth among all files. Alternatively, you can automate the process using SQL Server

Management Studio or Transact-SQL scripts to resize and align the files based on your desired settings.

Regularly monitoring and adjusting file sizes will help ensure balanced growth across all database files within

[AdventureWorks].

Type: n/a

Title: The size of the [Advnew2022] database files is misaligned, which can result in one or more files growing

faster compared to others.

Category: Warning

ImpactLevel: Low

Frequency: Medium

WhyIsItImportant?:

Ensuring proper alignment of database files is important for several reasons. Misalignment can lead to

uneven growth patterns, where some files grow faster than others. This can result in imbalanced disk space

utilization and inefficient performance as the workload is not distributed evenly across all files. Properly

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 11

aligned database files promote uniform growth and optimize storage utilization, enhancing overall system

performance and manageability. It also helps prevent potential issues like disk fragmentation and improves

I/O operations by reducing contention on specific data or log file(s).

HowToResolveIt?:

To mitigate the issue of misaligned database file sizes in [Advnew2022], you can regularly monitor and

manage the growth of individual files within the database. Use SQL Server Management Studio or a similar

tool to analyze file size distribution and adjust accordingly. Consider enabling auto-growth settings for files

that are growing faster to ensure a balanced size distribution across all database files. Additionally, perform

regular maintenance tasks such as index rebuilds and data archiving to optimize space usage within the

database.

Type: n/a

Title: The size of the [Advnew2022_20240312102058] database files is misaligned, which can result in one or

more files growing faster compared to others.

Category: Warning

ImpactLevel: Low

Frequency: Medium

WhyIsItImportant?:

It is important to address misalignment in database files because it can lead to uneven growth, causing

certain files to expand more rapidly than others. This can result in imbalanced distribution of data and overall

performance degradation. By resolving the misalignment, administrators can ensure optimal file growth and

maintain consistent performance across the database.

HowToResolveIt?:

To mitigate/resolve the issue of misaligned database file sizes, you can perform the following steps:

1. Monitor the growth rate of each file in the database to identify any disparities.

2. Determine the ideal size for each file based on their respective usage patterns and expected growth.

3. Reallocate space within the files by using ALTER DATABASE or SHRINKFILE commands to align them

with their optimal sizes.

4. Regularly monitor and adjust file sizes as needed to ensure balanced growth across all database files.

Type: n/a

Title: The size of the [Advnew2022Moved] database files is misaligned, which can result in one or more files

growing faster compared to others.

Category: Warning

ImpactLevel: Low

Frequency: Medium

WhyIsItImportant?:

It is important to address the misalignment in file sizes of the database files because if one or more files grow

faster than others, it can lead to imbalanced storage utilization and affect overall performance of the

database. This can result in slower query execution times, increased disk space usage, and potential

bottlenecks for data retrieval or modification operations. Resolving this issue ensures optimal usage of

storage resources and maintains a stable and efficient database environment.

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 12

HowToResolveIt?:

To mitigate the issue of misaligned file size in the [Advnew2022Moved] database, you can perform the

following steps:

1. Identify the files that are growing faster compared to others by monitoring their size changes over time.

2. Resize and reallocate file space according to data growth patterns. This can be done by either shrinking or

expanding the respective files.

3. Regularly monitor and optimize file growth strategies to ensure balanced growth across all files within the

database.

By aligning file sizes properly and ensuring balanced growth, you can mitigate any potential issues caused by

misaligned database file sizes.

Type: n/a

Title: The size of the [AdvNew2022Restored] database files is misaligned, which can result in one or more

files growing faster compared to others.

Category: Warning

ImpactLevel: Low

Frequency: Medium

WhyIsItImportant?:

It is important to address the misalignment of database files because it can lead to imbalanced growth rates

among the files. Uneven growth can result in uneven disk space usage, causing performance issues and

potentially leading to storage capacity problems. By aligning the file sizes, you ensure a more balanced

distribution of data across the database files, promoting optimal performance and efficient use of resources.

HowToResolveIt?:

To mitigate the misalignment of database files, you can perform the following steps:

1. Monitor and analyze the growth patterns of individual files within the database.

2. Regularly resize and reallocate file sizes to ensure they are balanced and aligned.

3. Use best practices for file placement on disk arrays to optimize performance.

4. Consider using Instant File Initialization, which allows faster growth for data files during allocation

transactions.

5. Implement a regular maintenance plan to monitor and manage file growth proactively.

By regularly monitoring file growth, redistributing sizes appropriately, and implementing optimization

techniques, you can minimize misalignment issues in your database files.

Type: n/a

Title: The size of the [AdvNew2022Restored2] database files is misaligned, which can result in one or more

files growing faster compared to others.

Category: Warning

ImpactLevel: Low

Frequency: Medium

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 13

WhyIsItImportant?:

Having misaligned database file sizes can lead to imbalances in disk space usage, which can cause

performance issues and inefficient storage utilization. When certain files grow faster than others, it results in

uneven distribution of data across the storage system. This not only affects the query performance but also

makes it difficult to effectively manage and maintain the database. It is important to ensure proper alignment

of database file sizes for optimal performance, efficient resource utilization, and easier management of the

SQL Server environment.

HowToResolveIt?:

To mitigate or resolve this issue, you can perform a manual realignment of the database files using the

ALTER DATABASE command. This involves monitoring the file growth over time and redistributing the data

across multiple files to ensure more balanced growth rates. Additionally, regularly analyzing the database

usage patterns and adjusting file sizes accordingly can help prevent future misalignments.

Type: n/a

Title: The size of the [AdvNew2022Restored3] database files is misaligned, which can result in one or more

files growing faster compared to others.

Category: Warning

ImpactLevel: Low

Frequency: Medium

WhyIsItImportant?:

It is important to address the misalignment of database files in order to ensure balanced growth and optimal

performance. When the files are misaligned, it can lead to uneven distribution of data across them, causing

some files to grow faster than others. This can result in potential issues such as slower queries, increased

disk space usage, and difficulties in managing and maintaining the database. By aligning the database files

properly, we can prevent these problems and maintain a healthy and efficient database environment.

HowToResolveIt?:

To mitigate or resolve the misalignment in the size of the [AdvNew2022Restored3] database files, you should

monitor and adjust the file growth settings for each file accordingly. This can be done by regularly reviewing

the database growth patterns and adjusting the file sizes accordingly to ensure all files grow at a similar rate.

Additionally, consider implementing an automated monitoring solution that alerts you when file sizes are

becoming misaligned, allowing you to quickly intervene and address any imbalances.

Type: n/a

Title: The size of the [AdvNewDB2022Portal] database files is misaligned, which can result in one or more

files growing faster compared to others.

Category: Warning

ImpactLevel: Low

Frequency: Medium

WhyIsItImportant?:

It is important to address the misalignment of database files in order to maintain optimal performance and

efficient storage utilization. When file growth occurs unevenly, it can lead to imbalanced disk usage,

potentially causing performance issues such as slower query execution times and increased I/O contention.

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 14

By addressing file misalignment, you ensure that all files grow at a balanced rate, enabling improved

performance and better resource management within the database environment.

HowToResolveIt?:

To mitigate or resolve the issue of misaligned database file sizes in [AdvNewDB2022Portal], you can follow

these steps:

1. Analyze the growth patterns and data distribution of the database to determine which files are growing

faster.

2. Use SQL Server Management Studio or a script to reallocate space evenly across all files by shrinking and

expanding them as necessary.

3. Implement a regular monitoring routine to track file size growth and adjust accordingly, ensuring that no

single file becomes significantly larger than others over time. This will help maintain balanced file sizes in the

database.

Type: n/a

Title: The size of the [AIDBAADV2] database files is misaligned, which can result in one or more files growing

faster compared to others.

Category: Warning

ImpactLevel: Low

Frequency: Medium

WhyIsItImportant?:

It is important to ensure that the size of database files is properly aligned because misalignment can lead to

uneven growth in file sizes. This can cause performance issues, as growing files at different rates may result

in imbalanced disk I/O and slow down query execution. Properly aligning database files helps optimize

storage usage and ensures consistent performance across all files.

HowToResolveIt?:

To mitigate the misalignment issue in the [AIDBAADV2] database, it is recommended to regularly monitor and

correctly align the size of each database file. This can be done by resizing or reallocating space among files

through SQL Server Management Studio or T-SQL commands. Additionally, monitoring disk space usage and

performing regular maintenance checks will help identify any further issues related to file growth imbalance.

Type: n/a

Title: The size of the [newdbemo3099] database files is misaligned, which can result in one or more files

growing faster compared to others.

Category: Warning

ImpactLevel: Low

Frequency: Medium

WhyIsItImportant?:

It is important to align the size of database files because misalignment can lead to uneven growth rates

among the files. This imbalance can cause performance issues and hinder efficient disk space utilization. By

ensuring alignment, resources are distributed more evenly and database operations are optimized for better

overall system performance.

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 15

HowToResolveIt?:

To mitigate this issue, you can implement a regular monitoring and maintenance plan for the database files.

This should include regularly checking the size of each file in the database and ensuring they are aligned

properly. If any misalignment is detected, manually resize or move the files to balance their growth evenly.

Additionally, consider enabling auto-growth settings with appropriate increment values to prevent imbalance in

file growth.

Type: n/a

Title: The size of the [ReportDB_Copy] database files is misaligned, which can result in one or more files

growing faster compared to others.

Category: Warning

ImpactLevel: Low

Frequency: Medium

WhyIsItImportant?:

It is important to address the misalignment in database file sizes because uneven growth can lead to

performance issues and inefficient use of storage. When one or more files grow faster than others, it can

cause an imbalance in data distribution and space utilization within the database. This could result in slower

query performance, increased fragmentation, and potential bottlenecks during backup and restore operations.

By aligning file sizes properly, you ensure optimal disk usage, improve overall database performance, and

mitigate potential storage-related problems.

HowToResolveIt?:

To mitigate or resolve the issue of misaligned database file sizes in [ReportDB_Copy], you can perform the

following steps:

1. Analyze the growth patterns of each file in the database to identify any imbalances.

2. Adjust the autogrowth settings for each file accordingly, ensuring that they are aligned with your expected

growth rates.

3. Implement regular monitoring and capacity planning to proactively identify any potential imbalances and

take corrective actions as needed.

4. Regularly monitor and manage free space within each file by performing appropriate maintenance tasks

such as shrinking or reorganizing data where necessary.

5. Consider redistributing data across files if required to achieve a more balanced distribution of storage

utilization among all files.

By taking these measures, you can ensure that all files in [ReportDB_Copy] have equal opportunities for

growth and prevent one file from growing excessively faster than others, resulting in a more optimized overall

performance of the database.

Type: n/a

Title: The size of the [Test33] database files is misaligned, which can result in one or more files growing faster

compared to others.

Category: Warning

ImpactLevel: Low

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 16

Frequency: Medium

WhyIsItImportant?:

It is important to ensure that the size of database files, such as [Test33], are aligned properly to avoid

imbalanced growth. Misaligned file sizes can lead to uneven distribution of data across different files, causing

performance issues. Maintaining balanced file growth helps optimize disk space utilization and improves

overall database performance and management.

HowToResolveIt?:

To mitigate the issue of misaligned database file sizes, you can take the following steps. First, identify the files

that are growing faster than others by monitoring their size regularly. Then, realign these files by manually

resizing them to be in line with other files in the same database. Additionally, set up a proactive maintenance

plan to monitor and manage file growth on an ongoing basis. This could involve implementing policies for

regular file resizing or utilizing automatic file growth settings based on anticipated usage patterns.

Type: n/a

Title: The expansion of the TempDB database files takes 7 seconds, leading to slow workload performance

and excessive blocking on the TempDB resource.

Category: Warning

ImpactLevel: Medium

Frequency: Medium

WhyIsItImportant?:

It is important to address the slow expansion of TempDB database files because it affects the overall

workload performance and can lead to excessive blocking on the TempDB resource. This can result in

decreased efficiency and productivity for users accessing the database. By optimizing TempDB file growth,

administrators ensure a smooth and uninterrupted workflow, improving overall system performance.

HowToResolveIt?:

To mitigate the slow expansion of TempDB database files and reduce excessive blocking, you can pre-size

the TempDB files to an appropriate size based on your workload requirements. This can be done by

monitoring the growth patterns of TempDB over a period of time and adjusting the initial file sizes accordingly.

Additionally, consider placing the TempDB files on separate disk drives or storage devices to improve I/O

performance. Regularly monitoring and maintaining adequate free space in TempDB also helps prevent its

excessive growth and related issues.

Type: n/a

Title: The database workload is experiencing numerous Missing Column Statistics, with the majority of them

originating from AI-DBA Data Gateway applications. Query optimization is required to improve performance.

Category: Warning

ImpactLevel: Medium

Frequency: High

WhyIsItImportant?:

It is important to address missing column statistics in the database workload because it can significantly

impact query performance. When the optimizer lacks accurate statistical information about columns, it may

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 17

make suboptimal decisions when generating query plans. This can result in slower execution times,

decreased scalability, and overall degradation of system performance. By optimizing queries and ensuring

that column statistics are up to date, administrators can improve overall database performance and enhance

user experience with the application.

HowToResolveIt?:

To mitigate the issue of Missing Column Statistics and improve the performance of AI-DBA Data Gateway

applications, you can implement query optimization techniques. This includes analyzing and identifying

queries that are causing the missing statistics, updating or creating new column statistics using tools like SQL

Server's automatic statistics update feature or manually running UPDATE STATISTICS commands, and

reevaluating the database schema to ensure proper indexing is in place. Regular monitoring and maintenance

activities should also be carried out to prevent future occurrences of missing column statistics.

Type: n/a

Title: The database engine is currently configured with dynamic port enabled. However, it is strongly

recommended to convert the dynamic port to a static port to ensure consistent and reliable communication.

Category: Warning

ImpactLevel: High

Frequency: High

WhyIsItImportant?:

It is important to convert the dynamic port to a static port in the database engine because it ensures

consistent and reliable communication. With a static port, there is no change in the port number, which means

that applications and clients can always connect to the database using the same known port. This eliminates

any potential issues caused by ports being dynamically assigned or changing unexpectedly, ensuring smooth

and uninterrupted communication with the database server.

HowToResolveIt?:

To mitigate this issue, you should configure the SQL Server database engine to use a static port instead of

dynamic port. This will ensure consistent and reliable communication by always listening on the same port

number. You can set a specific port number in the SQL Server Configuration Manager under TCP/IP

properties for your instance. Once configured, remember to update any firewall settings to allow traffic on the

new static port.

Type: n/a

Title: The SQL Server Browser service is currently active, which poses a significant risk of exposing the SQL

Server instance through port query. Hackers can potentially obtain connectivity information by exploiting the

UDP/TCP 1434 port via the SQL Browser service.

Category: Warning

ImpactLevel: High

Frequency: High

WhyIsItImportant?:

It is important to address the active SQL Server Browser service because it poses a security risk. By

exploiting the UDP/TCP 1434 port, hackers can potentially gather connectivity information about the SQL

Server instance. This could lead to unauthorized access or other malicious activities on the server. Therefore,

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 18

addressing this issue helps to protect and secure the SQL Server environment from potential threats.

HowToResolveIt?:

To mitigate this risk, it is recommended to disable the SQL Server Browser service unless necessary. By

disabling this service, hackers will not be able to exploit UDP/TCP port 1434 to obtain connectivity

information. However, before disabling the service, ensure that any applications or services dependent on it

are reconfigured to directly connect using static ports instead of relying on dynamic port allocation provided by

the SQL Server Browser service.

Type: n/a

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 19

SQL Server Instance Evaluation and Scores

Administration Maintenace Performance Security High Availability

4.6 / 5 5.0 / 5 5.0 / 5 5.0 / 5 5.0 / 5

Category Title Result

Administration Database Full Recovery Model Passed

Administration Database File Federation Failed

Administration Database Table Partitioning for Tables

>2mil Records

Passed

Administration Database File IO Balancing Failed

Administration Database Full Backup in Past 7Days Passed

Administration Database Log Backup in Past 12Hours Passed

Administration Agent Job Failures for <10 Times Passed

Administration Database Auto Growth For <10 Times Passed

Maintenance Database Compression for Tables with

>1mil Records

Passed

Maintenance Database with No Suspected/Corrupted

Pages

Passed

Maintenance SQL Server with No Dump File. Passed

Maintenance Database Consistency Check in Past

14Days

Passed

Maintenance Database Log Shipping Error Free in Past

7Days

Passed

Maintenance Database Mirroring Error and Delay Free

in Past 7Days

Passed

Maintenance Moderated Database Transaction Log

Fragmentation

Passed

Maintenance Upgraded to the Least Support Database

Engine Version

Passed

Maintenance Database Engine with No Severe

(Severity >16) Error

Passed

Maintenance Operating System with No Severe Error Passed

Security Database Objects are Owned by non-

DBO

Passed

Security Database with No Orphaned Users Passed

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 20

Category Title Result

Security Login Authentication with <5 Failures Passed

Security >25 Active Sessions with SysAdmin

Privileges

Passed

Security SQL Server services with NT Service

Account

Passed

Security Login Brutal Attack Protection Passed

Security Database Engine TCP Listening Port

Protection

Passed

Performance <15ms IO Stall for Database Files Passed

Performance Query Design with Minimum Processor

Intensive Functions

Passed

Performance Trivial and Moderated Execution Plans Passed

Performance In-Memory with Utilized Hash Buckets Passed

Performance Database Index Design with Best

Practices

Passed

Performance Database Indexes with Low

Fragmentation

Passed

Performance Queries with an Index Support (No

Missing Indexes)

Passed

Performance Queries without an Index Influence (With

Index Clause)

Passed

Performance Database Task Request with Zero

Pending Disk IO

Passed

Performance Trivial Plans with Low Generation Cost Passed

Performance Low Database Deadlock and Blocking

Occurrence in Past 7Days

Passed

Performance Low Internal Pressure in Plan Cache

Buckets

Passed

Performance Low External Pressure in Plan Cache

Buckets

Passed

Performance Low Session Blocking in the Past 7Days Passed

Performance Low Pressure on Processor Resource Passed

Performance Low Pressure on System Memory

Resource

Passed

Performance Low Wait on Disk, Memory, Processor

and Network Resources

Passed

High Availability All Cluster Nodes are Up and Running Passed

High Availability The AlwaysOn Availability Group Data

Loss and Recovery is Less Than

120Seconds

Passed

High Availability The Database Mirroring Session is Up

and Running

Passed

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 21

Hardware Specification

Property Item Value

Physical Processors 1

Logical Processors 8

Hyperthread Ratio 8

Physical Memory (MB) 32,766

Committed Memory (MB) 24,811

Machine Type Virtual

Volume Capacity (MB) Available Space

(MB)

Free Space % Bus Type Media Type IO Stall (MS)

C:\ 129,481.0 61,115.0 47.2 SAS Unspecified 1.6

G:\ 65,405.0 58,145.0 88.9 SAS Unspecified 1.6

H:\ 65,405.0 59,911.0 91.6 SAS Unspecified 0.6

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 22

Server Insight

The server insight content is based on the collected telemetry data and analyzed by AI engine.

* Last Update: 2025-02-15 11:55:43 UTC

The provided data shows the storage space for different volumes in a SQL Server instance and the free space percentage at each

timestamp.

For the C:\ volume, the free space percentage is consistently 0.0%, indicating that there is no available storage space.

On the other hand, for the H:\ volume, there is a consistent 91.6% of free space.

Similarly, for G:\ volume, there is a consistent 88.9% of free space.

Based on this information, we can conclude that:

- The C:\ volume has reached its maximum capacity and requires additional storage allocation.

- The H:\ and G:\ volumes still have significant available storage capacity.

To determine future storage needs and growth rates accurately, more historical data would be required over time to analyze trends in

data growth and predict future requirements.

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 23

SQL Server Environment

Property Item Value

Machine Name Ai-DBA-DEMO

Instance SQL2022

Installation Type Standalone

Product Version 16.0.4125.3

Edition Developer Edition (64-bit)

Patch Level RTM

Collation SQL_Latin1_General_CP1_CI_AS

Authentication Mode Windows and SQL Server

Is Full-Text Installed Yes

HADR Manager Service Status Nil

System Memory State Available physical memory is high

IP Address IP Type Port For Status

0.0.0.0 IPv4 51887 TSQL ONLINE

127.0.0.1 IPv4 49810 TSQL ONLINE

:: IPv6 51887 TSQL ONLINE

::1 IPv6 49810 TSQL ONLINE

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 24

SQL Server Installed Services

Display Name Start Mode Service Account State Status

SQL Server VSS Writer Auto LocalSystem Running OK

SQL Server CEIP

service (SQL2022)

Auto NT

Service\SQLTELEMETR

Y$SQL2022

Running OK

SQL Server CEIP

service (SQL2019)

Auto NT

Service\SQLTELEMETR

Y$SQL2019

Running OK

SQL Server CEIP

service (SQL2017)

Auto NT

Service\SQLTELEMETR

Y$SQL2017

Running OK

SQL Server CEIP

service (SQL2016)

Auto NT

Service\SQLTELEMETR

Y$SQL2016

Running OK

SQL Server Browser Auto NT

AUTHORITY\LOCALSE

RVICE

Running OK

SQL Server Agent

(SQL2022)

Manual NT

Service\SQLAgent$SQL

2022

Stopped OK

SQL Server Agent

(SQL2019)

Manual NT

Service\SQLAgent$SQL

2019

Stopped OK

SQL Server Agent

(SQL2017)

Manual NT

Service\SQLAgent$SQL

2017

Stopped OK

SQL Server Agent

(SQL2016)

Manual NT

Service\SQLAgent$SQL

2016

Stopped OK

SQL Server (SQL2022) Auto NT

Service\MSSQL$SQL20

22

Running OK

SQL Server (SQL2019) Manual NT

Service\MSSQL$SQL20

19

Stopped OK

SQL Server (SQL2017) Manual NT

Service\MSSQL$SQL20

17

Stopped OK

SQL Server (SQL2016) Manual NT

Service\MSSQL$SQL20

16

Stopped OK

SQL Full-text Filter

Daemon Launcher

(SQL2022)

Manual NT

Service\MSSQLFDLaun

cher$SQL2022

Running OK

SQL Full-text Filter

Daemon Launcher

(SQL2017)

Manual NT

Service\MSSQLFDLaun

cher$SQL2017

Stopped OK

SQL Full-text Filter

Daemon Launcher

(SQL2016)

Manual NT

Service\MSSQLFDLaun

cher$SQL2016

Stopped OK

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 25

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 26

SQL Server Instance Configuration

Configuration Value

access check cache bucket count 0

access check cache quota 0

Ad Hoc Distributed Queries Disable

ADR cleaner retry timeout (min) 15

ADR Cleaner Thread Count 1

ADR Preallocation Factor 4

affinity I/O mask Automatic

affinity mask Automatic

affinity64 I/O mask Automatic

affinity64 mask Automatic

Agent XPs Enable

allow filesystem enumeration 1

allow polybase export 0

allow updates 0

automatic soft-NUMA disabled Disable

backup checksum default Disable

backup compression algorithm 0

backup compression default Enable

blocked process threshold (s) 0

c2 audit mode 0

clr enabled Disable

clr strict security Enable

column encryption enclave type 0

common criteria compliance enabled Disable

contained database authentication Disable

cost threshold for parallelism 5

cross db ownership chaining Disable

cursor threshold -1

Data processed daily limit in TB 2147483647

Data processed monthly limit in TB 2147483647

Data processed weekly limit in TB 2147483647

Database Mail XPs Disable

default full-text language 1033

default language 0

default trace enabled Enable

disallow results from triggers Disable

EKM provider enabled Disable

external scripts enabled Disable

filestream access level 0

fill factor (%) 70

ft crawl bandwidth (max) 100

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 27

Configuration Value

ft crawl bandwidth (min) 0

ft notify bandwidth (max) 100

ft notify bandwidth (min) 0

hadoop connectivity Disable

hardware offload config 0

hardware offload enabled Disable

hardware offload mode 0

index create memory (KB) 0

in-doubt xact resolution 0

lightweight pooling Disable

locks 0

max degree of parallelism 2

max full-text crawl range 4

max RPC request params (KB) 0

max server memory (MB) 24811

max text repl size (B) 65536

max worker threads 0

media retention 0

min memory per query (KB) 1024

min server memory (MB) 3101

nested triggers Enable

network packet size (B) 4096

Ole Automation Procedures Disable

open objects Disable

openrowset auto_create_statistics Enable

optimize for ad hoc workloads Enable

PH timeout (s) 60

polybase enabled 0

polybase network encryption 1

precompute rank 0

priority boost 0

query governor cost limit 0

query wait (s) -1

recovery interval (min) 0

remote access Enable

remote admin connections Disable

remote data archive Disable

remote login timeout (s) 10

remote proc trans 0

remote query timeout (s) 600

Replication XPs Disable

scan for startup procs Disable

server trigger recursion 1

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 28

Configuration Value

set working set size 0

show advanced options Enable

SMO and DMO XPs Enable

suppress recovery model errors 0

tempdb metadata memory-optimized Disable

transform noise words Disable

two digit year cutoff 2049

user connections 0

user options 0

version high part of SQL Server 1048576

version low part of SQL Server 270336003

xp_cmdshell Enable

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 29

Instance Maximum Consumption Rate (MCR)

The core-balanced system architecture is based on the fact that most OLAP or OLTP workloads need to

transfer small to large amounts of data (usually accessed by sequential or random read operations) across

multiple system components, from where the data is stored to the requesting applications. Each component

through which the data is transferred is a potential bottleneck that will limit the overall performance of the

system. The data can only flow to the requesting application at the rate of the slowest component. Any

components that can operate at a higher rate are underutilized, which unbalances the system and can

represent significant wasted cost.

The core-balanced approach starts with the throughput of the CPU core, and then builds a balanced system

that is based on that metric. It is important to realize that Maximum Consumption Rate (MCR) is purely a

measure of SQL Server data throughput for a single core and does not include disk read operations or

network I/O.

MCR Formula: (Average Logical Reads / Average CPU Time (Sec)) * 8 / 1024

Cores Formula: ((Average Query Result Size (MB) / MCR) * Concurrent Users) / Target Time (Sec)

Computed

Date/Time

Con. Users Est. MCR Est. Query Cache

(MB)

Est. Query Elapse

Time (Sec)

Logical Processor

Rate

2/16/2025 12:39:27

AM

72 1 4,664 1,984 3

2/15/2025 10:20:09

PM

47 1 4,664 1,984 2

2/15/2025 3:26:29

PM

66 1 4,663 1,452 4

2/15/2025 11:58:16

AM

67 1 3,097 1,104 3

2/15/2025 10:22:42

AM

74 1 4,663 1,491 5

2/15/2025 8:53:18

AM

64 1 4,663 1,489 4

2/15/2025 7:44:14

AM

65 1 3,096 1,139 2

2/15/2025 6:37:17

AM

42 1 3,096 1,104 1

2/15/2025 5:26:57

AM

56 1 3,096 1,103 2

2/15/2025 3:56:00

AM

76 1 4,662 1,470 5

2/15/2025 2:49:40

AM

71 1 4,662 1,548 5

2/15/2025 2:01:30

AM

49 1 4,662 1,548 3

2/12/2025 1:11:41

AM

70 0 4,647 2,665 5

2/11/2025 11:03:29

PM

78 1 4,648 2,154 7

2/11/2025 9:27:47 62 1 4,648 2,135 6

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 30

Computed

Date/Time

Con. Users Est. MCR Est. Query Cache

(MB)

Est. Query Elapse

Time (Sec)

Logical Processor

Rate

PM

2/11/2025 7:44:55

PM

81 1 4,648 2,135 8

2/11/2025 6:57:54

PM

73 1 4,648 2,137 7

2/11/2025 5:08:37

PM

87 0 3,149 3,280 5

2/11/2025 4:18:15

PM

78 0 3,148 2,991 5

2/11/2025 3:28:53

PM

82 0 3,195 2,069 5

2/11/2025 2:40:09

PM

76 1 3,088 1,582 4

2/11/2025 1:52:11

PM

77 0 3,442 10,078 4

2/11/2025 1:04:40

PM

87 0 3,082 1,919 4

2/11/2025 11:52:53

AM

65 1 4,647 2,493 5

2/11/2025 10:40:49

AM

80 1 4,647 2,492 6

2/11/2025 9:27:55

AM

76 1 4,647 2,492 6

2/11/2025 8:09:42

AM

80 1 4,647 2,854 5

2/11/2025 6:49:33

AM

86 1 4,647 2,346 7

2/11/2025 4:54:31

AM

84 1 4,647 2,347 7

2/11/2025 3:29:01

AM

64 1 4,648 2,238 5

2/11/2025 2:03:03

AM

81 1 4,648 2,236 7

2/9/2025 7:50:55

PM

81 1 3,082 1,478 2

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 31

Database Configuration

Database Recovery Model Compatibility Level Page Verification

Database Auto Close Auto Update

Statistics

Parameterization RCSS Snapshot Isolation

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 32

Database Consistency Check

DBCC provides on-demand database validation on physical and logical structure of the database objects. It is

highly recommended to run DBCC CHECKDB command for mission critical databases time-to-time to mitigate

unexpected database corruption. Run the following command to perform consistency check.

DBCC CHECKDB ('Adv2022ShalevSoft') WITH PHYSICAL_ONLY ;

DBCC CHECKDB ('AdvDest20240317') WITH PHYSICAL_ONLY ;

DBCC CHECKDB ('Advnew2022') WITH PHYSICAL_ONLY ;

DBCC CHECKDB ('Advnew2022Moved') WITH PHYSICAL_ONLY ;

DBCC CHECKDB ('AdvNew2022Restored') WITH PHYSICAL_ONLY ;

DBCC CHECKDB ('AdvNew2022Restored2') WITH PHYSICAL_ONLY ;

DBCC CHECKDB ('AdvNew2022Restored3') WITH PHYSICAL_ONLY ;

DBCC CHECKDB ('AdvNewDB2022Portal') WITH PHYSICAL_ONLY ;

DBCC CHECKDB ('AIDBAADV2') WITH PHYSICAL_ONLY ;

DBCC CHECKDB ('Demo20240411') WITH PHYSICAL_ONLY ;

DBCC CHECKDB ('DemoAdvApril03') WITH PHYSICAL_ONLY ;

DBCC CHECKDB ('master') WITH PHYSICAL_ONLY ;

DBCC CHECKDB ('model') WITH PHYSICAL_ONLY ;

DBCC CHECKDB ('msdb') WITH PHYSICAL_ONLY ;

DBCC CHECKDB ('NewDB20241029') WITH PHYSICAL_ONLY ;

DBCC CHECKDB ('newdbemo3099') WITH PHYSICAL_ONLY ;

DBCC CHECKDB ('ReportDB_Copy') WITH PHYSICAL_ONLY ;

DBCC CHECKDB ('ReportDB678') WITH PHYSICAL_ONLY ;

DBCC CHECKDB ('tempdb') WITH PHYSICAL_ONLY ;

DBCC CHECKDB ('test') WITH PHYSICAL_ONLY ;

DBCC CHECKDB ('Test33') WITH PHYSICAL_ONLY ;

Database Last Good Known Consistency Check

Adv2022ShalevSoft 6/15/2023 1:49:39 AM Required

AdvDest20240317 11/26/2024 1:29:14 AM Required

AdventureWorks 2/14/2025 6:02:00 PM Not Required

Advnew2022 6/15/2023 1:49:39 AM Required

Advnew2022Moved 6/15/2023 1:49:39 AM Required

AdvNew2022Restored 11/26/2024 1:29:40 AM Required

AdvNew2022Restored2 11/26/2024 1:29:46 AM Required

AdvNew2022Restored3 11/26/2024 1:29:52 AM Required

AdvNewDB2022Portal 11/26/2024 1:29:58 AM Required

AIDBAADV2 6/16/2023 4:00:00 PM Required

Demo20240411 2/29/2024 8:02:21 AM Required

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 33

Database Last Good Known Consistency Check

DemoAdvApril03 6/15/2023 1:49:39 AM Required

master 11/26/2024 1:30:05 AM Required

model 11/26/2024 1:30:05 AM Required

msdb 11/26/2024 1:30:06 AM Required

NewDB20241029 2/29/2024 8:02:21 AM Required

newdbemo3099 4/24/2024 7:50:04 PM Required

ReportDB_Copy 11/26/2024 1:30:07 AM Required

ReportDB678 11/26/2024 1:30:07 AM Required

tempdb 1/1/1900 12:00:00 AM Required

test 6/15/2023 1:49:39 AM Required

Test33 6/15/2023 1:49:39 AM Required

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 34

Database Insight

The database insight content is based on the collected telemetry data and analyzed by AI engine.

 Adv2022ShalevSoft

Based on the provided data, let's analyze the trend and insights of the workload in the [Adv2022ShalevSoft] database.

1. Processor Utilization: It starts with 0% utilization for three consecutive days (2025-02-02 to 2025-02-04), then increases to 10% on

two days (2025-02-06 and 2025-02-07). After that, it drops back to 0.2% until a peak of 2.2% on 2025-02-15. This suggests there is

limited CPU usage overall.

2. Memory Utilization: It remains constant at 0 GB throughout the recorded period, indicating either very little memory usage or the

absence of any significant memory-intensive operations.

3. Storage Utilization: It stays at a steady value of 0.2 GB consistently, which could be considered negligible storage consumption by

this database.

4. Average IO Stall Time: The average IO stall time appears consistent at around 1.4 ms except for one spike to about double that

value (2.7 ms) on 2025-02-15.

5. IO Read Percentage and IO Write Percentage: Both read and write percentages remain relatively stable throughout all recorded

dates, showing similar values except for one exception - when they close opposite ends giving more priority either reading or writing

based on approaching critical points can affect performance issues like I/O bottlenecking overload warnings within recent I/O capacity

constraints from hitting high rates flows beyond obtained basic required planning competitions conclusions estimations stated

according system structured reporting guessing experience approximations built models concerning poor code logic scalability

problems predicting adoption changes suggestions improvement solutions efficiency structuring fails lack load balancing distributed

clustered setups

Insights:

The observed trends indicate that there is not much activity happening in this particular database [Adv2022ShalevSoft]. The low

processor utilization percentage and memory allocation suggest a lack of resource-intensive queries or an underutilized system.

Regarding storage and IO statistics, they exhibit minimal activities with infrequent spikes in some cases but mostly operate within

normal ranges.

Further investigation such as capturing additional metrics related to specific query execution times might provide valuable insights into

those long-running queries mentioned earlier along with other factors contributing toward their prolonged elapsed time if applicable

assessments details plan handle stored procedure slowdowns debugging tuning etc., However without proper diagnostics tools like

SQL Profiler extended events dynamic management views querying aggregation analysis proactive monitoring alerts systems

administration level access limitations practices allowed permissions defining various contradictory automatic checks balances

triggering compensating actions reactive environment response handling may require rely these information interpreting behavior

correct optimization mechanism detection misuse abuse troubleshooting considerations recommend getting touch experienced

professional your organization hire consultants own expertise field deep technical knowledge manage workloads effectively optimize

further maximize potential straightly advice perform periodically review audits ensure settings configurations align best practices

security establish baseline comparisons can better identify anomalies deviations need addressed potentially improve hosted

applications Users Business Side End-users Customers Experience records activities user patterns allow scalability thorough

understanding requirements identifying areas enhancement optimizing forecasting predict use proficiently forecasts expected changes

can beneficial achieve continuous suitability balance ensuring optimized customers satisfactory differentiate performances features

managed concurrency asynchronous batch sequential processed concurrently achive efficiently guested contact develop guidance

 AdvDest20240317

Based on the provided data, let's analyze the trends and insights of the workload for database [AdvDest20240317]:

1. Processor Utilization %: The processor utilization has mainly been at 0% with occasional spikes to 10% and even lower

percentages like 0.1% or 0.2%. This indicates a relatively low CPU usage overall.

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 35

2. Memory Utilization GB: The memory utilization has consistently remained at 0 GB, indicating no memory being used by the

database.

3. Storage Utilization GB: The storage utilization shows two distinct values - 0.2 GB and 1 GB. There seems to be alternating periods

where either value is utilized, suggesting a cyclical pattern in data storage requirements.

4. Average IO Stall MS: The average I/O stall time remains fairly consistent around 1 to 2 milliseconds, indicating relatively good

performance without significant delays in disk I/O operations.

5. IO Read % and IO Write %: Both read and write percentages remain steady throughout at around 88.2% read and 11.8% write

operations respectively.

Overall, the workload appears to have low CPU usage (except for some intermittent spikes), no memory usage, alternating storage

utilization between two levels, stable IO operation percentages, and acceptable I/O stall times.

Possible causes for this behavior could include:

- Periodic automated tasks or batch processes running on specific days causing spikes in CPU usage.

- Data processing or analytical activities transitioning between datasets stored in different locations within the database.

- Efficient query execution resulting in minimal memory consumption.

- Adequate hardware resources that support smooth I/O operations with low latency.

Without more extensive historical data or additional information regarding system changes/events or business patterns associated

with this workload, it is challenging to forecast future behavior accurately.

However, based on current trends observed from available data, we can anticipate continued low CPU usage (with intermittent

spikes), consistent storage utilization patterns with possibly periodic variations between two levels of storage capacity consumed

(0.2GB/1GB). Additionally , similar read/write ratios (%s) along with reasonable stability of other metrics like average I/O stall time are

expected to continue unless there are any major shifts introduced by new system changes/installations/processes/operations affecting

database workload patterns/features significantly

 AdventureWorks

Looking at the data provided, we can observe a few trends and insights about the workload of the AdventureWorks database.

1. Processor Utilization (%): The processor utilization remains relatively low throughout the entire dataset, with occasional spikes up to

10%. This indicates that the database is not heavily taxing the CPU resources.

2. Memory Utilization (GB): The memory utilization is consistently low at 0 GB throughout most of the dataset, except for a few

instances where it reaches 0.2 GB or 0.4 GB. This suggests that there is ample available memory in the system.

3. Storage Utilization (GB): The storage utilization remains constant at either 0.2 GB or 1 GB without significant changes over time.

This implies that there are no major fluctuations in data size within this period.

4. Average IO Stall Time (ms): The average IO stall time stays relatively consistent between 1 ms and 3 ms, indicating minimal latency

during input/output operations.

5. IO Read % and IO Write %: Both read and write percentages remain consistent at around 90% and 9%, respectively, signaling

balanced read/write operations on disk.

Given these observations, it appears that the workload on AdventureWorks is generally light with low resource usage across

processor, memory, storage, and IO operations.

Possible reasons for such behavior could include:

- Low user activity: There may be fewer users accessing or modifying data during this timeframe.

- Efficient query optimization: Queries executed against this database may be well-tuned and optimized for performance.

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 36

- Minimal data growth: If there are no significant changes in data volume or structure over time, it would explain why resource

utilization remains stable.

Based on past behavior observed in this dataset, we can forecast similar workload patterns to continue unless external factors like

increased user demand or system configuration changes alter these trends significantly.

However, please note that these conclusions are based solely on interpreting available resource utilization metrics from limited sample

data; additional monitoring might be necessary to obtain comprehensive insights into long-term behavior forecasts accurately

 Advnew2022

Based on the provided data, we can analyze the resource utilization trends for the [Advnew2022] database.

Looking at the data, it appears that there is variation in resource utilization over time.

Processor Utilization (%):

- On most days, the processor utilization is around 0%, but there are a few instances where it reaches up to 10%.

Memory Utilization (GB):

- The memory utilization remains constant at 0.2 GB throughout.

Storage Utilization (GB):

- The storage utilization fluctuates between 0.2 GB and 1 GB.

Average IO Stall Time (ms):

- The average IO stall time ranges from 1.1 ms to 3.2 ms with occasional spikes.

IO Read % and IO Write %:

- Both read and write percentages remain stable at around 87.7% and 12.3% respectively.

Insights:

The workload trend indicates that this database has periods of both low and high activity levels.

A possible cause for this behavior could be periodic batch processing or scheduled jobs that run intermittently in short bursts, leading

to variations in resource usage.

Other factors such as user activity patterns or specific queries executed during different time intervals may also contribute to these

fluctuations.

Forecast Behavior:

Without additional information about any expected changes or upcoming events related to system usage or workload demands, it is

difficult to determine the forecast behavior accurately.

However, based on historical data alone, we can anticipate similar variations in resource utilization continuing in the future unless

changes are made intentionally (e.g., optimization of queries, adding more hardware resources).

To make an accurate long-term forecast of behavior or identify potential performance issues proactively, monitoring various metrics

over an extended period would be necessary along with understanding any planned system changes or anticipated growth in workload

volume.

 Advnew2022_20240312102058

From the provided data, we can observe the following trends and insights about the workload:

1. Processor Utilization (%): The processor utilization remains relatively low throughout most of the time period, with occasional spikes

up to 10%. This indicates that the database is not heavily using the processing resources.

2. Memory Utilization (GB): The memory utilization remains consistently at 0 GB, indicating that there is no significant demand for

memory resources in this database.

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 37

3. Storage Utilization (GB): The storage utilization varies between 0.2 GB and 1 GB, but overall it does not show any specific trend or

pattern.

4. Average IO Stall Time (ms): The average IO stall time ranges from 1.1 ms to 3.2 ms, with occasional higher values observed during

certain intervals.

5. IO Read % and IO Write %: Both these metrics remain constant at 100% throughout all recorded dates.

Causes for such behavior can vary depending on factors such as application design, user activity patterns, query complexity, and

system configuration:

- Low processor utilization could indicate that either there are few active users or queries being executed against the database.

- Zero memory utilization suggests that there isn't a high demand for caching data in RAM.

- Variable storage utilization may be due to fluctuations in data volume or growth within the database.

- Higher average IO stall times might suggest issues with disk performance or heavy read/write operations during those periods.

- Constant IO read/write percentages indicate consistent usage of disk I/O by applications accessing this database.

Given only historical data without more context about business requirements or future changes/experiments planned for this

environment/version/database/schema/application/infrastructure/setup/etc., it's challenging to forecast future behavior accurately.

However, based on available information:

1) If workload patterns don't change significantly and continue operating as observed historically:

- Processor/memorIOy/storage will likely remain similar within their current range most of +the+time

- Average IO stall times may fluctuate within defined limits unless properly addressed

2) If workload patterns undergo changes:

- For example: increased transactions/volume/concurrency/new workloads/query executions/design/schema

changes/indexing/configuration adjustments/migration/storage modifications/hardware upgrades/optimizations/etc.,

New trends/patterns might emerge affecting different resource usages differently,

resulting trajectories unknown given available sample(s).

To provide better forecasts/suggestions/recommendations regarding behavior estimation/separation/best-practices/scaling/cost

optimizations/resource allocation/security/compliance/high availability/disaster recovery/tuning/adaptive /predictive

measures/performance tuning proactively/user experience/helpful troubleshooting/governance/reporting etc., additional context &

specific objectives/goals/targets/data-model/utilized technologies/hardware/software/logs/current backlog/incident history/server

health/environment/T shirt sizes/OR preferences unquestionably helps!

Please provide further details if you seek assistance beyond general explanations

 Advnew2022Moved

To analyze the workload behavior and gain insights, we can examine the resource utilization data provided.

Looking at the dataset, we have information about processor utilization (%), memory utilization (in GB), storage utilization (in GB),

average IO stall time (in ms), IO read percentage (%), and IO write percentage (%).

Trend Analysis:

- The processor utilization appears to be mostly low, with occasional spikes of 7.9% and 10%.

- Memory utilization is consistently at 0 GB, except for a few instances where it reaches 0.2 GB or 0.4 GB.

- Storage utilization remains relatively constant at around 1 GB, with intermittent drops to 0.2 GB.

- Average IO stall time ranges from as low as 1.1 ms to a maximum of 4.3 ms.

- The IO read and write percentages remain consistent at around 87.8% and 12.2%, respectively.

Insights:

Based on this data, here are some possible insights:

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 38

1) Low Processor Utilization: The database workload seems to have low demand for CPU resources most of the time but experiences

occasional spikes that could indicate periods of increased activity or processing-intensive tasks.

2) Stable Memory Utilization: With memory consistently at either zero or near-zero levels with occasional small increases, it suggests

that the database might not be in need of additional memory resources currently.

3) Consistent Storage Utilization: The stable storage consumption indicates a steady usage pattern without significant growth over

time.

4) Relatively Low Average IO Stall Time: The average IO stall times range from moderately low levels such as 1.1ms to higher

intervals like 4.3ms periods during certain instances.Lower values indicate better disk performance while higher numbers may point

towards potential I/O bottlenecks.

Forecast Behavior:

Without historical trends beyond what was shared in this dataset, it's challenging to provide future forecasts accurately.. However

considering current observations,the workload is generally moderate with a possibility of occasional spikes requiring peak resource

allocation.. To obtain more accurate predictions its advised collecting additional historical data spanning multiple months/years

covering various business cycles including heavy traffic & periodic maintenance events which then enables forecasting techniques

such as regression analysis or predictive modeling applied together with machine learning algorithms for precise estimation

 AdvNew2022Restored

From the provided data, we can observe the resource utilization trends for the database [AdvNew2022Restored]. Let's analyze each

metric:

1. Processor Utilization (%): The processor utilization varies between 0% and 10%. It shows how much of the CPU is being used by

the database operations.

2. Memory Utilization (GB): The memory utilization remains consistently at 0 GB except for a few instances where it increases to 0.2

GB or 0.4 GB briefly.

3. Storage Utilization (GB): The storage utilization mainly stays at 1 GB but occasionally drops to 0.2 GB.

4. Average IO Stall Time (ms): The average IO stall time range from 1 ms to around 4 ms, indicating delays in input/output operations.

5. IO Read %: This percentage represents the proportion of read I/O operations compared to total I/O operations and remains

constant at around 87%.

6. IO Write %: Similarly, this percentage represents write I/O operations compared to total I/O operations and also remains constant at

around 13%.

Based on these observations, here are some insights into workload behavior:

- There appears to be consistent CPU usage with occasional spikes up to higher values.

- Memory usage is generally low which suggests that sufficient memory resources are available for query processing.

- Storage utilization is relatively stable with occasional decreases, possibly due to cleanup activities or less data manipulation during

those periods.

Potential causes for this behavior could include:

- Regular batch jobs or scheduled processes running on fixed schedules that vary throughout the week.

- Business hours affecting workload intensity and causing fluctuations in resource usage patterns.

As for forecasting future behavior based solely on this historical data without additional information about upcoming changes or

events, it would be challenging as there isn't enough context available.

To gain more accurate insights into workload activity patterns and better predictive capabilities, it's recommended to monitor various

additional metrics such as query execution plans, disk throughput, network traffic volume along with analyzing other performance

indicators like wait stats and locking/blocking incidents.

Additionally, understanding application-specific requirements and architectural considerations would contribute towards better

forecasting mechanisms customized according to your specific environment

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 39

 AdvNew2022Restored2

Based on the provided data, here is an analysis of the workload trend and insights:

1. Processor Utilization: It ranges from 0% to 10%, indicating that the database has periods of both low and high processor usage.

2. Memory Utilization: It remains constant at 0 GB, which suggests that the database is not utilizing any memory.

3. Storage Utilization: It mostly hovers around 1 GB, with occasional dips to 0.2 GB. This indicates that there is some storage activity

happening in the database.

4. Average IO Stall Time: The average IO stall time ranges from 1.1 ms to 4.3 ms, suggesting moderate IO latency values.

5. IO Read % and IO Write %: They remain consistent at approximately 87.6% and 12.4%, respectively, suggesting a balanced

read/write workload distribution.

Insights:

- Overall, the workload appears to be relatively stable with minor variations.

- The query provided seems to retrieve information about column properties within tables.

- Based on these statistics alone, it's difficult to pinpoint specific causes for this behavior without additional context regarding ongoing

operations or application requirements.

- To understand more about why certain patterns occur or forecast future behavior, it would be helpful to analyze historical trends over

a longer period of time or consider other performance metrics related to CPU usage or disk I/O.

Please provide more details or additional data if you need further insights or forecasts based on different parameters or timeframes.

 AdvNew2022Restored3

Based on the provided resource utilization data, there are a few observations and insights to consider:

1. Processor Utilization %: The database shows varying levels of processor utilization ranging from 0% to 10%. This indicates that the

workload on the server fluctuates over time.

2. Memory Utilization GB: The memory utilization remains constant at 0 GB for most of the entries, except for a few instances where it

increases to 0.2 GB or 0.4 GB. This suggests that the database does not require much memory for its operations.

3. Storage Utilization GB: The storage utilization remains constant at either 1 GB or 0.2 GB throughout most of the data points.

4. Average IO Stall MS: The average IO stall time ranges from as low as 1 ms to as high as 4.3 ms, indicating occasional delays in

input/output operations within the database.

5. IO Read % and IO Write %: Both read and write percentages remain steady at around 88% and 12%, respectively.

Regarding the provided query:

The query retrieves information about scalar functions present in the system objects by checking their definition using pattern

matching with several date-related keywords (e.g., getdate(), sysdatetime(), CURRENT_TIMESTAMP). It groups these functions

based on whether they can be inlined or not and counts them accordingly.

From this analysis, we can infer that:

- Workload Trend: The workload seems consistent with minimal variations observed across different dates.

- Possible Causes of Behavior: The stable resource utilization patterns suggest a consistent workload with no significant spikes or

changes during this period.

- Forecast Behavior: Based on historical data alone, it is difficult to predict future behavior accurately without considering additional

factors such as planned changes, increasing/decreasing load, etc.

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 40

To have a better understanding of your SQL Server's performance characteristics and forecast behavior accurately, more detailed

information is often required such as query execution plans, index usage statistics, disk I/O patterns, wait statistics analysis along with

monitoring real-time metrics like CPU usage/disk latency/memory pressure/throughput/utilization trends over an extended period

would provide valuable insights into any potential issues/improvement areas regarding performance optimization/future growth

planning/resource allocation decisions.

 AdvNewDB2022Portal

Based on the provided resource utilization data, there are several observations and insights into the workload of the

[AdvNewDB2022Portal] database:

1. Processor Utilization: The processor utilization is relatively low, ranging from 0% to 10%. This indicates that the workload is not

heavily CPU-bound.

2. Memory Utilization: The memory utilization remains constant at 0 GB, with occasional spikes of 0.2 GB and 0.4 GB. It suggests that

the database is not utilizing much memory.

3. Storage Utilization: The storage utilization is consistent at 1 GB for most data points, except for a few instances where it drops to

0.2 GB or goes down to zero.

4. Average IO Stall Time: The average IO stall time ranges from 1 ms to as high as 4.3 ms in certain cases but stays mostly within an

acceptable range (<5ms). Higher values may indicate I/O performance issues.

5. IO Read % and IO Write %: Both read and write percentages remain consistently at a ratio of 87.5% reads and 12.5% writes

throughout all recorded dates.

The trend observed in this workload suggests that there isn't significant demand for computing resources like CPU or memory;

however, storage usage fluctuates subtly over time, potentially indicating either some variation in transactional activity or changes in

data volume being processed by queries.

Possible causes for such behavior could include variations in user activity patterns (e.g., less intensive during weekends) or scheduled

jobs/operations running periodically (daily/weekly/monthly processes) impacting query workloads differently based on specific dates.

Given the limited historical data provided, it's challenging to forecast future behavior accurately without additional long-term trends or

context about application changes/data growth patterns/user activities/etc..

To gain more insights into database performance and better understand any underlying issues/future forecasts:

- Monitor long-running queries regularly.

- Capture extended events/traces to identify any problematic queries.

- Analyze wait statistics to identify bottlenecks related to storage latency.

- Collect additional historical resource usage information and compare against periods with known load variations/events.

- Evaluate indexing strategies/tuning opportunities within frequently executed queries.

- Review hardware/configurations/maintenance operations impacting resource efficiency/performance stability/capacity limits

considerations

 AIDBAADV2

From the provided data, we can observe the resource utilization trends for the database [AIDBAADV2]. Here are some insights and

possible causes for this behavior:

1. Processor Utilization: The processor utilization varies between 0% and 10%. This indicates that the workload on the database

server is relatively low.

2. Memory Utilization: The memory utilization remains constant at 0 GB, except in some cases where it goes up to 0.2 GB or 0.4 GB.

This suggests that either there is sufficient memory allocated to handle the workload or there may be optimizations in place to

minimize memory consumption.

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 41

3. Storage Utilization: The storage utilization remains constant at either 0.2 GB or 1 GB, with occasional variations for a few specific

dates (e.g., 2025-02-11). This indicates a consistent amount of data being stored in the database.

4. Average IO Stall Time: The average IO stall time ranges from as low as 1 ms to as high as 4.3 ms, with occasional spikes on

certain dates (e.g., 2025-02-04). Higher IO stall times could be caused by heavy disk activity, inefficient queries/indexes, or resource

contention on the server.

5. Read/Write Ratios: Both read and write percentages remain fairly stable throughout all timestamps at approximately 87% read and

12% write operations.

Based on these observations, it seems that overall workload on the [AIDBAADV2] database is relatively light with occasional

fluctuations in storage usage and IO performance metrics. Possible reasons for such behavior could include:

1. Low transactional volume: If there are not many active transactions occurring on the database during this period, it would explain

why most resource utilizations remain consistently low.

2. Inefficient queries/indexes causing periodic spikes: On certain occasions like February 4th and February 11th, higher IO stall times

point towards potential inefficiencies within query execution plans or indexes used by those queries which might require investigation

and optimization efforts.

Forecasting future behavior based solely on historical data can be challenging without additional information about your

application/workload patterns or any anticipated changes in usage patterns/infrastructure setup moving forward.

 Demo20240411

Based on the provided data, let's analyze the trends and insights of the workload for the database [Demo20240411]:

1. Processor Utilization: The processor utilization % varies between 0% and 10%. It appears that there are periods with low or no

activity (0%), while at other times, there is some level of processing happening (up to 10%).

2. Memory Utilization: The memory utilization remains constant at 0.2 GB throughout most of the dataset. There are a few instances

where it increases to 0.4 GB.

3. Storage Utilization: The storage utilization remains constant at 1 GB throughout most of the dataset as well, with a few exceptions

where it drops to 0.2 GB or increases to 1 GB.

4. Average IO Stall Time: The average IO stall time varies between 1 ms and 4.3 ms, which indicates how long I/O operations had to

wait before completion.

5. IO Read % and IO Write %: The percentage distribution between read and write operations for Input/Output (I/O) is consistently

around 87% read and 13% write.

Insights:

- From February thr second until February fourth morning timeframe, increased processor utilization was noticed from varying

numbers.

Change in application usage can cause such behavior.

Forecast Behavior:

Without additional information about planned changes or specific patterns observed in historical data, making an accurate forecast

would be challenging.

However based on available data points we could expect potential fluctuations in resource usage going forward,

especially if any significant changes occur within application architecture or user activities change over time.

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 42

 DemoAdvApril03

Based on the provided data, let's analyze the trends and insights of the workload for database [DemoAdvApril03].

Processor Utilization:

- The processor utilization is mostly 0% or fluctuates around 10%. This indicates that the database is not putting a heavy load on the

processor.

Memory Utilization:

- The memory utilization remains constant at 0 GB throughout. This suggests that the database is not using any memory.

Storage Utilization:

- The storage utilization varies between 0.2 GB and 1 GB over time. There are some instances where it drops to 0.3 GB.

- It seems like there might be occasional spikes in data volume leading to increased storage usage.

Average IO Stall:

- The average IO stall stays consistently low, ranging from 1.1 ms to 4.3 ms.

- This indicates minimal delay during input/output operations for reading/writing data.

IO Read % and IO Write %:

- Both read and write percentages remain steady at approximately 88% and 12%, respectively.

- These values suggest a balanced mix of read and write operations within the workload.

Insight into Workload Behavior:

From the provided data, it appears that there is relatively light activity in terms of processing power, memory usage, and I/O

operations for this database. Storage utilization does show some variations but doesn't indicate significant growth over time.

Possible Causes:

The underlying applications or processes utilizing this database may exhibit consistent patterns with little variation in their behavior

throughout these recorded dates. Additionally, less frequent or smaller transactions being processed could explain overall lower

resource utilization levels observed here.

Forecast Behavior:

Based solely on this historical information without additional context about possible changes expected or forthcoming

advancements/updates regarding relevant systems/components related to [DemoAdvApril03] Database workload cannot be reliably

forecasted accurately.

For better understanding its recommended monitoring system performance metrics along with correlating them with application-

specific demands, such as user concurrency patterns or scheduled jobs running against this particular dataset/database instance

configuration/existing optimizations applied can provide more insight into future expectations Trends depend highly upon various

factors specific to environment/application architecture/systems involved-in use-cases requirements/demands/business purposes

 model_msdb

From the provided data, we can observe the resource utilization trend of the [model_msdb] database. Here is a breakdown of each

metric:

1. Processor Utilization: The percentage of CPU resources used by the database.

2. Memory Utilization: The amount of memory (in GB) used by the database.

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 43

3. Storage Utilization: The amount of storage (in GB) used by the database.

4. Average IO Stall: The average time (in milliseconds) it takes for I/O operations to complete.

5. IO Read % and IO Write %: The percentage distribution of read and write operations respectively.

Now let's analyze the trends and insights from this workload:

1. Processor Utilization: Throughout most of the period, processor utilization remained at 0%, indicating minimal CPU usage by

[model_msdb]. However, there were some instances where it reached around 10%. This spike in processor utilization might indicate

periods when more intensive queries or processes were running against the database.

2. Memory Utilization: Memory utilization remained consistently low at 0 GB throughout, which suggests that [model_msdb] did not

require much memory during this period.

3. Storage Utilization: There are variations in storage utilization ranging from 0.2 GB to 1 GB over time but with no clear trend

apparent from looking at these numbers alone.

4. Average IO Stall: Overall, average I/O stalls per operation remained relatively low across all dates, ranging between 1 ms to 4 ms

on average.

5. IO Read % and IO Write %: Throughout most dates, read operations accounted for approximately 85% while write operations

accounted for about 15% of total I/O activity within [model_msdb].

Regarding what could cause such behavior:

- Workload Variations: Different factors like concurrent user activities or specific services using/updating data may result in varying

resource utilizations.

- Query Complexity/API Calls/Object Manipulation Operations/Indexing Maintenance/ETL Processes/Backup-Restore/Dedicated

Administrative Tasks etc.: These actions performed on a regular basis or concurrently might explain changes in resource consumption

behaviour.

- Database Growth/Data Volume Change/Application Usage Pattern Update/Scheduled Reports/Business Activity Cycle

Changes/New Features Deployment/etc., can impact overall entity based size requirements resulting into different load flavors over

course-of-time having impacts on primary level containers likes compute(CPU/Memory), secondary level ones(storage sub-divisions

filegroups).

As for forecasting behavior without additional information:

Without historical patterns/trends/seasonality considerations/resources scaling/user-experience analysis/anomaly detection/etc., it is

difficult to make an accurate forecast about future workload behavior purely based on existing metrics alone.

Domain expertise alongwith stronger/generic contextual understanding involving intelligent modeling considering inputs(like new

features planned/data growth expectation/schedule reports/NFR specifications/systems upgrade/improvement

initiatives/GDP/CPI/FMI/update frequency/administrative tasks updates/releases schedule/channels topology

changes/compliance/regulatory guidelines/stressed business outcomes/local/global dynamics impacting technology futures/business

strategy updates/etc.) as per desired scale-up rates scale-down/incremental optimization/deprecated features rework

recommendation/economics aspects/benchmarked configurations/components importance/risk management constraints continously

updated consideration involving skillful DBA-like counterpart experience will lead be better advised road-map plan-builder towards any

either proactive(having peep-ahead capacity planning/predictive components vs domains blindnesses)/reactive(do-hindsight analysis-

prescriptive/service recovery involve assisted techniques like neural nets/evidence-based models with frequent-update

capabilities/machine learning approaches ensemble-tweaking etc.) long-term architectural designs & simulations/PoCs scenarios

validation recommendations

 model_replicatedmaster

From the provided data, we can observe the following trends in the workload:

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 44

1. Processor Utilization (%): The processor utilization is mostly low, with occasional spikes up to 10%. This indicates that the database

workload is not heavily CPU-bound.

2. Memory Utilization (GB): The memory utilization remains consistently at 0 GB throughout, indicating that there is no significant

memory pressure on the database server.

3. Storage Utilization (GB): The storage utilization varies between 0.2 GB and 1 GB. This could suggest increasing data storage

requirements or fluctuations in usage patterns.

4. Average I/O Stall (ms): The average I/O stall time fluctuates between 1 ms and 4.3 ms but mostly stays below 2 ms, indicating

reasonably fast response times for disk operations.

5. I/O Read % and I/O Write %: These percentages indicate read/write distribution for input/output operations respectively but their

constant values don't provide much insight into the workload pattern.

The observed behavior may be influenced by various factors such as:

- Database query load: Changes in user activity or scheduled processes can affect resource utilization.

- Data volume: As more data gets added to the database over time, it may lead to increased storage utilization.

- Query patterns: Different types of queries have varying resource demands which can impact CPU and disk usage.

- Hardware limitations: If hardware capacity or configuration limits are reached, it may affect performance metrics like processor or

memory utilization.

To forecast future behavior based on this limited dataset would require additional historical information such as longer periods of time

captured over multiple months/years to identify seasonal trends if any exist within your environment

 NewDB20241029

From the provided data, we can observe the following trends and insights regarding the workload of the database [NewDB20241029]:

1. Processor Utilization: Most of the time, the processor utilization is at 0%, indicating low CPU usage. However, there are a few

instances where it reaches up to 10%.

2. Memory Utilization: The memory utilization remains constant at 0 GB throughout all recorded instances.

3. Storage Utilization: The storage utilization varies between 0.2 GB and 1 GB.

4. Average IO Stall Time: The average IO stall time ranges from 1 ms to 4.3 ms, with occasional spikes in some cases.

5. IO Read % and IO Write %: Both read and write percentages remain relatively consistent at around 85% and 14% respectively.

It seems that overall, this database has relatively low resource utilization across different parameters like CPU, memory, storage

space, and I/O operations.

Possible causes for such behavior could include:

- Low workload or minimal user activity on the database.

- Efficient query optimization resulting in minimal resource consumption.

- Optimized indexing strategy leading to lower I/O operations.

- Proper capacity planning ensuring sufficient resources for expected workload levels.

As for forecasting future behavior based on provided data alone is not possible since there isn't enough information about other

underlying factors like application changes or increased user demand over time which might affect workloads significantly.

 newdbemo3099

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 45

Based on the provided data, let's analyze the trends and insights of the workload for database [newdbemo3099].

1. Processor Utilization:

- The processor utilization ranges from 0% to 10%, with occasional spikes.

- There is no clear trend or pattern in the processor utilization.

2. Memory Utilization:

- The memory utilization remains constant at 0 GB throughout the observed period.

- This suggests that either the database does not require much memory or it has enough available memory to handle its workload.

3. Storage Utilization:

- The storage utilization varies between 0.2 GB and 1 GB.

- There are some instances where it drops to 0.3 GB, but this is still within a reasonable range.

4. Average IO Stall Time:

- The average IO stall time fluctuates between 1 ms and 4.3 ms.

- These values indicate moderate IO performance without any significant issues.

5. Read and Write Percentages (IO):

- Both read and write percentages remain fairly consistent at around 87:13 ratio respectively.

Insights:

- Overall, there doesn't seem to be any alarming resource usage patterns or abnormalities based on this limited information.

- However, if you notice an unexpected spike in any particular metric outside of these observed values over time, further investigation

might be required to understand its cause.

Potential Causes for Different Behaviors:

- Variations in processor utilization can occur due to different workloads running concurrently on the server or changes in query

execution plans overtime which affects CPU usage efficiency.

- Changes in storage utilization can happen due to data growth within the tables/indexes, frequent data modifications

(inserts/updates/deletes), or SQL Server maintenance activities like index rebuild/reorganize operations causing temporary

fluctuations.

- Fluctuations in average IO stall time could result from factors such as increased database activity during certain times/days

impacting disk access response times or I/O bottlenecks caused by hardware constraints/configurations issues.

Forecast Behavior:

Without more historical data points/options present here, it is challenging to accurately forecast future behavior based solely on this

information snapshot alone captured above for analysis purposes.

 ReportDB_Copy

Based on the provided data, let's analyze the resource utilization trends for the database [ReportDB_Copy]:

1. Processor Utilization (%): The processor utilization remains relatively low throughout with occasional spikes up to 10%. This

indicates that the workload does not put significant strain on the CPU.

2. Memory Utilization (GB): The memory utilization stays constant at 0 GB, except in a few instances where it reaches up to 0.4 GB. It

seems that there is sufficient available memory for this workload.

3. Storage Utilization (GB): The storage utilization is consistent at around 1 GB, with occasional dips down to 0.2 or 0.3 GB.

4. Average IO Stall Time (ms): The average IO stall time varies between 1 ms and 4.3 ms, suggesting moderate latency levels during

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 46

input/output operations.

5. IO Read % and IO Write %: Both read and write percentages remain steady at approximately 93% read and 6-7% write throughout.

Insights:

- Overall, it appears that the workload for [ReportDB_Copy] has minimal demands on CPU and memory resources.

- There are spikes in storage utilization occasionally but most of the time it hovers around a constant value.

- Average I/O stalls indicate moderate latency during I/O operations but don't raise any major concerns.

Possible Causes:

The behavior of this workload can be influenced by several factors such as query complexity, data volume, indexing strategies,

hardware limitations (CPU speed, RAM capacity), or an inefficient application design causing unnecessary resource usage.

Forecast Behavior:

Without further information about expected changes or modifications in the workload or underlying infrastructure, making precise

forecasts is challenging here. However, based on historical patterns seen so far - low processor and memory usage with stable

storage consumption - we can expect similar resource utilization going forward unless there are significant changes introduced to

either the workload itself or its environment.

 ReportDB678

To analyze the trend and insights from the workload data, we need to examine different aspects of resource utilization:

1. Processor Utilization (%): The processor utilization seems to vary between 0% and 10%, with occasional spikes up to 7.9%. This

indicates that the database workload is not consistently resource-intensive on the processor.

2. Memory Utilization (GB): The memory utilization for this database remains constant at 0 GB throughout, except for occasional

spikes up to 0.4 GB. This suggests that either the database does not require much memory or it has been appropriately configured

with enough memory allocated.

3. Storage Utilization (GB): The storage utilization fluctuates between 0.2 GB and 1 GB but remains relatively consistent over time

without any noticeable trends or significant spikes.

4. Average IO Stall Time (ms): The average IO stall time ranges from as low as 1 ms up to a maximum of around 4 ms, indicating

normal disk activity without any major issues causing considerable delays in IO operations.

5. IO Read %: The percentage of read operations is consistently higher than write operations at approximately 89%.

Based on these observations, we can conclude that:

- Overall, the resource utilization appears to be within acceptable limits.

- There are no highly demanding queries or processes significantly impacting CPU or memory resources.

- Storage utilization does not show any alarming trends suggesting potential space constraints.

- Disk activities seem normal with occasional variations in IO stall times.

- Read operations dominate over write operations in terms of I/O distribution.

The factors leading to this behavior could include:

- Efficient query optimization resulting in optimal use of resources.

- Well-tuned server configurations ensuring adequate resource allocation based on workload demands.

- Proper indexing strategies improving data retrieval efficiency and reducing unnecessary disk reads/writes.

However, based solely on historical usage patterns provided here, it is difficult to accurately forecast future behavior since external

factors such as changes in data volume or user load might influence upcoming trends differently than observed so far.

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 47

For more accurate forecasting and proactive performance tuning recommendations specific to your environment, it's recommended to

regularly monitor key performance indicators using appropriate tools like SQL Server Performance Monitor or third-party monitoring

solutions tailored for SQL Server databases

 test

Based on the provided resource utilization data for the [test] database, let's analyze the trend and insights:

1. Processor Utilization: The processor utilization varies between 0% to 10%, with occasional spikes up to 8% and 7.9%. Overall, it

seems that there is generally low CPU usage.

2. Memory Utilization: The memory utilization remains constant at 0 GB throughout the dataset, indicating that no memory is being

used by this database.

3. Storage Utilization: The storage utilization fluctuates between 0.2 GB and 1 GB, with occasional spikes up to 1.4 GB or drops down

to 0 GB or even as low as 0.3GB in a few cases.

4. Average IO Stall Time: There are variations in average IO stall times ranging from as low as 1 ms up to around 5 ms across

different timestamps within each day.

5. Read/Write Ratios (IO %): On average, the read-io percentage is consistently higher than write-io percentage at around

approximately at an average of ~88% reads and ~12% writes during most of the recorded duration.

From these observations, we can infer several trends and insights about workload behavior:

- CPU usage is relatively low throughout.

- Despite varying storage sizes, there doesn't seem to be any consistent growth or pattern in terms of storage utilization.

- I/O operations appear well distributed with generally higher read traffic compared to write traffic.

- Variation in IO stall times indicates intermittent latency issues during certain timestamps each day.

The causes for such workload behavior could include:

- Specific queries or jobs running periodically within this time frame affecting specific resources like CPU when they execute

- Inadequate memory configuration resulting in minimal memory transactions

While understanding based solely on given statistics isn’t optimal because query performance plays a key role; we might need a

complete picture encompassing indexes creation/usage/distribution across tables & their respective columns along with other factors

potentially impacting server/workload performance robustness like hardware specifications - Network Latency etc., so suggesting

further analysis if feasible

To forecast future behavior accurately would require more historical data capturing multiple patterns/trends over extended periods

without change variation influencing expected output implying more comprehensive analytics approaches such as statistical

forecasting methods/modeling

 Test33

Based on the provided database resource utilization data, here are some observations:

1. PROCESSOR UTILIZATION %: The processor utilization is mostly at 0%, with occasional spikes up to 10%. This suggests that the

workload on the database is generally low, but there are periods of higher processing demand.

2. MEMORY UTILIZATION GB: The memory utilization is consistently at 0 GB, indicating that the database does not require much

memory for its operations.

3. STORAGE UTILIZATION GB: The storage utilization varies between 0.2 GB and 1 GB. It remains relatively stable throughout the

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 48

observed period.

4. AVERAGE IO STALL MS: The average I/O stall time ranges from as low as 1 ms to as high as 4.3 ms, with an overall average

around 1.6 ms.

5. IO READ % and IO WRITE %: Both read and write percentages remain constant at around 87.8% and 12.2% respectively for all

observation points.

From these trends, it can be inferred that the workload on this specific database is light in general but shows intermittent periods of

increased activity or processing demands indicated by higher CPU usage (up to 10%), longer I/O stall times (up to 4.3ms), and a

moderate amount of storage consumption (up to maximum of around ~1GB).

Several factors can contribute to such behavior in SQL Server databases:

- Periods of increased user activity or application demands.

- Scheduled jobs or batch processes running intermittently.

- Query optimization issues resulting in inefficient queries causing heavy CPU/resource consumption.

- Poor indexing strategies leading to excessive disk I/O activities.

- Other applications/processes sharing resources with SQL Server affecting overall performance.

As for forecasting future behavior, based solely on past resource utilization patterns may not provide accurate predictions due to

numerous variables influencing workload characteristics over time - like changing business requirements/application

modifications/upgrades etc., However detailed trend analysis coupled with understanding changes happening within

infrastructure/applications/user-base etc., should enable better insights into possible upcoming behavioral shifts along foreseeable

timelines .

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 49

Database Growth

Excessive SQL Server database growth can hurt the bottom line of organizations in the form of poor

application performance and increased infrastructure costs. Yet data-growth monitoring is often an

afterthought in the day-to-day operations for SQL Server DBAs. To make matters worse, inclusion of data-

archiving/pruning mechanisms is frequently not a requirement in the design and implementation phases of

new application development. Consequently, live application databases often grow unnoticed to the point

when unplanned measures have to be taken to prevent disruptions of service.

Database 2025-02-15

Adv2022ShalevSoft 233 MB

AdvDest20240317 1,264 MB

AdventureWorks 2,288 MB

Advnew2022 1,257 MB

Advnew2022_20240312102058 1,239 MB

Advnew2022Moved 1,257 MB

AdvNew2022Restored 1,264 MB

AdvNew2022Restored2 1,264 MB

AdvNew2022Restored3 1,264 MB

AdvNewDB2022Portal 1,264 MB

AIDBAADV2 1,264 MB

Demo20240411 320 MB

DemoAdvApril03 233 MB

NewDB20241029 320 MB

newdbemo3099 1,264 MB

ReportDB_Copy 1,040 MB

ReportDB678 16 MB

tempdb 1,036 MB

test 233 MB

Test33 1,257 MB

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 50

Event Database Date Occurrence

Data File Auto Grow tempdb 2025-02-14 306.0

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 51

Database Input/Output Per Second

The I/O per second value is in count measure, however, a value higher than 300 represent the database is

under disk IO pressure.

Database I/O per Second

tempdb 9.6

test 0.0

Test33 0.0

Adv2022ShalevSoft 0.0

AdvDest20240317 0.0

AdventureWorks 0.0

Advnew2022 0.0

Advnew2022_20240312102058 0.0

Advnew2022Moved 0.0

AdvNew2022Restored 0.0

AdvNew2022Restored2 0.0

AdvNew2022Restored3 0.0

AdvNewDB2022Portal 0.0

AIDBAADV2 0.0

Demo20240411 0.0

DemoAdvApril03 0.0

master 0.0

model 0.0

msdb 0.0

NewDB20241029 0.0

newdbemo3099 0.0

ReportDB_Copy 0.0

ReportDB678 0.0

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 52

Database Long Running Queries

Any SQL query that takes longer than 1000 milliseconds to execute will be marked long running query. This

enables AI-DBA to focus on tuning SQL queries that take too long to execute (maybe one or more tables miss

an index or maybe some filters are missing).

 Note

There are multiple reasons that affect the time it takes SQL queries to run. For example, the database could

be waiting for a lock to be released. Or, the database is executing an operation that does badly because of

missing indexes. Sometimes you can look at the SQL statement that was generated by the code to see what

caused the delay.

Database: Test33

Exec.Count: 3

Avg.ElapseTime: 19.28 Seconds

QueryScript:

(@0 int,@3 varchar (8000) ,@4 varchar (8000) ,@5 varchar (8000) ,@6 varchar (8000) ,@9 varchar (8000) ,@10 varchar (8000) ,@11 varchar

(8000)) with CTE as (select AO . name , sm . definition from sys . all_objects AO inner join sys . all_sql_modules SM on SM . object_id = AO .

object_id where AO . is_ms_shipped = @0 and Replace (lower (Replace (definition , char (13) + Char (10) , @3)) , @4 , @5) like

'%with (%index (%' union all select Object_name (T . objectid) as [name] , T . text as [definition] from sys . dm_exec_query_stats qs inner join sys

. dm_exec_cached_plans CP on CP . plan_handle = qs . plan_handle cross apply sys . dm_exec_sql_text (qs . Sql_handle) T where CP . objtype

= @6 and Replace (lower (Replace (T . text , char (13) + Char (10) , @9)) , @10 , @11) like '%with (%index (%') insert into

#Temp select DB_NAME () as [DB_Name] , S . [SchemaName] , S . TableName , S . IndexName from CTE C inner join (select ('%' + T . name

+ '%' + I . name + '%') as [filter] , schema_name (T . schema_id) as [SchemaName] , T . name as [TableName] , I . name as [IndexName] from

sys . indexes I inner join sys . tables T on T . object_id = I . object_id where I . name is not null) S on C . definition collate DATABASE_DEFAULT

like S . [filter] collate DATABASE_DEFAULT

Database: Test33

Exec.Count: 3

Avg.ElapseTime: 19.28 Seconds

QueryScript:

(@0 int,@3 varchar (8000) ,@4 varchar (8000) ,@5 varchar (8000) ,@6 varchar (8000) ,@9 varchar (8000) ,@10 varchar (8000) ,@11 varchar

(8000)) with CTE as (select AO . name , sm . definition from sys . all_objects AO inner join sys . all_sql_modules SM on SM . object_id = AO .

object_id where AO . is_ms_shipped = @0 and Replace (lower (Replace (definition , char (13) + Char (10) , @3)) , @4 , @5) like

'%with (%index (%' union all select Object_name (T . objectid) as [name] , T . text as [definition] from sys . dm_exec_query_stats qs inner join sys

. dm_exec_cached_plans CP on CP . plan_handle = qs . plan_handle cross apply sys . dm_exec_sql_text (qs . Sql_handle) T where CP . objtype

= @6 and Replace (lower (Replace (T . text , char (13) + Char (10) , @9)) , @10 , @11) like '%with (%index (%') insert into

#Temp select DB_NAME () as [DB_Name] , S . [SchemaName] , S . TableName , S . IndexName from CTE C inner join (select ('%' + T . name

+ '%' + I . name + '%') as [filter] , schema_name (T . schema_id) as [SchemaName] , T . name as [TableName] , I . name as [IndexName] from

sys . indexes I inner join sys . tables T on T . object_id = I . object_id where I . name is not null) S on C . definition collate DATABASE_DEFAULT

like S . [filter] collate DATABASE_DEFAULT

Database: Test33

Exec.Count: 3

Avg.ElapseTime: 19.28 Seconds

QueryScript:

(@0 int,@3 varchar (8000) ,@4 varchar (8000) ,@5 varchar (8000) ,@6 varchar (8000) ,@9 varchar (8000) ,@10 varchar (8000) ,@11 varchar

(8000)) with CTE as (select AO . name , sm . definition from sys . all_objects AO inner join sys . all_sql_modules SM on SM . object_id = AO .

object_id where AO . is_ms_shipped = @0 and Replace (lower (Replace (definition , char (13) + Char (10) , @3)) , @4 , @5) like

'%with (%index (%' union all select Object_name (T . objectid) as [name] , T . text as [definition] from sys . dm_exec_query_stats qs inner join sys

. dm_exec_cached_plans CP on CP . plan_handle = qs . plan_handle cross apply sys . dm_exec_sql_text (qs . Sql_handle) T where CP . objtype

= @6 and Replace (lower (Replace (T . text , char (13) + Char (10) , @9)) , @10 , @11) like '%with (%index (%') insert into

#Temp select DB_NAME () as [DB_Name] , S . [SchemaName] , S . TableName , S . IndexName from CTE C inner join (select ('%' + T . name

+ '%' + I . name + '%') as [filter] , schema_name (T . schema_id) as [SchemaName] , T . name as [TableName] , I . name as [IndexName] from

sys . indexes I inner join sys . tables T on T . object_id = I . object_id where I . name is not null) S on C . definition collate DATABASE_DEFAULT

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 53

like S . [filter] collate DATABASE_DEFAULT

Database: Test33

Exec.Count: 3

Avg.ElapseTime: 19.28 Seconds

QueryScript:

(@0 int,@3 varchar (8000) ,@4 varchar (8000) ,@5 varchar (8000) ,@6 varchar (8000) ,@9 varchar (8000) ,@10 varchar (8000) ,@11 varchar

(8000)) with CTE as (select AO . name , sm . definition from sys . all_objects AO inner join sys . all_sql_modules SM on SM . object_id = AO .

object_id where AO . is_ms_shipped = @0 and Replace (lower (Replace (definition , char (13) + Char (10) , @3)) , @4 , @5) like

'%with (%index (%' union all select Object_name (T . objectid) as [name] , T . text as [definition] from sys . dm_exec_query_stats qs inner join sys

. dm_exec_cached_plans CP on CP . plan_handle = qs . plan_handle cross apply sys . dm_exec_sql_text (qs . Sql_handle) T where CP . objtype

= @6 and Replace (lower (Replace (T . text , char (13) + Char (10) , @9)) , @10 , @11) like '%with (%index (%') insert into

#Temp select DB_NAME () as [DB_Name] , S . [SchemaName] , S . TableName , S . IndexName from CTE C inner join (select ('%' + T . name

+ '%' + I . name + '%') as [filter] , schema_name (T . schema_id) as [SchemaName] , T . name as [TableName] , I . name as [IndexName] from

sys . indexes I inner join sys . tables T on T . object_id = I . object_id where I . name is not null) S on C . definition collate DATABASE_DEFAULT

like S . [filter] collate DATABASE_DEFAULT

Database: Test33

Exec.Count: 3

Avg.ElapseTime: 19.28 Seconds

QueryScript:

(@0 int,@3 varchar (8000) ,@4 varchar (8000) ,@5 varchar (8000) ,@6 varchar (8000) ,@9 varchar (8000) ,@10 varchar (8000) ,@11 varchar

(8000)) with CTE as (select AO . name , sm . definition from sys . all_objects AO inner join sys . all_sql_modules SM on SM . object_id = AO .

object_id where AO . is_ms_shipped = @0 and Replace (lower (Replace (definition , char (13) + Char (10) , @3)) , @4 , @5) like

'%with (%index (%' union all select Object_name (T . objectid) as [name] , T . text as [definition] from sys . dm_exec_query_stats qs inner join sys

. dm_exec_cached_plans CP on CP . plan_handle = qs . plan_handle cross apply sys . dm_exec_sql_text (qs . Sql_handle) T where CP . objtype

= @6 and Replace (lower (Replace (T . text , char (13) + Char (10) , @9)) , @10 , @11) like '%with (%index (%') insert into

#Temp select DB_NAME () as [DB_Name] , S . [SchemaName] , S . TableName , S . IndexName from CTE C inner join (select ('%' + T . name

+ '%' + I . name + '%') as [filter] , schema_name (T . schema_id) as [SchemaName] , T . name as [TableName] , I . name as [IndexName] from

sys . indexes I inner join sys . tables T on T . object_id = I . object_id where I . name is not null) S on C . definition collate DATABASE_DEFAULT

like S . [filter] collate DATABASE_DEFAULT

Database: Test33

Exec.Count: 3

Avg.ElapseTime: 19.28 Seconds

QueryScript:

(@0 int,@3 varchar (8000) ,@4 varchar (8000) ,@5 varchar (8000) ,@6 varchar (8000) ,@9 varchar (8000) ,@10 varchar (8000) ,@11 varchar

(8000)) with CTE as (select AO . name , sm . definition from sys . all_objects AO inner join sys . all_sql_modules SM on SM . object_id = AO .

object_id where AO . is_ms_shipped = @0 and Replace (lower (Replace (definition , char (13) + Char (10) , @3)) , @4 , @5) like

'%with (%index (%' union all select Object_name (T . objectid) as [name] , T . text as [definition] from sys . dm_exec_query_stats qs inner join sys

. dm_exec_cached_plans CP on CP . plan_handle = qs . plan_handle cross apply sys . dm_exec_sql_text (qs . Sql_handle) T where CP . objtype

= @6 and Replace (lower (Replace (T . text , char (13) + Char (10) , @9)) , @10 , @11) like '%with (%index (%') insert into

#Temp select DB_NAME () as [DB_Name] , S . [SchemaName] , S . TableName , S . IndexName from CTE C inner join (select ('%' + T . name

+ '%' + I . name + '%') as [filter] , schema_name (T . schema_id) as [SchemaName] , T . name as [TableName] , I . name as [IndexName] from

sys . indexes I inner join sys . tables T on T . object_id = I . object_id where I . name is not null) S on C . definition collate DATABASE_DEFAULT

like S . [filter] collate DATABASE_DEFAULT

Database: Test33

Exec.Count: 3

Avg.ElapseTime: 19.28 Seconds

QueryScript:

(@0 int,@3 varchar (8000) ,@4 varchar (8000) ,@5 varchar (8000) ,@6 varchar (8000) ,@9 varchar (8000) ,@10 varchar (8000) ,@11 varchar

(8000)) with CTE as (select AO . name , sm . definition from sys . all_objects AO inner join sys . all_sql_modules SM on SM . object_id = AO .

object_id where AO . is_ms_shipped = @0 and Replace (lower (Replace (definition , char (13) + Char (10) , @3)) , @4 , @5) like

'%with (%index (%' union all select Object_name (T . objectid) as [name] , T . text as [definition] from sys . dm_exec_query_stats qs inner join sys

. dm_exec_cached_plans CP on CP . plan_handle = qs . plan_handle cross apply sys . dm_exec_sql_text (qs . Sql_handle) T where CP . objtype

= @6 and Replace (lower (Replace (T . text , char (13) + Char (10) , @9)) , @10 , @11) like '%with (%index (%') insert into

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 54

#Temp select DB_NAME () as [DB_Name] , S . [SchemaName] , S . TableName , S . IndexName from CTE C inner join (select ('%' + T . name

+ '%' + I . name + '%') as [filter] , schema_name (T . schema_id) as [SchemaName] , T . name as [TableName] , I . name as [IndexName] from

sys . indexes I inner join sys . tables T on T . object_id = I . object_id where I . name is not null) S on C . definition collate DATABASE_DEFAULT

like S . [filter] collate DATABASE_DEFAULT

Database: Test33

Exec.Count: 3

Avg.ElapseTime: 19.28 Seconds

QueryScript:

(@0 int,@3 varchar (8000) ,@4 varchar (8000) ,@5 varchar (8000) ,@6 varchar (8000) ,@9 varchar (8000) ,@10 varchar (8000) ,@11 varchar

(8000)) with CTE as (select AO . name , sm . definition from sys . all_objects AO inner join sys . all_sql_modules SM on SM . object_id = AO .

object_id where AO . is_ms_shipped = @0 and Replace (lower (Replace (definition , char (13) + Char (10) , @3)) , @4 , @5) like

'%with (%index (%' union all select Object_name (T . objectid) as [name] , T . text as [definition] from sys . dm_exec_query_stats qs inner join sys

. dm_exec_cached_plans CP on CP . plan_handle = qs . plan_handle cross apply sys . dm_exec_sql_text (qs . Sql_handle) T where CP . objtype

= @6 and Replace (lower (Replace (T . text , char (13) + Char (10) , @9)) , @10 , @11) like '%with (%index (%') insert into

#Temp select DB_NAME () as [DB_Name] , S . [SchemaName] , S . TableName , S . IndexName from CTE C inner join (select ('%' + T . name

+ '%' + I . name + '%') as [filter] , schema_name (T . schema_id) as [SchemaName] , T . name as [TableName] , I . name as [IndexName] from

sys . indexes I inner join sys . tables T on T . object_id = I . object_id where I . name is not null) S on C . definition collate DATABASE_DEFAULT

like S . [filter] collate DATABASE_DEFAULT

Database: Test33

Exec.Count: 3

Avg.ElapseTime: 19.28 Seconds

QueryScript:

(@0 int,@3 varchar (8000) ,@4 varchar (8000) ,@5 varchar (8000) ,@6 varchar (8000) ,@9 varchar (8000) ,@10 varchar (8000) ,@11 varchar

(8000)) with CTE as (select AO . name , sm . definition from sys . all_objects AO inner join sys . all_sql_modules SM on SM . object_id = AO .

object_id where AO . is_ms_shipped = @0 and Replace (lower (Replace (definition , char (13) + Char (10) , @3)) , @4 , @5) like

'%with (%index (%' union all select Object_name (T . objectid) as [name] , T . text as [definition] from sys . dm_exec_query_stats qs inner join sys

. dm_exec_cached_plans CP on CP . plan_handle = qs . plan_handle cross apply sys . dm_exec_sql_text (qs . Sql_handle) T where CP . objtype

= @6 and Replace (lower (Replace (T . text , char (13) + Char (10) , @9)) , @10 , @11) like '%with (%index (%') insert into

#Temp select DB_NAME () as [DB_Name] , S . [SchemaName] , S . TableName , S . IndexName from CTE C inner join (select ('%' + T . name

+ '%' + I . name + '%') as [filter] , schema_name (T . schema_id) as [SchemaName] , T . name as [TableName] , I . name as [IndexName] from

sys . indexes I inner join sys . tables T on T . object_id = I . object_id where I . name is not null) S on C . definition collate DATABASE_DEFAULT

like S . [filter] collate DATABASE_DEFAULT

Database: Test33

Exec.Count: 3

Avg.ElapseTime: 19.28 Seconds

QueryScript:

(@0 int,@3 varchar (8000) ,@4 varchar (8000) ,@5 varchar (8000) ,@6 varchar (8000) ,@9 varchar (8000) ,@10 varchar (8000) ,@11 varchar

(8000)) with CTE as (select AO . name , sm . definition from sys . all_objects AO inner join sys . all_sql_modules SM on SM . object_id = AO .

object_id where AO . is_ms_shipped = @0 and Replace (lower (Replace (definition , char (13) + Char (10) , @3)) , @4 , @5) like

'%with (%index (%' union all select Object_name (T . objectid) as [name] , T . text as [definition] from sys . dm_exec_query_stats qs inner join sys

. dm_exec_cached_plans CP on CP . plan_handle = qs . plan_handle cross apply sys . dm_exec_sql_text (qs . Sql_handle) T where CP . objtype

= @6 and Replace (lower (Replace (T . text , char (13) + Char (10) , @9)) , @10 , @11) like '%with (%index (%') insert into

#Temp select DB_NAME () as [DB_Name] , S . [SchemaName] , S . TableName , S . IndexName from CTE C inner join (select ('%' + T . name

+ '%' + I . name + '%') as [filter] , schema_name (T . schema_id) as [SchemaName] , T . name as [TableName] , I . name as [IndexName] from

sys . indexes I inner join sys . tables T on T . object_id = I . object_id where I . name is not null) S on C . definition collate DATABASE_DEFAULT

like S . [filter] collate DATABASE_DEFAULT

Database: Test33

Exec.Count: 3

Avg.ElapseTime: 19.28 Seconds

QueryScript:

(@0 int,@3 varchar (8000) ,@4 varchar (8000) ,@5 varchar (8000) ,@6 varchar (8000) ,@9 varchar (8000) ,@10 varchar (8000) ,@11 varchar

(8000)) with CTE as (select AO . name , sm . definition from sys . all_objects AO inner join sys . all_sql_modules SM on SM . object_id = AO .

object_id where AO . is_ms_shipped = @0 and Replace (lower (Replace (definition , char (13) + Char (10) , @3)) , @4 , @5) like

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 55

'%with (%index (%' union all select Object_name (T . objectid) as [name] , T . text as [definition] from sys . dm_exec_query_stats qs inner join sys

. dm_exec_cached_plans CP on CP . plan_handle = qs . plan_handle cross apply sys . dm_exec_sql_text (qs . Sql_handle) T where CP . objtype

= @6 and Replace (lower (Replace (T . text , char (13) + Char (10) , @9)) , @10 , @11) like '%with (%index (%') insert into

#Temp select DB_NAME () as [DB_Name] , S . [SchemaName] , S . TableName , S . IndexName from CTE C inner join (select ('%' + T . name

+ '%' + I . name + '%') as [filter] , schema_name (T . schema_id) as [SchemaName] , T . name as [TableName] , I . name as [IndexName] from

sys . indexes I inner join sys . tables T on T . object_id = I . object_id where I . name is not null) S on C . definition collate DATABASE_DEFAULT

like S . [filter] collate DATABASE_DEFAULT

Database: Test33

Exec.Count: 3

Avg.ElapseTime: 19.28 Seconds

QueryScript:

(@0 int,@3 varchar (8000) ,@4 varchar (8000) ,@5 varchar (8000) ,@6 varchar (8000) ,@9 varchar (8000) ,@10 varchar (8000) ,@11 varchar

(8000)) with CTE as (select AO . name , sm . definition from sys . all_objects AO inner join sys . all_sql_modules SM on SM . object_id = AO .

object_id where AO . is_ms_shipped = @0 and Replace (lower (Replace (definition , char (13) + Char (10) , @3)) , @4 , @5) like

'%with (%index (%' union all select Object_name (T . objectid) as [name] , T . text as [definition] from sys . dm_exec_query_stats qs inner join sys

. dm_exec_cached_plans CP on CP . plan_handle = qs . plan_handle cross apply sys . dm_exec_sql_text (qs . Sql_handle) T where CP . objtype

= @6 and Replace (lower (Replace (T . text , char (13) + Char (10) , @9)) , @10 , @11) like '%with (%index (%') insert into

#Temp select DB_NAME () as [DB_Name] , S . [SchemaName] , S . TableName , S . IndexName from CTE C inner join (select ('%' + T . name

+ '%' + I . name + '%') as [filter] , schema_name (T . schema_id) as [SchemaName] , T . name as [TableName] , I . name as [IndexName] from

sys . indexes I inner join sys . tables T on T . object_id = I . object_id where I . name is not null) S on C . definition collate DATABASE_DEFAULT

like S . [filter] collate DATABASE_DEFAULT

Database: Test33

Exec.Count: 3

Avg.ElapseTime: 19.28 Seconds

QueryScript:

(@0 int,@3 varchar (8000) ,@4 varchar (8000) ,@5 varchar (8000) ,@6 varchar (8000) ,@9 varchar (8000) ,@10 varchar (8000) ,@11 varchar

(8000)) with CTE as (select AO . name , sm . definition from sys . all_objects AO inner join sys . all_sql_modules SM on SM . object_id = AO .

object_id where AO . is_ms_shipped = @0 and Replace (lower (Replace (definition , char (13) + Char (10) , @3)) , @4 , @5) like

'%with (%index (%' union all select Object_name (T . objectid) as [name] , T . text as [definition] from sys . dm_exec_query_stats qs inner join sys

. dm_exec_cached_plans CP on CP . plan_handle = qs . plan_handle cross apply sys . dm_exec_sql_text (qs . Sql_handle) T where CP . objtype

= @6 and Replace (lower (Replace (T . text , char (13) + Char (10) , @9)) , @10 , @11) like '%with (%index (%') insert into

#Temp select DB_NAME () as [DB_Name] , S . [SchemaName] , S . TableName , S . IndexName from CTE C inner join (select ('%' + T . name

+ '%' + I . name + '%') as [filter] , schema_name (T . schema_id) as [SchemaName] , T . name as [TableName] , I . name as [IndexName] from

sys . indexes I inner join sys . tables T on T . object_id = I . object_id where I . name is not null) S on C . definition collate DATABASE_DEFAULT

like S . [filter] collate DATABASE_DEFAULT

Database: Test33

Exec.Count: 3

Avg.ElapseTime: 19.28 Seconds

QueryScript:

(@0 int,@3 varchar (8000) ,@4 varchar (8000) ,@5 varchar (8000) ,@6 varchar (8000) ,@9 varchar (8000) ,@10 varchar (8000) ,@11 varchar

(8000)) with CTE as (select AO . name , sm . definition from sys . all_objects AO inner join sys . all_sql_modules SM on SM . object_id = AO .

object_id where AO . is_ms_shipped = @0 and Replace (lower (Replace (definition , char (13) + Char (10) , @3)) , @4 , @5) like

'%with (%index (%' union all select Object_name (T . objectid) as [name] , T . text as [definition] from sys . dm_exec_query_stats qs inner join sys

. dm_exec_cached_plans CP on CP . plan_handle = qs . plan_handle cross apply sys . dm_exec_sql_text (qs . Sql_handle) T where CP . objtype

= @6 and Replace (lower (Replace (T . text , char (13) + Char (10) , @9)) , @10 , @11) like '%with (%index (%') insert into

#Temp select DB_NAME () as [DB_Name] , S . [SchemaName] , S . TableName , S . IndexName from CTE C inner join (select ('%' + T . name

+ '%' + I . name + '%') as [filter] , schema_name (T . schema_id) as [SchemaName] , T . name as [TableName] , I . name as [IndexName] from

sys . indexes I inner join sys . tables T on T . object_id = I . object_id where I . name is not null) S on C . definition collate DATABASE_DEFAULT

like S . [filter] collate DATABASE_DEFAULT

Database: Test33

Exec.Count: 3

Avg.ElapseTime: 19.28 Seconds

QueryScript:

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 56

(@0 int,@3 varchar (8000) ,@4 varchar (8000) ,@5 varchar (8000) ,@6 varchar (8000) ,@9 varchar (8000) ,@10 varchar (8000) ,@11 varchar

(8000)) with CTE as (select AO . name , sm . definition from sys . all_objects AO inner join sys . all_sql_modules SM on SM . object_id = AO .

object_id where AO . is_ms_shipped = @0 and Replace (lower (Replace (definition , char (13) + Char (10) , @3)) , @4 , @5) like

'%with (%index (%' union all select Object_name (T . objectid) as [name] , T . text as [definition] from sys . dm_exec_query_stats qs inner join sys

. dm_exec_cached_plans CP on CP . plan_handle = qs . plan_handle cross apply sys . dm_exec_sql_text (qs . Sql_handle) T where CP . objtype

= @6 and Replace (lower (Replace (T . text , char (13) + Char (10) , @9)) , @10 , @11) like '%with (%index (%') insert into

#Temp select DB_NAME () as [DB_Name] , S . [SchemaName] , S . TableName , S . IndexName from CTE C inner join (select ('%' + T . name

+ '%' + I . name + '%') as [filter] , schema_name (T . schema_id) as [SchemaName] , T . name as [TableName] , I . name as [IndexName] from

sys . indexes I inner join sys . tables T on T . object_id = I . object_id where I . name is not null) S on C . definition collate DATABASE_DEFAULT

like S . [filter] collate DATABASE_DEFAULT

Database: Test33

Exec.Count: 3

Avg.ElapseTime: 19.28 Seconds

QueryScript:

(@0 int,@3 varchar (8000) ,@4 varchar (8000) ,@5 varchar (8000) ,@6 varchar (8000) ,@9 varchar (8000) ,@10 varchar (8000) ,@11 varchar

(8000)) with CTE as (select AO . name , sm . definition from sys . all_objects AO inner join sys . all_sql_modules SM on SM . object_id = AO .

object_id where AO . is_ms_shipped = @0 and Replace (lower (Replace (definition , char (13) + Char (10) , @3)) , @4 , @5) like

'%with (%index (%' union all select Object_name (T . objectid) as [name] , T . text as [definition] from sys . dm_exec_query_stats qs inner join sys

. dm_exec_cached_plans CP on CP . plan_handle = qs . plan_handle cross apply sys . dm_exec_sql_text (qs . Sql_handle) T where CP . objtype

= @6 and Replace (lower (Replace (T . text , char (13) + Char (10) , @9)) , @10 , @11) like '%with (%index (%') insert into

#Temp select DB_NAME () as [DB_Name] , S . [SchemaName] , S . TableName , S . IndexName from CTE C inner join (select ('%' + T . name

+ '%' + I . name + '%') as [filter] , schema_name (T . schema_id) as [SchemaName] , T . name as [TableName] , I . name as [IndexName] from

sys . indexes I inner join sys . tables T on T . object_id = I . object_id where I . name is not null) S on C . definition collate DATABASE_DEFAULT

like S . [filter] collate DATABASE_DEFAULT

Database: Test33

Exec.Count: 3

Avg.ElapseTime: 19.28 Seconds

QueryScript:

(@0 int,@3 varchar (8000) ,@4 varchar (8000) ,@5 varchar (8000) ,@6 varchar (8000) ,@9 varchar (8000) ,@10 varchar (8000) ,@11 varchar

(8000)) with CTE as (select AO . name , sm . definition from sys . all_objects AO inner join sys . all_sql_modules SM on SM . object_id = AO .

object_id where AO . is_ms_shipped = @0 and Replace (lower (Replace (definition , char (13) + Char (10) , @3)) , @4 , @5) like

'%with (%index (%' union all select Object_name (T . objectid) as [name] , T . text as [definition] from sys . dm_exec_query_stats qs inner join sys

. dm_exec_cached_plans CP on CP . plan_handle = qs . plan_handle cross apply sys . dm_exec_sql_text (qs . Sql_handle) T where CP . objtype

= @6 and Replace (lower (Replace (T . text , char (13) + Char (10) , @9)) , @10 , @11) like '%with (%index (%') insert into

#Temp select DB_NAME () as [DB_Name] , S . [SchemaName] , S . TableName , S . IndexName from CTE C inner join (select ('%' + T . name

+ '%' + I . name + '%') as [filter] , schema_name (T . schema_id) as [SchemaName] , T . name as [TableName] , I . name as [IndexName] from

sys . indexes I inner join sys . tables T on T . object_id = I . object_id where I . name is not null) S on C . definition collate DATABASE_DEFAULT

like S . [filter] collate DATABASE_DEFAULT

Database: Test33

Exec.Count: 3

Avg.ElapseTime: 19.28 Seconds

QueryScript:

(@0 int,@3 varchar (8000) ,@4 varchar (8000) ,@5 varchar (8000) ,@6 varchar (8000) ,@9 varchar (8000) ,@10 varchar (8000) ,@11 varchar

(8000)) with CTE as (select AO . name , sm . definition from sys . all_objects AO inner join sys . all_sql_modules SM on SM . object_id = AO .

object_id where AO . is_ms_shipped = @0 and Replace (lower (Replace (definition , char (13) + Char (10) , @3)) , @4 , @5) like

'%with (%index (%' union all select Object_name (T . objectid) as [name] , T . text as [definition] from sys . dm_exec_query_stats qs inner join sys

. dm_exec_cached_plans CP on CP . plan_handle = qs . plan_handle cross apply sys . dm_exec_sql_text (qs . Sql_handle) T where CP . objtype

= @6 and Replace (lower (Replace (T . text , char (13) + Char (10) , @9)) , @10 , @11) like '%with (%index (%') insert into

#Temp select DB_NAME () as [DB_Name] , S . [SchemaName] , S . TableName , S . IndexName from CTE C inner join (select ('%' + T . name

+ '%' + I . name + '%') as [filter] , schema_name (T . schema_id) as [SchemaName] , T . name as [TableName] , I . name as [IndexName] from

sys . indexes I inner join sys . tables T on T . object_id = I . object_id where I . name is not null) S on C . definition collate DATABASE_DEFAULT

like S . [filter] collate DATABASE_DEFAULT

Database: Test33

Exec.Count: 3

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 57

Avg.ElapseTime: 19.28 Seconds

QueryScript:

(@0 int,@3 varchar (8000) ,@4 varchar (8000) ,@5 varchar (8000) ,@6 varchar (8000) ,@9 varchar (8000) ,@10 varchar (8000) ,@11 varchar

(8000)) with CTE as (select AO . name , sm . definition from sys . all_objects AO inner join sys . all_sql_modules SM on SM . object_id = AO .

object_id where AO . is_ms_shipped = @0 and Replace (lower (Replace (definition , char (13) + Char (10) , @3)) , @4 , @5) like

'%with (%index (%' union all select Object_name (T . objectid) as [name] , T . text as [definition] from sys . dm_exec_query_stats qs inner join sys

. dm_exec_cached_plans CP on CP . plan_handle = qs . plan_handle cross apply sys . dm_exec_sql_text (qs . Sql_handle) T where CP . objtype

= @6 and Replace (lower (Replace (T . text , char (13) + Char (10) , @9)) , @10 , @11) like '%with (%index (%') insert into

#Temp select DB_NAME () as [DB_Name] , S . [SchemaName] , S . TableName , S . IndexName from CTE C inner join (select ('%' + T . name

+ '%' + I . name + '%') as [filter] , schema_name (T . schema_id) as [SchemaName] , T . name as [TableName] , I . name as [IndexName] from

sys . indexes I inner join sys . tables T on T . object_id = I . object_id where I . name is not null) S on C . definition collate DATABASE_DEFAULT

like S . [filter] collate DATABASE_DEFAULT

Database: Test33

Exec.Count: 3

Avg.ElapseTime: 19.28 Seconds

QueryScript:

(@0 int,@3 varchar (8000) ,@4 varchar (8000) ,@5 varchar (8000) ,@6 varchar (8000) ,@9 varchar (8000) ,@10 varchar (8000) ,@11 varchar

(8000)) with CTE as (select AO . name , sm . definition from sys . all_objects AO inner join sys . all_sql_modules SM on SM . object_id = AO .

object_id where AO . is_ms_shipped = @0 and Replace (lower (Replace (definition , char (13) + Char (10) , @3)) , @4 , @5) like

'%with (%index (%' union all select Object_name (T . objectid) as [name] , T . text as [definition] from sys . dm_exec_query_stats qs inner join sys

. dm_exec_cached_plans CP on CP . plan_handle = qs . plan_handle cross apply sys . dm_exec_sql_text (qs . Sql_handle) T where CP . objtype

= @6 and Replace (lower (Replace (T . text , char (13) + Char (10) , @9)) , @10 , @11) like '%with (%index (%') insert into

#Temp select DB_NAME () as [DB_Name] , S . [SchemaName] , S . TableName , S . IndexName from CTE C inner join (select ('%' + T . name

+ '%' + I . name + '%') as [filter] , schema_name (T . schema_id) as [SchemaName] , T . name as [TableName] , I . name as [IndexName] from

sys . indexes I inner join sys . tables T on T . object_id = I . object_id where I . name is not null) S on C . definition collate DATABASE_DEFAULT

like S . [filter] collate DATABASE_DEFAULT

Database: Test33

Exec.Count: 3

Avg.ElapseTime: 19.28 Seconds

QueryScript:

(@0 int,@3 varchar (8000) ,@4 varchar (8000) ,@5 varchar (8000) ,@6 varchar (8000) ,@9 varchar (8000) ,@10 varchar (8000) ,@11 varchar

(8000)) with CTE as (select AO . name , sm . definition from sys . all_objects AO inner join sys . all_sql_modules SM on SM . object_id = AO .

object_id where AO . is_ms_shipped = @0 and Replace (lower (Replace (definition , char (13) + Char (10) , @3)) , @4 , @5) like

'%with (%index (%' union all select Object_name (T . objectid) as [name] , T . text as [definition] from sys . dm_exec_query_stats qs inner join sys

. dm_exec_cached_plans CP on CP . plan_handle = qs . plan_handle cross apply sys . dm_exec_sql_text (qs . Sql_handle) T where CP . objtype

= @6 and Replace (lower (Replace (T . text , char (13) + Char (10) , @9)) , @10 , @11) like '%with (%index (%') insert into

#Temp select DB_NAME () as [DB_Name] , S . [SchemaName] , S . TableName , S . IndexName from CTE C inner join (select ('%' + T . name

+ '%' + I . name + '%') as [filter] , schema_name (T . schema_id) as [SchemaName] , T . name as [TableName] , I . name as [IndexName] from

sys . indexes I inner join sys . tables T on T . object_id = I . object_id where I . name is not null) S on C . definition collate DATABASE_DEFAULT

like S . [filter] collate DATABASE_DEFAULT

Database: Test33

Exec.Count: 3

Avg.ElapseTime: 19.28 Seconds

QueryScript:

(@0 int,@3 varchar (8000) ,@4 varchar (8000) ,@5 varchar (8000) ,@6 varchar (8000) ,@9 varchar (8000) ,@10 varchar (8000) ,@11 varchar

(8000)) with CTE as (select AO . name , sm . definition from sys . all_objects AO inner join sys . all_sql_modules SM on SM . object_id = AO .

object_id where AO . is_ms_shipped = @0 and Replace (lower (Replace (definition , char (13) + Char (10) , @3)) , @4 , @5) like

'%with (%index (%' union all select Object_name (T . objectid) as [name] , T . text as [definition] from sys . dm_exec_query_stats qs inner join sys

. dm_exec_cached_plans CP on CP . plan_handle = qs . plan_handle cross apply sys . dm_exec_sql_text (qs . Sql_handle) T where CP . objtype

= @6 and Replace (lower (Replace (T . text , char (13) + Char (10) , @9)) , @10 , @11) like '%with (%index (%') insert into

#Temp select DB_NAME () as [DB_Name] , S . [SchemaName] , S . TableName , S . IndexName from CTE C inner join (select ('%' + T . name

+ '%' + I . name + '%') as [filter] , schema_name (T . schema_id) as [SchemaName] , T . name as [TableName] , I . name as [IndexName] from

sys . indexes I inner join sys . tables T on T . object_id = I . object_id where I . name is not null) S on C . definition collate DATABASE_DEFAULT

like S . [filter] collate DATABASE_DEFAULT

Database: Test33

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 58

Exec.Count: 3

Avg.ElapseTime: 19.28 Seconds

QueryScript:

(@0 int,@3 varchar (8000) ,@4 varchar (8000) ,@5 varchar (8000) ,@6 varchar (8000) ,@9 varchar (8000) ,@10 varchar (8000) ,@11 varchar

(8000)) with CTE as (select AO . name , sm . definition from sys . all_objects AO inner join sys . all_sql_modules SM on SM . object_id = AO .

object_id where AO . is_ms_shipped = @0 and Replace (lower (Replace (definition , char (13) + Char (10) , @3)) , @4 , @5) like

'%with (%index (%' union all select Object_name (T . objectid) as [name] , T . text as [definition] from sys . dm_exec_query_stats qs inner join sys

. dm_exec_cached_plans CP on CP . plan_handle = qs . plan_handle cross apply sys . dm_exec_sql_text (qs . Sql_handle) T where CP . objtype

= @6 and Replace (lower (Replace (T . text , char (13) + Char (10) , @9)) , @10 , @11) like '%with (%index (%') insert into

#Temp select DB_NAME () as [DB_Name] , S . [SchemaName] , S . TableName , S . IndexName from CTE C inner join (select ('%' + T . name

+ '%' + I . name + '%') as [filter] , schema_name (T . schema_id) as [SchemaName] , T . name as [TableName] , I . name as [IndexName] from

sys . indexes I inner join sys . tables T on T . object_id = I . object_id where I . name is not null) S on C . definition collate DATABASE_DEFAULT

like S . [filter] collate DATABASE_DEFAULT

Database: Test33

Exec.Count: 3

Avg.ElapseTime: 19.28 Seconds

QueryScript:

(@0 int,@3 varchar (8000) ,@4 varchar (8000) ,@5 varchar (8000) ,@6 varchar (8000) ,@9 varchar (8000) ,@10 varchar (8000) ,@11 varchar

(8000)) with CTE as (select AO . name , sm . definition from sys . all_objects AO inner join sys . all_sql_modules SM on SM . object_id = AO .

object_id where AO . is_ms_shipped = @0 and Replace (lower (Replace (definition , char (13) + Char (10) , @3)) , @4 , @5) like

'%with (%index (%' union all select Object_name (T . objectid) as [name] , T . text as [definition] from sys . dm_exec_query_stats qs inner join sys

. dm_exec_cached_plans CP on CP . plan_handle = qs . plan_handle cross apply sys . dm_exec_sql_text (qs . Sql_handle) T where CP . objtype

= @6 and Replace (lower (Replace (T . text , char (13) + Char (10) , @9)) , @10 , @11) like '%with (%index (%') insert into

#Temp select DB_NAME () as [DB_Name] , S . [SchemaName] , S . TableName , S . IndexName from CTE C inner join (select ('%' + T . name

+ '%' + I . name + '%') as [filter] , schema_name (T . schema_id) as [SchemaName] , T . name as [TableName] , I . name as [IndexName] from

sys . indexes I inner join sys . tables T on T . object_id = I . object_id where I . name is not null) S on C . definition collate DATABASE_DEFAULT

like S . [filter] collate DATABASE_DEFAULT

Database: Test33

Exec.Count: 3

Avg.ElapseTime: 19.28 Seconds

QueryScript:

(@0 int,@3 varchar (8000) ,@4 varchar (8000) ,@5 varchar (8000) ,@6 varchar (8000) ,@9 varchar (8000) ,@10 varchar (8000) ,@11 varchar

(8000)) with CTE as (select AO . name , sm . definition from sys . all_objects AO inner join sys . all_sql_modules SM on SM . object_id = AO .

object_id where AO . is_ms_shipped = @0 and Replace (lower (Replace (definition , char (13) + Char (10) , @3)) , @4 , @5) like

'%with (%index (%' union all select Object_name (T . objectid) as [name] , T . text as [definition] from sys . dm_exec_query_stats qs inner join sys

. dm_exec_cached_plans CP on CP . plan_handle = qs . plan_handle cross apply sys . dm_exec_sql_text (qs . Sql_handle) T where CP . objtype

= @6 and Replace (lower (Replace (T . text , char (13) + Char (10) , @9)) , @10 , @11) like '%with (%index (%') insert into

#Temp select DB_NAME () as [DB_Name] , S . [SchemaName] , S . TableName , S . IndexName from CTE C inner join (select ('%' + T . name

+ '%' + I . name + '%') as [filter] , schema_name (T . schema_id) as [SchemaName] , T . name as [TableName] , I . name as [IndexName] from

sys . indexes I inner join sys . tables T on T . object_id = I . object_id where I . name is not null) S on C . definition collate DATABASE_DEFAULT

like S . [filter] collate DATABASE_DEFAULT

Database: Test33

Exec.Count: 3

Avg.ElapseTime: 19.28 Seconds

QueryScript:

(@0 int,@3 varchar (8000) ,@4 varchar (8000) ,@5 varchar (8000) ,@6 varchar (8000) ,@9 varchar (8000) ,@10 varchar (8000) ,@11 varchar

(8000)) with CTE as (select AO . name , sm . definition from sys . all_objects AO inner join sys . all_sql_modules SM on SM . object_id = AO .

object_id where AO . is_ms_shipped = @0 and Replace (lower (Replace (definition , char (13) + Char (10) , @3)) , @4 , @5) like

'%with (%index (%' union all select Object_name (T . objectid) as [name] , T . text as [definition] from sys . dm_exec_query_stats qs inner join sys

. dm_exec_cached_plans CP on CP . plan_handle = qs . plan_handle cross apply sys . dm_exec_sql_text (qs . Sql_handle) T where CP . objtype

= @6 and Replace (lower (Replace (T . text , char (13) + Char (10) , @9)) , @10 , @11) like '%with (%index (%') insert into

#Temp select DB_NAME () as [DB_Name] , S . [SchemaName] , S . TableName , S . IndexName from CTE C inner join (select ('%' + T . name

+ '%' + I . name + '%') as [filter] , schema_name (T . schema_id) as [SchemaName] , T . name as [TableName] , I . name as [IndexName] from

sys . indexes I inner join sys . tables T on T . object_id = I . object_id where I . name is not null) S on C . definition collate DATABASE_DEFAULT

like S . [filter] collate DATABASE_DEFAULT

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 59

Database: Test33

Exec.Count: 3

Avg.ElapseTime: 19.28 Seconds

QueryScript:

(@0 int,@3 varchar (8000) ,@4 varchar (8000) ,@5 varchar (8000) ,@6 varchar (8000) ,@9 varchar (8000) ,@10 varchar (8000) ,@11 varchar

(8000)) with CTE as (select AO . name , sm . definition from sys . all_objects AO inner join sys . all_sql_modules SM on SM . object_id = AO .

object_id where AO . is_ms_shipped = @0 and Replace (lower (Replace (definition , char (13) + Char (10) , @3)) , @4 , @5) like

'%with (%index (%' union all select Object_name (T . objectid) as [name] , T . text as [definition] from sys . dm_exec_query_stats qs inner join sys

. dm_exec_cached_plans CP on CP . plan_handle = qs . plan_handle cross apply sys . dm_exec_sql_text (qs . Sql_handle) T where CP . objtype

= @6 and Replace (lower (Replace (T . text , char (13) + Char (10) , @9)) , @10 , @11) like '%with (%index (%') insert into

#Temp select DB_NAME () as [DB_Name] , S . [SchemaName] , S . TableName , S . IndexName from CTE C inner join (select ('%' + T . name

+ '%' + I . name + '%') as [filter] , schema_name (T . schema_id) as [SchemaName] , T . name as [TableName] , I . name as [IndexName] from

sys . indexes I inner join sys . tables T on T . object_id = I . object_id where I . name is not null) S on C . definition collate DATABASE_DEFAULT

like S . [filter] collate DATABASE_DEFAULT

Database: Test33

Exec.Count: 3

Avg.ElapseTime: 19.28 Seconds

QueryScript:

(@0 int,@3 varchar (8000) ,@4 varchar (8000) ,@5 varchar (8000) ,@6 varchar (8000) ,@9 varchar (8000) ,@10 varchar (8000) ,@11 varchar

(8000)) with CTE as (select AO . name , sm . definition from sys . all_objects AO inner join sys . all_sql_modules SM on SM . object_id = AO .

object_id where AO . is_ms_shipped = @0 and Replace (lower (Replace (definition , char (13) + Char (10) , @3)) , @4 , @5) like

'%with (%index (%' union all select Object_name (T . objectid) as [name] , T . text as [definition] from sys . dm_exec_query_stats qs inner join sys

. dm_exec_cached_plans CP on CP . plan_handle = qs . plan_handle cross apply sys . dm_exec_sql_text (qs . Sql_handle) T where CP . objtype

= @6 and Replace (lower (Replace (T . text , char (13) + Char (10) , @9)) , @10 , @11) like '%with (%index (%') insert into

#Temp select DB_NAME () as [DB_Name] , S . [SchemaName] , S . TableName , S . IndexName from CTE C inner join (select ('%' + T . name

+ '%' + I . name + '%') as [filter] , schema_name (T . schema_id) as [SchemaName] , T . name as [TableName] , I . name as [IndexName] from

sys . indexes I inner join sys . tables T on T . object_id = I . object_id where I . name is not null) S on C . definition collate DATABASE_DEFAULT

like S . [filter] collate DATABASE_DEFAULT

Database: Test33

Exec.Count: 3

Avg.ElapseTime: 19.28 Seconds

QueryScript:

(@0 int,@3 varchar (8000) ,@4 varchar (8000) ,@5 varchar (8000) ,@6 varchar (8000) ,@9 varchar (8000) ,@10 varchar (8000) ,@11 varchar

(8000)) with CTE as (select AO . name , sm . definition from sys . all_objects AO inner join sys . all_sql_modules SM on SM . object_id = AO .

object_id where AO . is_ms_shipped = @0 and Replace (lower (Replace (definition , char (13) + Char (10) , @3)) , @4 , @5) like

'%with (%index (%' union all select Object_name (T . objectid) as [name] , T . text as [definition] from sys . dm_exec_query_stats qs inner join sys

. dm_exec_cached_plans CP on CP . plan_handle = qs . plan_handle cross apply sys . dm_exec_sql_text (qs . Sql_handle) T where CP . objtype

= @6 and Replace (lower (Replace (T . text , char (13) + Char (10) , @9)) , @10 , @11) like '%with (%index (%') insert into

#Temp select DB_NAME () as [DB_Name] , S . [SchemaName] , S . TableName , S . IndexName from CTE C inner join (select ('%' + T . name

+ '%' + I . name + '%') as [filter] , schema_name (T . schema_id) as [SchemaName] , T . name as [TableName] , I . name as [IndexName] from

sys . indexes I inner join sys . tables T on T . object_id = I . object_id where I . name is not null) S on C . definition collate DATABASE_DEFAULT

like S . [filter] collate DATABASE_DEFAULT

Database: Test33

Exec.Count: 3

Avg.ElapseTime: 19.28 Seconds

QueryScript:

(@0 int,@3 varchar (8000) ,@4 varchar (8000) ,@5 varchar (8000) ,@6 varchar (8000) ,@9 varchar (8000) ,@10 varchar (8000) ,@11 varchar

(8000)) with CTE as (select AO . name , sm . definition from sys . all_objects AO inner join sys . all_sql_modules SM on SM . object_id = AO .

object_id where AO . is_ms_shipped = @0 and Replace (lower (Replace (definition , char (13) + Char (10) , @3)) , @4 , @5) like

'%with (%index (%' union all select Object_name (T . objectid) as [name] , T . text as [definition] from sys . dm_exec_query_stats qs inner join sys

. dm_exec_cached_plans CP on CP . plan_handle = qs . plan_handle cross apply sys . dm_exec_sql_text (qs . Sql_handle) T where CP . objtype

= @6 and Replace (lower (Replace (T . text , char (13) + Char (10) , @9)) , @10 , @11) like '%with (%index (%') insert into

#Temp select DB_NAME () as [DB_Name] , S . [SchemaName] , S . TableName , S . IndexName from CTE C inner join (select ('%' + T . name

+ '%' + I . name + '%') as [filter] , schema_name (T . schema_id) as [SchemaName] , T . name as [TableName] , I . name as [IndexName] from

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 60

sys . indexes I inner join sys . tables T on T . object_id = I . object_id where I . name is not null) S on C . definition collate DATABASE_DEFAULT

like S . [filter] collate DATABASE_DEFAULT

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 61

Database Backup Verification

The listed backup files are verified if any one of them are corrupted or protected by a password.

Database Type Position Path Date/Time Size Is Corrupted Password

Protected

AdventureWor

ks

D 1.0 \\Ai-DBA-

DEMO\AiDBA

SharedDir2024

04240750\Adv

entureWorks_

FULL_202404

24075023.bak

4/24/2024

7:50:26 PM

198.1 MB No No

AdventureWor

ks

D 1.0 \\Ai-DBA-

DEMO\AiDBA

SharedDir2024

04230439\Adv

entureWorks_

FULL_202404

23043903.bak

4/23/2024

4:39:03 AM

212.1 MB No No

AdventureWor

ks

D 1.0 https://aidbaca

chedata.blob.c

ore.windows.n

et/demo/Adven

tureWorks_FU

LL_202404110

23909.bak

4/11/2024

2:39:09 PM

206.3 MB No No

AdventureWor

ks

D 1.0 \\Ai-DBA-

DEMO\AiDBA

SharedDir2024

04030619\Adv

entureWorks_

FULL_202404

03061913.bak

4/3/2024

6:19:13 PM

212.1 MB No No

AdventureWor

ks

D 1.0 \\Ai-DBA-

DEMO\AiDBA

SharedDir2024

03191208\Adv

entureWorks_

FULL_202403

19120858.bak

3/19/2024

12:08:59 AM

198.1 MB No No

AdventureWor

ks

D 1.0 \\Ai-DBA-

DEMO\AiDBA

SharedDir2024

03130315\Adv

entureWorks_

FULL_202403

13031536.bak

3/13/2024

3:15:36 PM

212.1 MB No No

AdventureWor

ks

D 1.0 \\Ai-DBA-

DEMO\AIDBA

Backup\Advent

ureWorks_FUL

L_2024021202

4822.bak

2/12/2024

2:48:22 AM

198.1 MB No No

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 62

Database Type Position Path Date/Time Size Is Corrupted Password

Protected

AdventureWor

ks

D 1.0 \\Ai-DBA-

DEMO\AIDBA

Backup\Advent

ureWorks_FUL

L_2024021202

4730.bak

2/12/2024

2:47:30 AM

198.1 MB No No

AdventureWor

ks

D 1.0 \\Ai-DBA-

DEMO\AiDBA

SharedDir2024

01150904\Adv

entureWorks_

FULL_202401

15090459.bak

1/15/2024

9:04:59 AM

212.1 MB No No

AdventureWor

ks

D 1.0 \\Ai-DBA-

DEMO\AiDBA

SharedDir2023

12160836\Adv

entureWorks_

FULL_202312

16083635.bak

12/16/2023

8:36:35 AM

206.1 MB No No

Advnew2019 D 1.0 \\Ai-DBA-

DEMO\AiDBA

SharedDir2024

10290432\Adv

new2019_FUL

L_2024102904

3303.bak

10/29/2024

4:33:10 PM

207.1 MB No No

Advnew2022 D 1.0 G:\BACKUPS\

Advnew2022_

FULL_202412

06122841.bak

12/6/2024

12:28:42 AM

203.1 MB No No

Advnew2022 D 1.0 G:\BACKUPS\

Advnew2022_

FULL_202410

02075712.bak

10/2/2024

7:57:12 PM

203.1 MB No No

Advnew2022 D 1.0 \\Ai-DBA-

DEMO\AiDBA

SharedDir2024

03191209\Adv

new2022_FUL

L_2024031912

0936.bak

3/19/2024

12:09:36 AM

207.1 MB No No

Advnew2022 D 1.0 \\Ai-DBA-

DEMO\AiDBA

SharedDir2024

03130242\Adv

new2022_FUL

L_2024031302

4212.bak

3/13/2024

2:42:12 AM

207.1 MB No No

\\Ai-DBA-

DEMO\AiDBA

SharedDir2024

03130557\Rep

ReportDB D 1.0 3/13/2024

5:57:25 AM

2.6 MB No No

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 63

Database Type Position Path Date/Time Size Is Corrupted Password

Protected

ortDB_FULL_2

024031305572

3.bak

ReportDB D 1.0 \\Ai-DBA-

DEMO\AiDBA

SharedDir2023

12180410\Rep

ortDB_FULL_2

023121804105

2.bak

12/18/2023

4:10:52 AM

2.6 MB No No

ReportDB D 1.0 \\Ai-DBA-

DEMO\AiDBA

SharedDir2023

12180353\Rep

ortDB_FULL_2

023121803532

3.bak

12/18/2023

3:53:23 AM

2.6 MB No No

SalesDB D 1.0 https://aidbaca

chedata.blob.c

ore.windows.n

et/demo/Sales

DB_FULL_202

31215070521.

bak

12/15/2023

7:05:21 AM

2.8 MB No No

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 64

Database Warnings

The warning types stated below indicates severe performance degradation if the value is greater than 1,500

for each warning.

Warning Occurrence

Sort Warnings 15.0

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 65

Database Missing Indexes

The listed tables below are involved in majority of the workloads, therefore some useful indexes are currently

missing to support queries. The script of missing indexes are available in AI-DBA portal.

Object Estimated Improvement # of Indexes

[msdb].[dbo].[sysjobhistory] 73% 2.0

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 66

Database Unused Indexes

Unused indexes are able to slow down certain queries commands such as INSERT, DELETE and UPDATE.

However, it can be used via SQL Server database engine internally. The following indexes are ready to be

dropped.

Database Table Index Type

Demo20240411 ContactType AK_ContactType_Name NONCLUSTERED

NewDB20241029 ContactType AK_ContactType_Name NONCLUSTERED

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 67

Login Credentials and Permissions

The listed login credentials are for future reference only. Each table shows up to 5,000 records.

Name Status Last Modification Options Last Password

Reset

Bad Password

Count

sa Enabled 12/7/2024 5:35:10

PM

Policy Check 6/13/2023 1:17:03

AM

0.0

AIDBA Enabled 6/15/2023 1:20:09

AM

6/15/2023 1:20:09

AM

0.0

System_Administrat

or_20240210

Enabled 2/11/2024 3:53:11

AM

12/29/2023 6:53:49

AM

0.0

Dropped Login Dropped By Dropped Through Dropped At

Database Schema Object Type Grantee Permission Grantor

msdb dbo fn_sysutility_ucp

_get_policy_viola

tions

SQL_TABLE_VA

LUED_FUNCTIO

N

UtilityCMRReade

r

SELECT dbo

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 68

SQL Agent Objects

The listed agent objects are for the future reference only.

Alert Status

Processes blocked Enabled

Severity 17 Enabled

Severity 18 Enabled

Severity 19 Enabled

Severity 20 Enabled

Severity 21 Enabled

Severity 22 Enabled

Severity 23 Enabled

Severity 24 Enabled

Severity 25 Enabled

Job Status Description

AIDBA_Alert_Capture Enabled No description available.

AiDBA_IdleSessionTermination Enabled No description available.

AIDBA_Processes_Blocked_Capture Enabled No description available.

Blocking Enabled No description available.

DBCC CheckDB Enabled No description available.

Long Running Enabled No description available.

Query Job Enabled No description available.

syspolicy_purge_history Enabled No description available.

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 69

SQL Agent Jobs History

Often times it is needed to come with a list of durations per SQL Server Agent Job to trend the run times and

order the results by date.

JobName Status RunDate RUNTIME

AiDBA_IdleSessionTermination Succeeded 2025-02-14 9:45:00

AiDBA_IdleSessionTermination Succeeded 2025-02-14 9:30:00

AiDBA_IdleSessionTermination Succeeded 2025-02-14 9:15:00

AiDBA_IdleSessionTermination Succeeded 2025-02-14 9:00:00

AiDBA_IdleSessionTermination Succeeded 2025-02-14 8:45:00

AiDBA_IdleSessionTermination Succeeded 2025-02-14 8:30:00

AiDBA_IdleSessionTermination Succeeded 2025-02-14 8:15:00

AiDBA_IdleSessionTermination Succeeded 2025-02-14 8:00:00

AiDBA_IdleSessionTermination Succeeded 2025-02-14 7:45:00

AiDBA_IdleSessionTermination Succeeded 2025-02-14 7:30:00

AiDBA_IdleSessionTermination Succeeded 2025-02-14 7:15:00

AiDBA_IdleSessionTermination Succeeded 2025-02-14 7:00:00

AiDBA_IdleSessionTermination Succeeded 2025-02-14 6:45:00

AiDBA_IdleSessionTermination Succeeded 2025-02-14 6:30:00

AiDBA_IdleSessionTermination Succeeded 2025-02-14 6:15:00

AiDBA_IdleSessionTermination Succeeded 2025-02-14 6:00:00

AiDBA_IdleSessionTermination Succeeded 2025-02-14 5:45:00

syspolicy_purge_history Succeeded 2025-02-14 2:00:00

Query Job Failed 2025-02-14 18:02:40

AIDBA_Alert_Capture Succeeded 2025-02-14 18:02:39

AIDBA_Alert_Capture Succeeded 2025-02-14 18:02:37

AIDBA_Alert_Capture Succeeded 2025-02-14 18:02:35

AIDBA_Alert_Capture Succeeded 2025-02-14 18:02:34

AIDBA_Alert_Capture Succeeded 2025-02-14 18:02:32

Blocking Failed 2025-02-14 18:02:32

Query Job Failed 2025-02-14 18:02:32

AIDBA_Alert_Capture Succeeded 2025-02-14 18:02:30

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 70

JobName Status RunDate RUNTIME

Blocking Failed 2025-02-14 18:02:30

Query Job Failed 2025-02-14 18:02:30

Query Job Failed 2025-02-14 18:02:20

AIDBA_Alert_Capture Succeeded 2025-02-14 18:02:12

AIDBA_Alert_Capture Succeeded 2025-02-14 18:02:11

AIDBA_Alert_Capture Succeeded 2025-02-14 18:02:10

Query Job Failed 2025-02-14 18:02:10

AIDBA_Alert_Capture Succeeded 2025-02-14 18:02:09

AIDBA_Alert_Capture Succeeded 2025-02-14 18:02:08

AIDBA_Alert_Capture Succeeded 2025-02-14 18:02:07

AIDBA_Alert_Capture Succeeded 2025-02-14 18:02:05

Blocking Failed 2025-02-14 18:02:00

DBCC CheckDB Succeeded 2025-02-14 18:02:00

Query Job Failed 2025-02-14 18:02:00

AIDBA_Alert_Capture Succeeded 2025-02-14 18:01:53

AIDBA_Alert_Capture Succeeded 2025-02-14 18:01:52

AIDBA_Alert_Capture Succeeded 2025-02-14 18:01:51

AIDBA_Alert_Capture Succeeded 2025-02-14 18:01:50

Query Job Failed 2025-02-14 18:01:50

Query Job Failed 2025-02-14 18:01:40

AIDBA_Alert_Capture Succeeded 2025-02-14 18:01:36

AIDBA_Alert_Capture Succeeded 2025-02-14 18:01:34

AIDBA_Alert_Capture Succeeded 2025-02-14 18:01:32

AIDBA_Alert_Capture Succeeded 2025-02-14 18:01:31

AIDBA_Alert_Capture Succeeded 2025-02-14 18:01:30

Blocking Failed 2025-02-14 18:01:30

DBCC CheckDB Succeeded 2025-02-14 18:01:30

Query Job Failed 2025-02-14 18:01:30

Query Job Failed 2025-02-14 18:01:20

AIDBA_Alert_Capture Succeeded 2025-02-14 18:01:19

AIDBA_Alert_Capture Succeeded 2025-02-14 18:01:18

AIDBA_Alert_Capture Succeeded 2025-02-14 18:01:15

AIDBA_Alert_Capture Succeeded 2025-02-14 18:01:13

AIDBA_Alert_Capture Succeeded 2025-02-14 18:01:10

Query Job Failed 2025-02-14 18:01:10

AIDBA_Alert_Capture Succeeded 2025-02-14 18:01:09

AIDBA_Alert_Capture Succeeded 2025-02-14 18:01:08

AIDBA_Alert_Capture Succeeded 2025-02-14 18:01:05

Blocking Failed 2025-02-14 18:01:00

DBCC CheckDB Succeeded 2025-02-14 18:01:00

Query Job Failed 2025-02-14 18:01:00

Query Job Failed 2025-02-14 18:00:50

AIDBA_Alert_Capture Succeeded 2025-02-14 18:00:49

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 71

JobName Status RunDate RUNTIME

AIDBA_Alert_Capture Succeeded 2025-02-14 18:00:48

AIDBA_Alert_Capture Succeeded 2025-02-14 18:00:47

AIDBA_Alert_Capture Succeeded 2025-02-14 18:00:46

AIDBA_Alert_Capture Succeeded 2025-02-14 18:00:45

AIDBA_Alert_Capture Succeeded 2025-02-14 18:00:44

AIDBA_Alert_Capture Succeeded 2025-02-14 18:00:42

Query Job Failed 2025-02-14 18:00:40

Blocking Failed 2025-02-14 18:00:30

Query Job Failed 2025-02-14 18:00:30

AIDBA_Alert_Capture Succeeded 2025-02-14 18:00:28

AIDBA_Alert_Capture Succeeded 2025-02-14 18:00:27

AIDBA_Alert_Capture Succeeded 2025-02-14 18:00:26

Query Job Failed 2025-02-14 18:00:21

AIDBA_Alert_Capture Succeeded 2025-02-14 18:00:15

AIDBA_Alert_Capture Succeeded 2025-02-14 18:00:14

AIDBA_Alert_Capture Succeeded 2025-02-14 18:00:13

AIDBA_Alert_Capture Succeeded 2025-02-14 18:00:12

AIDBA_Alert_Capture Succeeded 2025-02-14 18:00:11

Query Job Failed 2025-02-14 18:00:10

AIDBA_Alert_Capture Succeeded 2025-02-14 18:00:03

AIDBA_Alert_Capture Succeeded 2025-02-14 18:00:01

AiDBA_IdleSessionTermination Succeeded 2025-02-14 18:00:01

Blocking Failed 2025-02-14 18:00:01

DBCC CheckDB Succeeded 2025-02-14 18:00:01

Long Running Succeeded 2025-02-14 18:00:01

Query Job Failed 2025-02-14 18:00:01

AIDBA_Alert_Capture Succeeded 2025-02-14 18:00:00

AiDBA_IdleSessionTermination Succeeded 2025-02-14 18:00:00

Blocking Failed 2025-02-14 18:00:00

DBCC CheckDB Succeeded 2025-02-14 18:00:00

Long Running Succeeded 2025-02-14 18:00:00

Query Job Failed 2025-02-14 18:00:00

AIDBA_Alert_Capture Succeeded 2025-02-14 17:59:59

AIDBA_Alert_Capture Succeeded 2025-02-14 17:59:58

AIDBA_Alert_Capture Succeeded 2025-02-14 17:59:57

Query Job Failed 2025-02-14 17:59:50

Query Job Failed 2025-02-14 17:59:40

Blocking Failed 2025-02-14 17:59:30

DBCC CheckDB Succeeded 2025-02-14 17:59:30

Query Job Failed 2025-02-14 17:59:30

Query Job Failed 2025-02-14 17:59:20

Query Job Failed 2025-02-14 17:59:10

Blocking Failed 2025-02-14 17:59:00

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 72

JobName Status RunDate RUNTIME

DBCC CheckDB Succeeded 2025-02-14 17:59:00

Query Job Failed 2025-02-14 17:59:00

Query Job Failed 2025-02-14 17:58:50

Query Job Failed 2025-02-14 17:58:40

Blocking Failed 2025-02-14 17:58:30

DBCC CheckDB Succeeded 2025-02-14 17:58:30

Query Job Failed 2025-02-14 17:58:30

Query Job Failed 2025-02-14 17:58:20

Query Job Failed 2025-02-14 17:58:10

Blocking Failed 2025-02-14 17:58:00

DBCC CheckDB Succeeded 2025-02-14 17:58:00

Query Job Failed 2025-02-14 17:58:00

Query Job Failed 2025-02-14 17:57:50

Query Job Failed 2025-02-14 17:57:40

Blocking Failed 2025-02-14 17:57:30

DBCC CheckDB Succeeded 2025-02-14 17:57:30

Query Job Failed 2025-02-14 17:57:30

Query Job Failed 2025-02-14 17:57:20

Query Job Failed 2025-02-14 17:57:10

Blocking Failed 2025-02-14 17:57:00

DBCC CheckDB Succeeded 2025-02-14 17:57:00

Query Job Failed 2025-02-14 17:57:00

Query Job Failed 2025-02-14 17:56:50

Query Job Failed 2025-02-14 17:56:41

Query Job Failed 2025-02-14 17:56:40

DBCC CheckDB Succeeded 2025-02-14 17:56:31

Query Job Failed 2025-02-14 17:56:31

Blocking Failed 2025-02-14 17:56:30

DBCC CheckDB Succeeded 2025-02-14 17:56:30

Query Job Failed 2025-02-14 17:56:30

Query Job Failed 2025-02-14 17:56:20

Query Job Failed 2025-02-14 17:56:10

Blocking Failed 2025-02-14 17:56:00

DBCC CheckDB Succeeded 2025-02-14 17:56:00

Query Job Failed 2025-02-14 17:56:00

Query Job Failed 2025-02-14 17:55:50

Query Job Failed 2025-02-14 17:55:41

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 73

Windows and SQL Server Severe Alerts and Errors

Critical Alerts: A critical level alert should be a worst-case scenario – there is an issue that requires attention.

They are designed to be reactive alerts, meaning someone should react to these alerts as soon as possible.

Error Alerts: An error level alert is less severe and should convey that something is wrong or isn’t behaving

normally, but there isn’t necessarily a specific action that has to be taken. You should know about these

scenarios, but they shouldn’t have the same sense of urgency as a critical alert. Error alerts are designed to

be more proactive than critical alerts, but you may want to know about them sooner and they may be treated

more as reactive alerts depending on your use case.

Warning Alerts: A warning alert indicates that there is something you should be aware of, but it may not be

causing a problem yet. Warning alerts are designed to usually be proactive alerts, meaning we’re notifying

you that there may be a future problem so that you can avoid the problem all together.

EventID Type Source Message Raised At

Appendix A: Query Performance Comparison

The table below indicates the query's elapse time in miliseconds as per health checks. Blank value indicates

the query did not meet long running queries criteria.

Database Query Id 2025-02-12 2025-02-13 2025-02-14 2025-02-15 2025-02-16 2025-02-17

Adv2022Shale

vSoft

0 569,415 596,530 135,575 189,320 431,940 355,920

AdventureWor

ks

0 12,920

Advnew2022M

oved

1 600 3,520 1,840 960

AdventureWor

ks

5 2,380

AdvNew2022R

estored

9 350 1,140

AdventureWor

ks

20 860

AdventureWor

ks

21 540

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 74

Database Query Id 2025-02-12 2025-02-13 2025-02-14 2025-02-15 2025-02-16 2025-02-17

AdvDest20240

317

22 28 60

AIDBAADV2 22 500 1,800

AdventureWor

ks

23 390

AdvNew2022R

estored3

25 420 3,080 1,010 2,810 1,260

NewDB202410

29

25 1,190 1,260

Adv2022Shale

vSoft

28 100 350

AdventureWor

ks

31 590

newdbemo309

9

38 520 1,820 5,170 400 1,460

Advnew2022 39 827 3,880 1,890 1,780

AdventureWor

ks

42 2,700

Test33 43 100

AdventureWor

ks

47 295,420,200

Adv2022Shale

vSoft

48 18 10

AdventureWor

ks

48 560

Demo2024041

1

52 500 1,800 350

Adv2022Shale

vSoft

53 60

Advnew2022 55 7,770 8,140 1,850 300

AdvNewDB20

22Portal

59 1,200 6,020 2,200 1,360

AdventureWor

ks

63 45,530

Test33 64 30 0

Adv2022Shale

vSoft

65 51

AdvDest20240

317

68 62

AdventureWor

ks

69 12,040

AdvNew2022R

estored3

69 500 3,330 1,620

AdvNew2022R

estored3

81 1,980 560 1,610 5,140 1,890 1,530

Advnew2022M

oved

82 91

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 75

Database Query Id 2025-02-12 2025-02-13 2025-02-14 2025-02-15 2025-02-16 2025-02-17

AdventureWor

ks

87 3,390

Advnew2022 92 81

Test33 94 6,720 7,040 1,600

AdvDest20240

317

97 350

AdventureWor

ks

99 3,450 12,420

Test33 101 94

AIDBAADV2 103 2,160 950 4,780 1,890 1,530

AdventureWor

ks

104 760

NewDB202410

29

106 520 1,220 4,050 2,020 1,360

Advnew2022M

oved

110 90

newdbemo309

9

110 2,700 490

Test33 111 573,720 601,040 136,600 194,031 443,509 349,236

AdventureWor

ks

112 490

AdvDest20240

317

113 80

AIDBAADV2 114 2,340 350 840

Advnew2022M

oved

124 674,940 707,080 160,700 187,850 430,790 351,080

AdvDest20240

317

127 750 3,890 1,610 1,240

AdventureWor

ks

129 100,740

AdventureWor

ks

133

AdventureWor

ks

134 390

Advnew2022M

oved

139 2,940 3,080 700 350

AdvNewDB20

22Portal

139 420 2,520 550 1,980

Advnew2022M

oved

145 48 20

Advnew2022 146 3,075 2,250 620 3,330 1,995 900

AdventureWor

ks

149 3,150 4,500 720 350

AdventureWor

ks

153 8,350

Advnew2022 153 0 0

Adv2022Shale 158 3,135 3,238 1,535 4,570 2,480 1,550

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 76

Database Query Id 2025-02-12 2025-02-13 2025-02-14 2025-02-15 2025-02-16 2025-02-17

vSoft

AdventureWor

ks

161 380

Advnew2022 165 654,570 685,740 155,850 188,750 433,320 349,600

Advnew2022M

oved

168 110 1,190 1,635 900

AdventureWor

ks

171 470

AdvDest20240

317

173 550 1,980

Advnew2022M

oved

174 420 3,132 1,265 2,290 350 1,190

AdvNew2022R

estored2

174 360 2,160 300

Demo2024041

1

178 540 1,190 2,830 350 1,290

Test33 179 663 3,510 2,045 1,420

AdventureWor

ks

182 400

AdventureWor

ks

184 540

AdvNew2022R

estored2

184

ReportDB_Co

py

186

Adv2022Shale

vSoft

187 630 1,800

ReportDB678 188

Demo2024041

1

189

AdvNew2022R

estored

193 2,340 1,300 5,870 1,660 1,310

AdvNew2022R

estored2

195 2,160 620 1,320 4,050 2,020 1,310

AdvNewDB20

22Portal

196 2,520 2,210 2,340

AdventureWor

ks

197 8,650 31,140

Demo2024041

1

197 1,360 1,440 350

AdventureWor

ks

198 460

newdbemo309

9

199

AdventureWor

ks

201 44,880,736

AdvDest20240

317

203 3,120 3,052 1,565 4,770 2,020 1,410

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 77

Database Query Id 2025-02-12 2025-02-13 2025-02-14 2025-02-15 2025-02-16 2025-02-17

AdventureWor

ks

210 870

AdventureWor

ks

215 420 3,080 1,410 4,590 2,020 1,410

AdventureWor

ks

216 1,290

AdventureWor

ks

217 800 2,880

AdvNew2022R

estored

219 1,530 1,620

Test33 223 760 3,870 2,020 960

AdventureWor

ks

228 420

Advnew2022 228 80

ReportDB678 228

AdvDest20240

317

231 630,105 660,110 150,025 191,000 435,620 357,680

AdventureWor

ks

237 7,380

AIDBAADV2 238 2,370 2,900 560

AdventureWor

ks

240 4,070

Test33 243 375 2,250 113 1,360 1,815 900

AdvDest20240

317

244 110 1,190 1,635 900

NewDB202410

29

245 360 2,160 1,190 1,260

AdventureWor

ks

246 500 2,290 350 840

newdbemo309

9

246 750 2,700 350 840

AdventureWor

ks

252 550

Database: Adv2022ShalevSoft

QueryId: 0

Script:

(@0 int,@3 varchar (8000) ,@4 varchar (8000) ,@5 varchar (8000) ,@6 varchar (8000) ,@9 varchar (8000) ,@10 varchar (

8000) ,@11 varchar (8000)) with CTE as (select AO . name , sm . definition from sys . all_objects AO inner join sys .

all_sql_modules SM on SM . object_id = AO . object_id where AO . is_ms_shipped = @0 and Replace (lower (Replace (

definition , char (13) + Char (10) , @3)) , @4 , @5) like '%with (%index (%' union all select Object_name (T . objectid

) as [name] , T . text as [definition] from sys . dm_exec_query_stats qs inner join sys . dm_exec_cached_plans CP on CP .

plan_handle = qs . plan_handle cross apply sys . dm_exec_sql_text (qs . Sql_handle) T where CP . objtype = @6 and Replace

(lower (Replace (T . text , char (13) + Char (10) , @9)) , @10 , @11) like '%with (%index (%') insert into #Temp

select DB_NAME () as [DB_Name] , S . [SchemaName] , S . TableName , S . IndexName from CTE C inner join (select ('%' + T

. name + '%' + I . name + '%') as [filter] , schema_name (T . schema_id) as [SchemaName] , T . name as [TableName] , I . name

as [IndexName] from sys . indexes I inner join sys . tables T on T . object_id = I . object_id where I . name is not null) S on C .

definition collate DATABASE_DEFAULT like S . [filter] collate DATABASE_DEFAULT

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 78

Database: AdventureWorks

QueryId: 0

Script:

/*AI-DBA*/

SELECT

[CreditCardApprovalCode] AS [VALUE],

COUNT (*) [ROW_COUNT]

from [AdventureWorks].[Sales].[SalesOrderHeader]

WHERE [CreditCardApprovalCode] IS NOT null

GROUP BY [CreditCardApprovalCode]

ORDER BY [VALUE] desc

Database: Advnew2022Moved

QueryId: 1

Script:

(@0 varchar (8000)) select db_id () as database_id , sm . [is_inlineable] as InlineableScalarCount , sm . [inline_type] as

InlineType , COUNT_BIG (*) as ScalarCount , COUNT_BIG (case when sm . [definition] like '%getdate%' or sm . [definition] like

'%getutcdate%' or sm . [definition] like '%sysdatetime%' or sm . [definition] like '%sysutcdatetime%' or sm . [definition] like

'%sysdatetimeoffset%' or sm . [definition] like '%CURRENT_TIMESTAMP%' then 1 end) as ScalarCountWithDate from [sys] .

[objects] o inner join [sys] . [sql_modules] sm on o . [object_id] = sm . [object_id] where o . [type] = @0 group by sm . [is_inlineable]

, sm . [inline_type]

Database: AdventureWorks

QueryId: 5

Script:

/*AI-DBA*/

SELECT

[CarrierTrackingNumber] AS [VALUE],

COUNT (*) [ROW_COUNT]

from [AdventureWorks].[Sales].[SalesOrderDetail]

WHERE [CarrierTrackingNumber] IS NOT null

GROUP BY [CarrierTrackingNumber]

ORDER BY [VALUE] desc

Database: AdvNew2022Restored

QueryId: 9

Script:

SELECT db_id () AS database_id, o.[type] AS object_type, i.[type] AS index_type, p.[data_compression],

COUNT_BIG (DISTINCT p.[object_id]) AS NumTables, COUNT_BIG (DISTINCT CAST (p.[object_id] AS VARCHAR (30)) +

'|' + CAST (p.[index_id] AS VARCHAR (10))) AS NumIndexes, ISNULL (px.[IsPartitioned], 0) AS IsPartitioned, IIF (

px.[IsPartitioned] = 1, COUNT_BIG (1) , 0) NumPartitions, SUM (p.[rows]) NumRows FROM sys.partitions p INNER

JOIN sys.objects o ON o.[object_id] = p.[object_id] INNER JOIN sys.indexes i ON i.[object_id] = p.[object_id] AND

i.[index_id] = p.[index_id] OUTER APPLY (SELECT x.[object_id], 1 AS [IsPartitioned] FROM sys.partitions x WHERE

x.[object_id] = p.[object_id] GROUP by x.[object_id] HAVING MAX (x.partition_number) > 1) px WHERE o.[type]

NOT IN ('S', 'IT') GROUP BY o.[type] ,i.[type] ,p.[data_compression] ,px.[IsPartitioned]

Database: AdventureWorks

QueryId: 20

Script:

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 79

/*AI-DBA*/

SELECT CONVERT (DECIMAL,MIN ([UnitPrice])) AS [MIN],

CONVERT (DECIMAL,MAX ([UnitPrice])) AS [MAX],

CONVERT (DECIMAL,AVG ([UnitPrice])) AS [AVG],

CONVERT (DECIMAL,STDEV ([UnitPrice])) AS [STDDEV],

CONVERT (DECIMAL,VAR ([UnitPrice])) AS [VAR]

FROM [AdventureWorks].[Sales].[SalesOrderDetail]

WHERE [UnitPrice] IS NOT NULL

Database: AdventureWorks

QueryId: 21

Script:

/*AI-DBA*/

SELECT COUNT (1) AS [NONEMPTY]

FROM [AdventureWorks].[Sales].[SalesOrderDetail]

WHERE LEN (CONVERT (NVARCHAR (MAX) ,[SalesOrderDetailID])) > 0 AND LEN (CONVERT (NVARCHAR (MAX)

,[SalesOrderDetailID])) IS NOT NULL ;

Database: AdvDest20240317

QueryId: 22

Script:

(@0 int) insert into #temp select db_name () as [DB_Name] , object_name (IU . object_id) as [ObjName] , I . name as

[IndexName] , I . type_desc as [IndexType] , IU . user_seeks , IU . user_scans , IU . user_lookups , case when IU . user_seeks = 0

then 0 else (IU . user_seeks * 100) / (IU . user_seeks + IU . user_scans + IU . user_lookups) end as [User_Seeks_Pct] , case

when IU . user_scans = 0 then 0 else (IU . user_scans * 100) / (IU . user_seeks + IU . user_scans + IU . user_lookups) end

as [User_Scans_Pct] , case when IU . user_lookups = 0 then 0 else (IU . user_lookups * 100) / (IU . user_seeks + IU .

user_scans + IU . user_lookups) end as [User_Lookups_Pct] from sys . dm_db_index_usage_stats IU inner join sys . indexes I on I .

index_id = IU . index_id and I . object_id = IU . object_id inner join sys . all_objects AO on AO . object_id = IU . object_id and AO .

is_ms_shipped = @0

Database: AIDBAADV2

QueryId: 22

Script:

SELECT db_id () AS database_id, o.[type] as ModuleType, COUNT_BIG (*) as ModuleCount FROM sys.objects AS o WITH (

nolock) WHERE o.type in ('AF', 'F', 'FN', 'FS', 'FT', 'IF', 'P', 'PC', 'TA', 'TF', 'TR', 'X', 'C', 'D', 'PG', 'SN', 'SO', 'SQ', 'TT', 'UQ', 'V')

GROUP BY o.[type]

Database: AdventureWorks

QueryId: 23

Script:

/*AI-DBA*/

SELECT CONVERT (DECIMAL,MIN ([LineTotal])) AS [MIN],

CONVERT (DECIMAL,MAX ([LineTotal])) AS [MAX],

CONVERT (DECIMAL,AVG ([LineTotal])) AS [AVG],

CONVERT (DECIMAL,STDEV ([LineTotal])) AS [STDDEV],

CONVERT (DECIMAL,VAR ([LineTotal])) AS [VAR]

FROM [AdventureWorks].[Sales].[SalesOrderDetail]

WHERE [LineTotal] IS NOT NULL

Database: AdvNew2022Restored3

QueryId: 25

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 80

Script:

SELECT db_id () AS database_id, o.[type] AS object_type, i.[type] AS index_type, p.[data_compression],

COUNT_BIG (DISTINCT p.[object_id]) AS NumTables, COUNT_BIG (DISTINCT CAST (p.[object_id] AS VARCHAR (30)) +

'|' + CAST (p.[index_id] AS VARCHAR (10))) AS NumIndexes, ISNULL (px.[IsPartitioned], 0) AS IsPartitioned, IIF (

px.[IsPartitioned] = 1, COUNT_BIG (1) , 0) NumPartitions, SUM (p.[rows]) NumRows FROM sys.partitions p INNER

JOIN sys.objects o ON o.[object_id] = p.[object_id] INNER JOIN sys.indexes i ON i.[object_id] = p.[object_id] AND

i.[index_id] = p.[index_id] OUTER APPLY (SELECT x.[object_id], 1 AS [IsPartitioned] FROM sys.partitions x WHERE

x.[object_id] = p.[object_id] GROUP by x.[object_id] HAVING MAX (x.partition_number) > 1) px WHERE o.[type]

NOT IN ('S', 'IT') GROUP BY o.[type] ,i.[type] ,p.[data_compression] ,px.[IsPartitioned]

Database: NewDB20241029

QueryId: 25

Script:

SELECT db_id () as database_id, sm.[is_inlineable] AS InlineableScalarCount, sm.[inline_type] AS InlineType,

COUNT_BIG (*) AS ScalarCount, COUNT_BIG (CASE WHEN sm.[definition] LIKE '%getdate%' OR sm.[definition] LIKE

'%getutcdate%' OR sm.[definition] LIKE '%sysdatetime%' OR sm.[definition] LIKE '%sysutcdatetime%' OR sm.[definition]

LIKE '%sysdatetimeoffset%' OR sm.[definition] LIKE '%CURRENT_TIMESTAMP%' THEN 1 END) AS

ScalarCountWithDate FROM [sys].[objects] o INNER JOIN [sys].[sql_modules] sm ON o.[object_id] =

sm.[object_id] WHERE o.[type] = 'FN' GROUP BY sm.[is_inlineable], sm.[inline_type]

Database: Adv2022ShalevSoft

QueryId: 28

Script:

(@0 int) insert into #sqls select DB_ID () , [definition] from sys . all_sql_modules where object_id > @0 and ([definition] like

'%cast%' or [Definition] like '%convert%')

Database: AdventureWorks

QueryId: 31

Script:

/*AI-DBA*/

SELECT COUNT (1) AS [NONEMPTY]

FROM [AdventureWorks].[Sales].[SalesOrderDetail]

WHERE LEN (CONVERT (NVARCHAR (MAX) ,[ModifiedDate])) > 0 AND LEN (CONVERT (NVARCHAR (MAX)

,[ModifiedDate])) IS NOT NULL ;

Database: newdbemo3099

QueryId: 38

Script:

SELECT db_id () AS database_id, c.system_type_id, c.user_type_id, c.is_sparse, c.is_column_set,

c.is_filestream, c.encryption_type, CASE WHEN o.object_id IS NOT NULL THEN 1 ELSE 0 END AS is_user, COUNT_BIG

(*) AS [ColCount], CASE WHEN c.collation_name IS NULL THEN CONVERT (VARCHAR (128) , SERVERPROPERTY (

'Collation')) ELSE c.collation_name END AS collation_name, AVG (c.max_length) AS avg_max_length FROM

sys.columns c WITH (NOLOCK) LEFT OUTER JOIN sys.objects o WITH (NOLOCK) ON o.object_id = c.object_id

AND o.type = 'U' GROUP BY c.system_type_id, c.user_type_id, c.is_sparse, c.is_column_set,

c.encryption_type, c.is_filestream, CASE WHEN o.object_id IS NOT NULL THEN 1 ELSE 0 END, CASE WHEN

c.collation_name IS NULL THEN CONVERT (VARCHAR (128) , SERVERPROPERTY ('Collation')) ELSE c.collation_name END

Database: Advnew2022

QueryId: 39

Script:

(@0 varchar (8000)) select db_id () as database_id , c . system_type_id , c . user_type_id , c . is_sparse , c . is_column_set , c .

is_filestream , c . encryption_type , case when o . object_id is not null then 1 else 0 end as is_user , COUNT_BIG (*) as [ColCount]

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 81

, case when c . collation_name is null then convert (VARCHAR (128) , SERVERPROPERTY ('Collation')) else c .

collation_name end as collation_name , AVG (c . max_length) as avg_max_length from sys . columns c with (NOLOCK) left

outer join sys . objects o with (NOLOCK) on o . object_id = c . object_id and o . type = @0 group by c . system_type_id , c .

user_type_id , c . is_sparse , c . is_column_set , c . encryption_type , c . is_filestream , case when o . object_id is not null then 1 else

0 end , case when c . collation_name is null then convert (VARCHAR (128) , SERVERPROPERTY ('Collation')) else c .

collation_name end

Database: Advnew2022

QueryId: 39

Script:

(@0 varchar (8000) ,@1 varchar (8000)) select db_id () as database_id , o . [type] as object_type , i . [type] as index_type , p .

[data_compression] , COUNT_BIG (distinct p . [object_id]) as NumTables , COUNT_BIG (distinct CAST (p . [object_id] as

VARCHAR (30)) + '|' + CAST (p . [index_id] as VARCHAR (10))) as NumIndexes , ISNULL (px . [IsPartitioned] , 0)

as IsPartitioned , IIF (px . [IsPartitioned] = 1 , COUNT_BIG (1) , 0) NumPartitions , SUM (p . [rows]) NumRows from sys .

partitions p inner join sys . objects o on o . [object_id] = p . [object_id] inner join sys . indexes i on i . [object_id] = p . [object_id] and i

. [index_id] = p . [index_id] outer APPLY (select x . [object_id] , 1 as [IsPartitioned] from sys . partitions x where x . [object_id] = p .

[object_id] group by x . [object_id] having MAX (x . partition_number) > 1) px where o . [type] not in (@0 , @1) group by o .

[type] , i . [type] , p . [data_compression] , px . [IsPartitioned]

Database: AdventureWorks

QueryId: 42

Script:

/*AI-DBA*/

SELECT

[PurchaseOrderNumber] AS [VALUE],

COUNT (*) [ROW_COUNT]

from [AdventureWorks].[Sales].[SalesOrderHeader]

WHERE [PurchaseOrderNumber] IS NOT null

GROUP BY [PurchaseOrderNumber]

ORDER BY [VALUE] desc

Database: Test33

QueryId: 43

Script:

(@0 int,@1 varchar (8000)) insert into #temp select DB_Name () [DBName] , case when T . system_type_id in (35 , 99 , 167 ,

175 , 239 , 231) then 'Wrong' else 'Right' end as [Design] , Count (*) as [Count] from sys . sysindexkeys IK inner join sys .

all_objects AO on AO . object_id = IK . id and AO . is_ms_shipped = @0 and AO . type = @1 inner join sys . indexes I on I .

index_id = IK . indid and I . object_id = IK . id cross Apply (select * from sys . all_columns AC where AC . column_id = IK . colid

and AC . object_id = IK . id) C inner join sys . types T on T . system_type_id = C . system_type_id group by case when T .

system_type_id in (35 , 99 , 167 , 175 , 239 , 231) then 'Wrong' else 'Right' end

Database: AdventureWorks

QueryId: 47

Script:

select top (1000000) * from sales.SalesOrderHeader h

cross join sales.SalesOrderDetail d

Database: Adv2022ShalevSoft

QueryId: 48

Script:

(@0 int) insert into #temp select db_name () as [DB_Name] , object_name (IU . object_id) as [ObjName] , I . name as

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 82

[IndexName] , I . type_desc as [IndexType] , IU . user_seeks , IU . user_scans , IU . user_lookups , case when IU . user_seeks = 0

then 0 else (IU . user_seeks * 100) / (IU . user_seeks + IU . user_scans + IU . user_lookups) end as [User_Seeks_Pct] , case

when IU . user_scans = 0 then 0 else (IU . user_scans * 100) / (IU . user_seeks + IU . user_scans + IU . user_lookups) end

as [User_Scans_Pct] , case when IU . user_lookups = 0 then 0 else (IU . user_lookups * 100) / (IU . user_seeks + IU .

user_scans + IU . user_lookups) end as [User_Lookups_Pct] from sys . dm_db_index_usage_stats IU inner join sys . indexes I on I .

index_id = IU . index_id and I . object_id = IU . object_id inner join sys . all_objects AO on AO . object_id = IU . object_id and AO .

is_ms_shipped = @0

Database: AdventureWorks

QueryId: 48

Script:

/*AI-DBA*/

SELECT COUNT (1) AS [EMPTY]

FROM [AdventureWorks].[Sales].[SalesOrderDetail]

WHERE LEN (CONVERT (NVARCHAR (MAX) ,[SalesOrderDetailID])) = 0 AND LEN (CONVERT (NVARCHAR (MAX)

,[SalesOrderDetailID])) IS NOT NULL ;

Database: Demo20240411

QueryId: 52

Script:

SELECT db_id () as database_id, sm.[is_inlineable] AS InlineableScalarCount, sm.[inline_type] AS InlineType,

COUNT_BIG (*) AS ScalarCount, COUNT_BIG (CASE WHEN sm.[definition] LIKE '%getdate%' OR sm.[definition] LIKE

'%getutcdate%' OR sm.[definition] LIKE '%sysdatetime%' OR sm.[definition] LIKE '%sysutcdatetime%' OR sm.[definition]

LIKE '%sysdatetimeoffset%' OR sm.[definition] LIKE '%CURRENT_TIMESTAMP%' THEN 1 END) AS

ScalarCountWithDate FROM [sys].[objects] o INNER JOIN [sys].[sql_modules] sm ON o.[object_id] =

sm.[object_id] WHERE o.[type] = 'FN' GROUP BY sm.[is_inlineable], sm.[inline_type]

Database: Adv2022ShalevSoft

QueryId: 53

Script:

(@0 int,@1 varchar (8000)) insert into #temp select DB_Name () [DBName] , case when T . system_type_id in (35 , 99 , 167 ,

175 , 239 , 231) then 'Wrong' else 'Right' end as [Design] , Count (*) as [Count] from sys . sysindexkeys IK inner join sys .

all_objects AO on AO . object_id = IK . id and AO . is_ms_shipped = @0 and AO . type = @1 inner join sys . indexes I on I .

index_id = IK . indid and I . object_id = IK . id cross Apply (select * from sys . all_columns AC where AC . column_id = IK . colid

and AC . object_id = IK . id) C inner join sys . types T on T . system_type_id = C . system_type_id group by case when T .

system_type_id in (35 , 99 , 167 , 175 , 239 , 231) then 'Wrong' else 'Right' end

Database: Advnew2022

QueryId: 55

Script:

(@0 int) insert into #sqls select DB_ID () , [definition] from sys . all_sql_modules where object_id > @0 and ([definition] like

'%cast%' or [Definition] like '%convert%')

Database: AdvNewDB2022Portal

QueryId: 59

Script:

SELECT db_id () AS database_id, c.system_type_id, c.user_type_id, c.is_sparse, c.is_column_set,

c.is_filestream, c.encryption_type, CASE WHEN o.object_id IS NOT NULL THEN 1 ELSE 0 END AS is_user, COUNT_BIG

(*) AS [ColCount], CASE WHEN c.collation_name IS NULL THEN CONVERT (VARCHAR (128) , SERVERPROPERTY (

'Collation')) ELSE c.collation_name END AS collation_name, AVG (c.max_length) AS avg_max_length FROM

sys.columns c WITH (NOLOCK) LEFT OUTER JOIN sys.objects o WITH (NOLOCK) ON o.object_id = c.object_id

AND o.type = 'U' GROUP BY c.system_type_id, c.user_type_id, c.is_sparse, c.is_column_set,

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 83

c.encryption_type, c.is_filestream, CASE WHEN o.object_id IS NOT NULL THEN 1 ELSE 0 END, CASE WHEN

c.collation_name IS NULL THEN CONVERT (VARCHAR (128) , SERVERPROPERTY ('Collation')) ELSE c.collation_name END

Database: AdventureWorks

QueryId: 63

Script:

/*AI-DBA*/

SELECT

[SalesOrderDetailID] AS [VALUE],

COUNT (*) [ROW_COUNT]

from [AdventureWorks].[Sales].[SalesOrderDetail]

WHERE [SalesOrderDetailID] IS NOT null

GROUP BY [SalesOrderDetailID]

ORDER BY [VALUE] desc

Database: Test33

QueryId: 64

Script:

(@0 int) insert into #temp select db_name () as [DB_Name] , object_name (IU . object_id) as [ObjName] , I . name as

[IndexName] , I . type_desc as [IndexType] , IU . user_seeks , IU . user_scans , IU . user_lookups , case when IU . user_seeks = 0

then 0 else (IU . user_seeks * 100) / (IU . user_seeks + IU . user_scans + IU . user_lookups) end as [User_Seeks_Pct] , case

when IU . user_scans = 0 then 0 else (IU . user_scans * 100) / (IU . user_seeks + IU . user_scans + IU . user_lookups) end

as [User_Scans_Pct] , case when IU . user_lookups = 0 then 0 else (IU . user_lookups * 100) / (IU . user_seeks + IU .

user_scans + IU . user_lookups) end as [User_Lookups_Pct] from sys . dm_db_index_usage_stats IU inner join sys . indexes I on I .

index_id = IU . index_id and I . object_id = IU . object_id inner join sys . all_objects AO on AO . object_id = IU . object_id and AO .

is_ms_shipped = @0

Database: Adv2022ShalevSoft

QueryId: 65

Script:

(@0 int,@1 varchar (8000)) insert into #temp select db_name () [DBName] , Object_name (IK . id) [TableName] ,

schema_name (AO . schema_id) as [SchemaName] , I . name [IndexName] , C . name [KeyName] , T . name [DataType] , case

when T . system_type_id in (35 , 99 , 167 , 175 , 239 , 231) then 'Wrong' else 'Right' end as [Design] from sys . sysindexkeys IK

inner join sys . all_objects AO on AO . object_id = IK . id and AO . is_ms_shipped = @0 and AO . type = @1 inner join sys .

indexes I on I . index_id = IK . indid and I . object_id = IK . id cross Apply (select * from sys . all_columns AC where AC .

column_id = IK . colid and AC . object_id = IK . id) C inner join sys . types T on T . system_type_id = C . system_type_id order by

Object_name (IK . id) asc , I . name asc , C . name asc

Database: AdvDest20240317

QueryId: 68

Script:

(@0 int,@1 varchar (8000)) insert into #temp select db_name () [DBName] , Object_name (IK . id) [TableName] ,

schema_name (AO . schema_id) as [SchemaName] , I . name [IndexName] , C . name [KeyName] , T . name [DataType] , case

when T . system_type_id in (35 , 99 , 167 , 175 , 239 , 231) then 'Wrong' else 'Right' end as [Design] from sys . sysindexkeys IK

inner join sys . all_objects AO on AO . object_id = IK . id and AO . is_ms_shipped = @0 and AO . type = @1 inner join sys .

indexes I on I . index_id = IK . indid and I . object_id = IK . id cross Apply (select * from sys . all_columns AC where AC .

column_id = IK . colid and AC . object_id = IK . id) C inner join sys . types T on T . system_type_id = C . system_type_id order by

Object_name (IK . id) asc , I . name asc , C . name asc

Database: AdventureWorks

QueryId: 69

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 84

Script:

/*AI-DBA*/

SELECT

[AccountNumber] AS [VALUE],

COUNT (*) [ROW_COUNT]

from [AdventureWorks].[Sales].[SalesOrderHeader]

WHERE [AccountNumber] IS NOT null

GROUP BY [AccountNumber]

ORDER BY [VALUE] desc

Database: AdvNew2022Restored3

QueryId: 69

Script:

SELECT db_id () as database_id, sm.[is_inlineable] AS InlineableScalarCount, sm.[inline_type] AS InlineType,

COUNT_BIG (*) AS ScalarCount, COUNT_BIG (CASE WHEN sm.[definition] LIKE '%getdate%' OR sm.[definition] LIKE

'%getutcdate%' OR sm.[definition] LIKE '%sysdatetime%' OR sm.[definition] LIKE '%sysutcdatetime%' OR sm.[definition]

LIKE '%sysdatetimeoffset%' OR sm.[definition] LIKE '%CURRENT_TIMESTAMP%' THEN 1 END) AS

ScalarCountWithDate FROM [sys].[objects] o INNER JOIN [sys].[sql_modules] sm ON o.[object_id] =

sm.[object_id] WHERE o.[type] = 'FN' GROUP BY sm.[is_inlineable], sm.[inline_type]

Database: AdvNew2022Restored3

QueryId: 81

Script:

SELECT db_id () AS database_id, c.system_type_id, c.user_type_id, c.is_sparse, c.is_column_set,

c.is_filestream, c.encryption_type, CASE WHEN o.object_id IS NOT NULL THEN 1 ELSE 0 END AS is_user, COUNT_BIG

(*) AS [ColCount], CASE WHEN c.collation_name IS NULL THEN CONVERT (VARCHAR (128) , SERVERPROPERTY (

'Collation')) ELSE c.collation_name END AS collation_name, AVG (c.max_length) AS avg_max_length FROM

sys.columns c WITH (NOLOCK) LEFT OUTER JOIN sys.objects o WITH (NOLOCK) ON o.object_id = c.object_id

AND o.type = 'U' GROUP BY c.system_type_id, c.user_type_id, c.is_sparse, c.is_column_set,

c.encryption_type, c.is_filestream, CASE WHEN o.object_id IS NOT NULL THEN 1 ELSE 0 END, CASE WHEN

c.collation_name IS NULL THEN CONVERT (VARCHAR (128) , SERVERPROPERTY ('Collation')) ELSE c.collation_name END

Database: Advnew2022Moved

QueryId: 82

Script:

(@0 int,@1 varchar (8000)) insert into #temp select db_name () [DBName] , Object_name (IK . id) [TableName] ,

schema_name (AO . schema_id) as [SchemaName] , I . name [IndexName] , C . name [KeyName] , T . name [DataType] , case

when T . system_type_id in (35 , 99 , 167 , 175 , 239 , 231) then 'Wrong' else 'Right' end as [Design] from sys . sysindexkeys IK

inner join sys . all_objects AO on AO . object_id = IK . id and AO . is_ms_shipped = @0 and AO . type = @1 inner join sys .

indexes I on I . index_id = IK . indid and I . object_id = IK . id cross Apply (select * from sys . all_columns AC where AC .

column_id = IK . colid and AC . object_id = IK . id) C inner join sys . types T on T . system_type_id = C . system_type_id order by

Object_name (IK . id) asc , I . name asc , C . name asc

Database: AdventureWorks

QueryId: 87

Script:

/*AI-DBA*/

SELECT

[CustomerID] AS [VALUE],

COUNT (*) [ROW_COUNT]

from [AdventureWorks].[Sales].[SalesOrderHeader]

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 85

WHERE [CustomerID] IS NOT null

GROUP BY [CustomerID]

ORDER BY [VALUE] desc

Database: Advnew2022

QueryId: 92

Script:

(@0 int,@1 varchar (8000)) insert into #temp select db_name () [DBName] , Object_name (IK . id) [TableName] ,

schema_name (AO . schema_id) as [SchemaName] , I . name [IndexName] , C . name [KeyName] , T . name [DataType] , case

when T . system_type_id in (35 , 99 , 167 , 175 , 239 , 231) then 'Wrong' else 'Right' end as [Design] from sys . sysindexkeys IK

inner join sys . all_objects AO on AO . object_id = IK . id and AO . is_ms_shipped = @0 and AO . type = @1 inner join sys .

indexes I on I . index_id = IK . indid and I . object_id = IK . id cross Apply (select * from sys . all_columns AC where AC .

column_id = IK . colid and AC . object_id = IK . id) C inner join sys . types T on T . system_type_id = C . system_type_id order by

Object_name (IK . id) asc , I . name asc , C . name asc

Database: Test33

QueryId: 94

Script:

(@0 int) insert into #sqls select DB_ID () , [definition] from sys . all_sql_modules where object_id > @0 and ([definition] like

'%cast%' or [Definition] like '%convert%')

Database: AdvDest20240317

QueryId: 97

Script:

(@0 int) insert into #sqls select DB_ID () , [definition] from sys . all_sql_modules where object_id > @0 and ([definition] like

'%cast%' or [Definition] like '%convert%')

Database: AdventureWorks

QueryId: 99

Script:

/*AI-DBA*/

SELECT DATA_TYPE + ' ('+ISNULL (IIF (CHARACTER_MAXIMUM_LENGTH = -1,'max',FORMAT (

CHARACTER_MAXIMUM_LENGTH,'0')) ,'') +') ' AS [DATA_TYPE]

FROM [AdventureWorks].INFORMATION_SCHEMA.COLUMNS

WHERE '['+TABLE_CATALOG+'].['+TABLE_SCHEMA+'].['+TABLE_NAME+']' = '[AdventureWorks].[Sales].[SalesTaxRate]' AND

COLUMN_NAME = 'StateProvinceID' ;

Database: Test33

QueryId: 101

Script:

(@0 int,@1 varchar (8000)) insert into #temp select db_name () [DBName] , Object_name (IK . id) [TableName] ,

schema_name (AO . schema_id) as [SchemaName] , I . name [IndexName] , C . name [KeyName] , T . name [DataType] , case

when T . system_type_id in (35 , 99 , 167 , 175 , 239 , 231) then 'Wrong' else 'Right' end as [Design] from sys . sysindexkeys IK

inner join sys . all_objects AO on AO . object_id = IK . id and AO . is_ms_shipped = @0 and AO . type = @1 inner join sys .

indexes I on I . index_id = IK . indid and I . object_id = IK . id cross Apply (select * from sys . all_columns AC where AC .

column_id = IK . colid and AC . object_id = IK . id) C inner join sys . types T on T . system_type_id = C . system_type_id order by

Object_name (IK . id) asc , I . name asc , C . name asc

Database: AIDBAADV2

QueryId: 103

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 86

Script:

SELECT db_id () AS database_id, c.system_type_id, c.user_type_id, c.is_sparse, c.is_column_set,

c.is_filestream, c.encryption_type, CASE WHEN o.object_id IS NOT NULL THEN 1 ELSE 0 END AS is_user, COUNT_BIG

(*) AS [ColCount], CASE WHEN c.collation_name IS NULL THEN CONVERT (VARCHAR (128) , SERVERPROPERTY (

'Collation')) ELSE c.collation_name END AS collation_name, AVG (c.max_length) AS avg_max_length FROM

sys.columns c WITH (NOLOCK) LEFT OUTER JOIN sys.objects o WITH (NOLOCK) ON o.object_id = c.object_id

AND o.type = 'U' GROUP BY c.system_type_id, c.user_type_id, c.is_sparse, c.is_column_set,

c.encryption_type, c.is_filestream, CASE WHEN o.object_id IS NOT NULL THEN 1 ELSE 0 END, CASE WHEN

c.collation_name IS NULL THEN CONVERT (VARCHAR (128) , SERVERPROPERTY ('Collation')) ELSE c.collation_name END

Database: AdventureWorks

QueryId: 104

Script:

/*AI-DBA*/

SELECT MIN (LEN ([rowguid])) AS [MIN],

MAX (LEN ([rowguid])) AS [MAX],

AVG (LEN ([rowguid])) AS [AVG],

STDEV (LEN ([rowguid])) AS [STDDEV],

VAR (LEN ([rowguid])) AS [VAR]

FROM [AdventureWorks].[Sales].[SalesOrderDetail]

WHERE [rowguid] IS NOT NULL

AND LEN ([rowguid]) > 0

Database: NewDB20241029

QueryId: 106

Script:

SELECT db_id () AS database_id, c.system_type_id, c.user_type_id, c.is_sparse, c.is_column_set,

c.is_filestream, c.encryption_type, CASE WHEN o.object_id IS NOT NULL THEN 1 ELSE 0 END AS is_user, COUNT_BIG

(*) AS [ColCount], CASE WHEN c.collation_name IS NULL THEN CONVERT (VARCHAR (128) , SERVERPROPERTY (

'Collation')) ELSE c.collation_name END AS collation_name, AVG (c.max_length) AS avg_max_length FROM

sys.columns c WITH (NOLOCK) LEFT OUTER JOIN sys.objects o WITH (NOLOCK) ON o.object_id = c.object_id

AND o.type = 'U' GROUP BY c.system_type_id, c.user_type_id, c.is_sparse, c.is_column_set,

c.encryption_type, c.is_filestream, CASE WHEN o.object_id IS NOT NULL THEN 1 ELSE 0 END, CASE WHEN

c.collation_name IS NULL THEN CONVERT (VARCHAR (128) , SERVERPROPERTY ('Collation')) ELSE c.collation_name END

Database: Advnew2022Moved

QueryId: 110

Script:

(@0 int,@1 varchar (8000)) insert into #temp select DB_Name () [DBName] , case when T . system_type_id in (35 , 99 , 167 ,

175 , 239 , 231) then 'Wrong' else 'Right' end as [Design] , Count (*) as [Count] from sys . sysindexkeys IK inner join sys .

all_objects AO on AO . object_id = IK . id and AO . is_ms_shipped = @0 and AO . type = @1 inner join sys . indexes I on I .

index_id = IK . indid and I . object_id = IK . id cross Apply (select * from sys . all_columns AC where AC . column_id = IK . colid

and AC . object_id = IK . id) C inner join sys . types T on T . system_type_id = C . system_type_id group by case when T .

system_type_id in (35 , 99 , 167 , 175 , 239 , 231) then 'Wrong' else 'Right' end

Database: newdbemo3099

QueryId: 110

Script:

SELECT db_id () as database_id, sm.[is_inlineable] AS InlineableScalarCount, sm.[inline_type] AS InlineType,

COUNT_BIG (*) AS ScalarCount, COUNT_BIG (CASE WHEN sm.[definition] LIKE '%getdate%' OR sm.[definition] LIKE

'%getutcdate%' OR sm.[definition] LIKE '%sysdatetime%' OR sm.[definition] LIKE '%sysutcdatetime%' OR sm.[definition]

LIKE '%sysdatetimeoffset%' OR sm.[definition] LIKE '%CURRENT_TIMESTAMP%' THEN 1 END) AS

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 87

ScalarCountWithDate FROM [sys].[objects] o INNER JOIN [sys].[sql_modules] sm ON o.[object_id] =

sm.[object_id] WHERE o.[type] = 'FN' GROUP BY sm.[is_inlineable], sm.[inline_type]

Database: Test33

QueryId: 111

Script:

(@0 int,@3 varchar (8000) ,@4 varchar (8000) ,@5 varchar (8000) ,@6 varchar (8000) ,@9 varchar (8000) ,@10 varchar (

8000) ,@11 varchar (8000)) with CTE as (select AO . name , sm . definition from sys . all_objects AO inner join sys .

all_sql_modules SM on SM . object_id = AO . object_id where AO . is_ms_shipped = @0 and Replace (lower (Replace (

definition , char (13) + Char (10) , @3)) , @4 , @5) like '%with (%index (%' union all select Object_name (T . objectid

) as [name] , T . text as [definition] from sys . dm_exec_query_stats qs inner join sys . dm_exec_cached_plans CP on CP .

plan_handle = qs . plan_handle cross apply sys . dm_exec_sql_text (qs . Sql_handle) T where CP . objtype = @6 and Replace

(lower (Replace (T . text , char (13) + Char (10) , @9)) , @10 , @11) like '%with (%index (%') insert into #Temp

select DB_NAME () as [DB_Name] , S . [SchemaName] , S . TableName , S . IndexName from CTE C inner join (select ('%' + T

. name + '%' + I . name + '%') as [filter] , schema_name (T . schema_id) as [SchemaName] , T . name as [TableName] , I . name

as [IndexName] from sys . indexes I inner join sys . tables T on T . object_id = I . object_id where I . name is not null) S on C .

definition collate DATABASE_DEFAULT like S . [filter] collate DATABASE_DEFAULT

Database: AdventureWorks

QueryId: 112

Script:

/*AI-DBA*/

SELECT COUNT (1) AS [NONEMPTY]

FROM [AdventureWorks].[Sales].[SalesOrderDetail]

WHERE LEN (CONVERT (NVARCHAR (MAX) ,[SpecialOfferID])) > 0 AND LEN (CONVERT (NVARCHAR (MAX)

,[SpecialOfferID])) IS NOT NULL ;

Database: AdvDest20240317

QueryId: 113

Script:

(@0 int,@1 varchar (8000)) insert into #temp select DB_Name () [DBName] , case when T . system_type_id in (35 , 99 , 167 ,

175 , 239 , 231) then 'Wrong' else 'Right' end as [Design] , Count (*) as [Count] from sys . sysindexkeys IK inner join sys .

all_objects AO on AO . object_id = IK . id and AO . is_ms_shipped = @0 and AO . type = @1 inner join sys . indexes I on I .

index_id = IK . indid and I . object_id = IK . id cross Apply (select * from sys . all_columns AC where AC . column_id = IK . colid

and AC . object_id = IK . id) C inner join sys . types T on T . system_type_id = C . system_type_id group by case when T .

system_type_id in (35 , 99 , 167 , 175 , 239 , 231) then 'Wrong' else 'Right' end

Database: AIDBAADV2

QueryId: 114

Script:

SELECT db_id () as database_id, sm.[is_inlineable] AS InlineableScalarCount, sm.[inline_type] AS InlineType,

COUNT_BIG (*) AS ScalarCount, COUNT_BIG (CASE WHEN sm.[definition] LIKE '%getdate%' OR sm.[definition] LIKE

'%getutcdate%' OR sm.[definition] LIKE '%sysdatetime%' OR sm.[definition] LIKE '%sysutcdatetime%' OR sm.[definition]

LIKE '%sysdatetimeoffset%' OR sm.[definition] LIKE '%CURRENT_TIMESTAMP%' THEN 1 END) AS

ScalarCountWithDate FROM [sys].[objects] o INNER JOIN [sys].[sql_modules] sm ON o.[object_id] =

sm.[object_id] WHERE o.[type] = 'FN' GROUP BY sm.[is_inlineable], sm.[inline_type]

Database: Advnew2022Moved

QueryId: 124

Script:

(@0 int,@3 varchar (8000) ,@4 varchar (8000) ,@5 varchar (8000) ,@6 varchar (8000) ,@9 varchar (8000) ,@10 varchar (

8000) ,@11 varchar (8000)) with CTE as (select AO . name , sm . definition from sys . all_objects AO inner join sys .

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 88

all_sql_modules SM on SM . object_id = AO . object_id where AO . is_ms_shipped = @0 and Replace (lower (Replace (

definition , char (13) + Char (10) , @3)) , @4 , @5) like '%with (%index (%' union all select Object_name (T . objectid

) as [name] , T . text as [definition] from sys . dm_exec_query_stats qs inner join sys . dm_exec_cached_plans CP on CP .

plan_handle = qs . plan_handle cross apply sys . dm_exec_sql_text (qs . Sql_handle) T where CP . objtype = @6 and Replace

(lower (Replace (T . text , char (13) + Char (10) , @9)) , @10 , @11) like '%with (%index (%') insert into #Temp

select DB_NAME () as [DB_Name] , S . [SchemaName] , S . TableName , S . IndexName from CTE C inner join (select ('%' + T

. name + '%' + I . name + '%') as [filter] , schema_name (T . schema_id) as [SchemaName] , T . name as [TableName] , I . name

as [IndexName] from sys . indexes I inner join sys . tables T on T . object_id = I . object_id where I . name is not null) S on C .

definition collate DATABASE_DEFAULT like S . [filter] collate DATABASE_DEFAULT

Database: AdvDest20240317

QueryId: 127

Script:

(@0 varchar (8000) ,@1 varchar (8000)) select db_id () as database_id , o . [type] as object_type , i . [type] as index_type , p .

[data_compression] , COUNT_BIG (distinct p . [object_id]) as NumTables , COUNT_BIG (distinct CAST (p . [object_id] as

VARCHAR (30)) + '|' + CAST (p . [index_id] as VARCHAR (10))) as NumIndexes , ISNULL (px . [IsPartitioned] , 0)

as IsPartitioned , IIF (px . [IsPartitioned] = 1 , COUNT_BIG (1) , 0) NumPartitions , SUM (p . [rows]) NumRows from sys .

partitions p inner join sys . objects o on o . [object_id] = p . [object_id] inner join sys . indexes i on i . [object_id] = p . [object_id] and i

. [index_id] = p . [index_id] outer APPLY (select x . [object_id] , 1 as [IsPartitioned] from sys . partitions x where x . [object_id] = p .

[object_id] group by x . [object_id] having MAX (x . partition_number) > 1) px where o . [type] not in (@0 , @1) group by o .

[type] , i . [type] , p . [data_compression] , px . [IsPartitioned]

Database: AdventureWorks

QueryId: 129

Script:

/*AI-DBA*/

SELECT

[rowguid] AS [VALUE],

COUNT (*) [ROW_COUNT]

from [AdventureWorks].[Sales].[SalesOrderDetail]

WHERE [rowguid] IS NOT null

GROUP BY [rowguid]

ORDER BY [VALUE] desc

Database: AdventureWorks

QueryId: 133

Script:

(@_msparam_0 nvarchar (4000) ,@_msparam_1 nvarchar (4000) ,@_msparam_2 nvarchar (4000) ,@_msparam_3 nvarchar (

4000) ,@_msparam_4 nvarchar (4000)) SELECT sp.name AS [Name], sp.object_id AS [ID], sp.create_date AS [CreateDate],

sp.modify_date AS [DateLastModified], ISNULL (ssp.name, N'') AS [Owner], CAST (case when sp.principal_id is null then 1 else 0

end AS bit) AS [IsSchemaOwned], SCHEMA_NAME (sp.schema_id) AS [Schema], CAST (

case

when sp.is_ms_shipped = 1 then 1

when (

select

major_id

from

sys.extended_properties

where

major_id = sp.object_id and

minor_id = 0 and

class = 1 and

name = N'microsoft_database_tools_support')

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 89

is not null then 1

else 0

end

AS bit) AS [IsSystemObject], CAST (ISNULL (OBJECTPROPERTYEX (sp.object_id,N'ExecIsAnsiNullsOn') ,0) AS bit) AS

[AnsiNullsStatus], CAST (ISNULL (OBJECTPROPERTYEX (sp.object_id,N'ExecIsQuotedIdentOn') ,0) AS bit) AS

[QuotedIdentifierStatus], CAST (ISNULL (OBJECTPROPERTYEX (sp.object_id, N'IsSchemaBound') ,0) AS bit) AS

[IsSchemaBound], CAST (CASE WHEN ISNULL (smsp.definition, ssmsp.definition) IS NULL THEN 1 ELSE 0 END AS bit) AS

[IsEncrypted], CAST (ISNULL (smsp.is_recompiled, ssmsp.is_recompiled) AS bit) AS [Recompile], case when amsp.object_id is

null then N'' else asmblsp.name end AS [AssemblyName], case when amsp.object_id is null then N'' else amsp.assembly_class end

AS [ClassName], case when amsp.object_id is null then N'' else amsp.assembly_method end AS [MethodName], case when

amsp.object_id is null then case isnull (smsp.execute_as_principal_id, -1) when -1 then 1 when -2 then 2 else 3 end else case isnull

(amsp.execute_as_principal_id, -1) when -1 then 1 when -2 then 2 else 3 end end AS [ExecutionContext], case when

amsp.object_id is null then ISNULL (user_name (smsp.execute_as_principal_id) ,N'') else ISNULL (user_name (

amsp.execute_as_principal_id) , N'') end AS [ExecutionContextPrincipal], CAST (ISNULL (spp.is_auto_executed,0) AS bit) AS

[Startup], CASE WHEN sp.type = N'P' THEN 1 WHEN sp.type = N'PC' THEN 2 ELSE 1 END AS [ImplementationType], CAST (

CASE sp.type WHEN N'RF' THEN 1 ELSE 0 END AS bit) AS [ForReplication], ISNULL (sm.uses_native_compilation,0) AS

[IsNativelyCompiled] FROM sys.all_objects AS sp LEFT OUTER JOIN sys.database_principals AS ssp ON ssp.principal_id =

ISNULL (sp.principal_id, (OBJECTPROPERTY (sp.object_id, 'OwnerId'))) LEFT OUTER JOIN sys.sql_modules AS smsp ON

smsp.object_id = sp.object_id LEFT OUTER JOIN sys.system_sql_modules AS ssmsp ON ssmsp.object_id = sp.object_id LEFT

OUTER JOIN sys.assembly_modules AS amsp ON amsp.object_id = sp.object_id LEFT OUTER JOIN sys.assemblies AS asmblsp

ON asmblsp.assembly_id = amsp.assembly_id LEFT OUTER JOIN sys.procedures AS spp ON spp.object_id = sp.object_id LEFT

OUTER JOIN sys.all_sql_modules AS sm ON sm.object_id = sp.object_id WHERE (sp.type = @_msparam_0 OR sp.type =

@_msparam_1 OR sp.type = @_msparam_2) and (sp.name = @_msparam_3 and SCHEMA_NAME (sp.schema_id) =

@_msparam_4)

Database: AdventureWorks

QueryId: 134

Script:

/*AI-DBA*/

SELECT COUNT (1) AS [NONEMPTY]

FROM [AdventureWorks].[Sales].[SalesOrderDetail]

WHERE LEN (CONVERT (NVARCHAR (MAX) ,[ProductID])) > 0 AND LEN (CONVERT (NVARCHAR (MAX) ,[ProductID]))

IS NOT NULL ;

Database: Advnew2022Moved

QueryId: 139

Script:

(@0 int) insert into #sqls select DB_ID () , [definition] from sys . all_sql_modules where object_id > @0 and ([definition] like

'%cast%' or [Definition] like '%convert%')

Database: AdvNewDB2022Portal

QueryId: 139

Script:

SELECT db_id () AS database_id, o.[type] AS object_type, i.[type] AS index_type, p.[data_compression],

COUNT_BIG (DISTINCT p.[object_id]) AS NumTables, COUNT_BIG (DISTINCT CAST (p.[object_id] AS VARCHAR (30)) +

'|' + CAST (p.[index_id] AS VARCHAR (10))) AS NumIndexes, ISNULL (px.[IsPartitioned], 0) AS IsPartitioned, IIF (

px.[IsPartitioned] = 1, COUNT_BIG (1) , 0) NumPartitions, SUM (p.[rows]) NumRows FROM sys.partitions p INNER

JOIN sys.objects o ON o.[object_id] = p.[object_id] INNER JOIN sys.indexes i ON i.[object_id] = p.[object_id] AND

i.[index_id] = p.[index_id] OUTER APPLY (SELECT x.[object_id], 1 AS [IsPartitioned] FROM sys.partitions x WHERE

x.[object_id] = p.[object_id] GROUP by x.[object_id] HAVING MAX (x.partition_number) > 1) px WHERE o.[type]

NOT IN ('S', 'IT') GROUP BY o.[type] ,i.[type] ,p.[data_compression] ,px.[IsPartitioned]

Database: Advnew2022Moved

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 90

QueryId: 145

Script:

(@0 int) insert into #temp select db_name () as [DB_Name] , object_name (IU . object_id) as [ObjName] , I . name as

[IndexName] , I . type_desc as [IndexType] , IU . user_seeks , IU . user_scans , IU . user_lookups , case when IU . user_seeks = 0

then 0 else (IU . user_seeks * 100) / (IU . user_seeks + IU . user_scans + IU . user_lookups) end as [User_Seeks_Pct] , case

when IU . user_scans = 0 then 0 else (IU . user_scans * 100) / (IU . user_seeks + IU . user_scans + IU . user_lookups) end

as [User_Scans_Pct] , case when IU . user_lookups = 0 then 0 else (IU . user_lookups * 100) / (IU . user_seeks + IU .

user_scans + IU . user_lookups) end as [User_Lookups_Pct] from sys . dm_db_index_usage_stats IU inner join sys . indexes I on I .

index_id = IU . index_id and I . object_id = IU . object_id inner join sys . all_objects AO on AO . object_id = IU . object_id and AO .

is_ms_shipped = @0

Database: Advnew2022

QueryId: 146

Script:

(@0 varchar (8000)) select db_id () as database_id , sm . [is_inlineable] as InlineableScalarCount , sm . [inline_type] as

InlineType , COUNT_BIG (*) as ScalarCount , COUNT_BIG (case when sm . [definition] like '%getdate%' or sm . [definition] like

'%getutcdate%' or sm . [definition] like '%sysdatetime%' or sm . [definition] like '%sysutcdatetime%' or sm . [definition] like

'%sysdatetimeoffset%' or sm . [definition] like '%CURRENT_TIMESTAMP%' then 1 end) as ScalarCountWithDate from [sys] .

[objects] o inner join [sys] . [sql_modules] sm on o . [object_id] = sm . [object_id] where o . [type] = @0 group by sm . [is_inlineable]

, sm . [inline_type]

Database: AdventureWorks

QueryId: 149

Script:

SELECT db_id () AS database_id, o.[type] AS object_type, i.[type] AS index_type, p.[data_compression],

COUNT_BIG (DISTINCT p.[object_id]) AS NumTables, COUNT_BIG (DISTINCT CAST (p.[object_id] AS VARCHAR (30)) +

'|' + CAST (p.[index_id] AS VARCHAR (10))) AS NumIndexes, ISNULL (px.[IsPartitioned], 0) AS IsPartitioned, IIF (

px.[IsPartitioned] = 1, COUNT_BIG (1) , 0) NumPartitions, SUM (p.[rows]) NumRows FROM sys.partitions p INNER

JOIN sys.objects o ON o.[object_id] = p.[object_id] INNER JOIN sys.indexes i ON i.[object_id] = p.[object_id] AND

i.[index_id] = p.[index_id] OUTER APPLY (SELECT x.[object_id], 1 AS [IsPartitioned] FROM sys.partitions x WHERE

x.[object_id] = p.[object_id] GROUP by x.[object_id] HAVING MAX (x.partition_number) > 1) px WHERE o.[type]

NOT IN ('S', 'IT') GROUP BY o.[type] ,i.[type] ,p.[data_compression] ,px.[IsPartitioned]

Database: AdventureWorks

QueryId: 153

Script:

/*AI-DBA*/

SELECT

[BillToAddressID] AS [VALUE],

COUNT (*) [ROW_COUNT]

from [AdventureWorks].[Sales].[SalesOrderHeader]

WHERE [BillToAddressID] IS NOT null

GROUP BY [BillToAddressID]

ORDER BY [VALUE] desc

Database: Advnew2022

QueryId: 153

Script:

(@0 int) insert into #temp select db_name () as [DB_Name] , object_name (IU . object_id) as [ObjName] , I . name as

[IndexName] , I . type_desc as [IndexType] , IU . user_seeks , IU . user_scans , IU . user_lookups , case when IU . user_seeks = 0

then 0 else (IU . user_seeks * 100) / (IU . user_seeks + IU . user_scans + IU . user_lookups) end as [User_Seeks_Pct] , case

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 91

when IU . user_scans = 0 then 0 else (IU . user_scans * 100) / (IU . user_seeks + IU . user_scans + IU . user_lookups) end

as [User_Scans_Pct] , case when IU . user_lookups = 0 then 0 else (IU . user_lookups * 100) / (IU . user_seeks + IU .

user_scans + IU . user_lookups) end as [User_Lookups_Pct] from sys . dm_db_index_usage_stats IU inner join sys . indexes I on I .

index_id = IU . index_id and I . object_id = IU . object_id inner join sys . all_objects AO on AO . object_id = IU . object_id and AO .

is_ms_shipped = @0

Database: Adv2022ShalevSoft

QueryId: 158

Script:

(@0 varchar (8000)) select db_id () as database_id , c . system_type_id , c . user_type_id , c . is_sparse , c . is_column_set , c .

is_filestream , c . encryption_type , case when o . object_id is not null then 1 else 0 end as is_user , COUNT_BIG (*) as [ColCount]

, case when c . collation_name is null then convert (VARCHAR (128) , SERVERPROPERTY ('Collation')) else c .

collation_name end as collation_name , AVG (c . max_length) as avg_max_length from sys . columns c with (NOLOCK) left

outer join sys . objects o with (NOLOCK) on o . object_id = c . object_id and o . type = @0 group by c . system_type_id , c .

user_type_id , c . is_sparse , c . is_column_set , c . encryption_type , c . is_filestream , case when o . object_id is not null then 1 else

0 end , case when c . collation_name is null then convert (VARCHAR (128) , SERVERPROPERTY ('Collation')) else c .

collation_name end

Database: AdventureWorks

QueryId: 161

Script:

/*AI-DBA*/

SELECT COUNT (1) AS [EMPTY]

FROM [AdventureWorks].[Sales].[SalesOrderDetail]

WHERE LEN (CONVERT (NVARCHAR (MAX) ,[ModifiedDate])) = 0 AND LEN (CONVERT (NVARCHAR (MAX)

,[ModifiedDate])) IS NOT NULL ;

Database: Advnew2022

QueryId: 165

Script:

(@0 int,@3 varchar (8000) ,@4 varchar (8000) ,@5 varchar (8000) ,@6 varchar (8000) ,@9 varchar (8000) ,@10 varchar (

8000) ,@11 varchar (8000)) with CTE as (select AO . name , sm . definition from sys . all_objects AO inner join sys .

all_sql_modules SM on SM . object_id = AO . object_id where AO . is_ms_shipped = @0 and Replace (lower (Replace (

definition , char (13) + Char (10) , @3)) , @4 , @5) like '%with (%index (%' union all select Object_name (T . objectid

) as [name] , T . text as [definition] from sys . dm_exec_query_stats qs inner join sys . dm_exec_cached_plans CP on CP .

plan_handle = qs . plan_handle cross apply sys . dm_exec_sql_text (qs . Sql_handle) T where CP . objtype = @6 and Replace

(lower (Replace (T . text , char (13) + Char (10) , @9)) , @10 , @11) like '%with (%index (%') insert into #Temp

select DB_NAME () as [DB_Name] , S . [SchemaName] , S . TableName , S . IndexName from CTE C inner join (select ('%' + T

. name + '%' + I . name + '%') as [filter] , schema_name (T . schema_id) as [SchemaName] , T . name as [TableName] , I . name

as [IndexName] from sys . indexes I inner join sys . tables T on T . object_id = I . object_id where I . name is not null) S on C .

definition collate DATABASE_DEFAULT like S . [filter] collate DATABASE_DEFAULT

Database: Advnew2022Moved

QueryId: 168

Script:

(@0 varchar (8000) ,@1 varchar (8000)) select db_id () as database_id , o . [type] as object_type , i . [type] as index_type , p .

[data_compression] , COUNT_BIG (distinct p . [object_id]) as NumTables , COUNT_BIG (distinct CAST (p . [object_id] as

VARCHAR (30)) + '|' + CAST (p . [index_id] as VARCHAR (10))) as NumIndexes , ISNULL (px . [IsPartitioned] , 0)

as IsPartitioned , IIF (px . [IsPartitioned] = 1 , COUNT_BIG (1) , 0) NumPartitions , SUM (p . [rows]) NumRows from sys .

partitions p inner join sys . objects o on o . [object_id] = p . [object_id] inner join sys . indexes i on i . [object_id] = p . [object_id] and i

. [index_id] = p . [index_id] outer APPLY (select x . [object_id] , 1 as [IsPartitioned] from sys . partitions x where x . [object_id] = p .

[object_id] group by x . [object_id] having MAX (x . partition_number) > 1) px where o . [type] not in (@0 , @1) group by o .

[type] , i . [type] , p . [data_compression] , px . [IsPartitioned]

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 92

Database: AdventureWorks

QueryId: 171

Script:

/*AI-DBA*/

SELECT COUNT (1) AS [NONEMPTY]

FROM [AdventureWorks].[Sales].[SalesOrderHeader]

WHERE LEN (CONVERT (NVARCHAR (MAX) ,[RevisionNumber])) > 0 AND LEN (CONVERT (NVARCHAR (MAX)

,[RevisionNumber])) IS NOT NULL ;

Database: AdvDest20240317

QueryId: 173

Script:

(@0 varchar (8000) ,@1 varchar (8000) ,@2 varchar (8000) ,@3 varchar (8000) ,@4 varchar (8000) ,@5 varchar (8000) ,@6

varchar (8000) ,@7 varchar (8000) ,@8 varchar (8000) ,@9 varchar (8000) ,@10 varchar (8000) ,@11 varchar (8000) ,@12

varchar (8000) ,@13 varchar (8000) ,@14 varchar (8000) ,@15 varchar (8000) ,@16 varchar (8000) ,@17 varchar (8000)

,@18 varchar (8000) ,@19 varchar (8000) ,@20 varchar (8000)) select db_id () as database_id , o . [type] as ModuleType ,

COUNT_BIG (*) as ModuleCount from sys . objects as o with (nolock) where o . type in (@0 , @1 , @2 , @3 , @4 , @5 , @6

, @7 , @8 , @9 , @10 , @11 , @12 , @13 , @14 , @15 , @16 , @17 , @18 , @19 , @20) group by o . [type]

Database: Advnew2022Moved

QueryId: 174

Script:

(@0 varchar (8000)) select db_id () as database_id , c . system_type_id , c . user_type_id , c . is_sparse , c . is_column_set , c .

is_filestream , c . encryption_type , case when o . object_id is not null then 1 else 0 end as is_user , COUNT_BIG (*) as [ColCount]

, case when c . collation_name is null then convert (VARCHAR (128) , SERVERPROPERTY ('Collation')) else c .

collation_name end as collation_name , AVG (c . max_length) as avg_max_length from sys . columns c with (NOLOCK) left

outer join sys . objects o with (NOLOCK) on o . object_id = c . object_id and o . type = @0 group by c . system_type_id , c .

user_type_id , c . is_sparse , c . is_column_set , c . encryption_type , c . is_filestream , case when o . object_id is not null then 1 else

0 end , case when c . collation_name is null then convert (VARCHAR (128) , SERVERPROPERTY ('Collation')) else c .

collation_name end

Database: AdvNew2022Restored2

QueryId: 174

Script:

SELECT db_id () AS database_id, o.[type] AS object_type, i.[type] AS index_type, p.[data_compression],

COUNT_BIG (DISTINCT p.[object_id]) AS NumTables, COUNT_BIG (DISTINCT CAST (p.[object_id] AS VARCHAR (30)) +

'|' + CAST (p.[index_id] AS VARCHAR (10))) AS NumIndexes, ISNULL (px.[IsPartitioned], 0) AS IsPartitioned, IIF (

px.[IsPartitioned] = 1, COUNT_BIG (1) , 0) NumPartitions, SUM (p.[rows]) NumRows FROM sys.partitions p INNER

JOIN sys.objects o ON o.[object_id] = p.[object_id] INNER JOIN sys.indexes i ON i.[object_id] = p.[object_id] AND

i.[index_id] = p.[index_id] OUTER APPLY (SELECT x.[object_id], 1 AS [IsPartitioned] FROM sys.partitions x WHERE

x.[object_id] = p.[object_id] GROUP by x.[object_id] HAVING MAX (x.partition_number) > 1) px WHERE o.[type]

NOT IN ('S', 'IT') GROUP BY o.[type] ,i.[type] ,p.[data_compression] ,px.[IsPartitioned]

Database: Demo20240411

QueryId: 178

Script:

SELECT db_id () AS database_id, c.system_type_id, c.user_type_id, c.is_sparse, c.is_column_set,

c.is_filestream, c.encryption_type, CASE WHEN o.object_id IS NOT NULL THEN 1 ELSE 0 END AS is_user, COUNT_BIG

(*) AS [ColCount], CASE WHEN c.collation_name IS NULL THEN CONVERT (VARCHAR (128) , SERVERPROPERTY (

'Collation')) ELSE c.collation_name END AS collation_name, AVG (c.max_length) AS avg_max_length FROM

sys.columns c WITH (NOLOCK) LEFT OUTER JOIN sys.objects o WITH (NOLOCK) ON o.object_id = c.object_id

AND o.type = 'U' GROUP BY c.system_type_id, c.user_type_id, c.is_sparse, c.is_column_set,

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 93

c.encryption_type, c.is_filestream, CASE WHEN o.object_id IS NOT NULL THEN 1 ELSE 0 END, CASE WHEN

c.collation_name IS NULL THEN CONVERT (VARCHAR (128) , SERVERPROPERTY ('Collation')) ELSE c.collation_name END

Database: Test33

QueryId: 179

Script:

(@0 varchar (8000)) select db_id () as database_id , c . system_type_id , c . user_type_id , c . is_sparse , c . is_column_set , c .

is_filestream , c . encryption_type , case when o . object_id is not null then 1 else 0 end as is_user , COUNT_BIG (*) as [ColCount]

, case when c . collation_name is null then convert (VARCHAR (128) , SERVERPROPERTY ('Collation')) else c .

collation_name end as collation_name , AVG (c . max_length) as avg_max_length from sys . columns c with (NOLOCK) left

outer join sys . objects o with (NOLOCK) on o . object_id = c . object_id and o . type = @0 group by c . system_type_id , c .

user_type_id , c . is_sparse , c . is_column_set , c . encryption_type , c . is_filestream , case when o . object_id is not null then 1 else

0 end , case when c . collation_name is null then convert (VARCHAR (128) , SERVERPROPERTY ('Collation')) else c .

collation_name end

Database: AdventureWorks

QueryId: 182

Script:

/*AI-DBA*/

SELECT COUNT (1) AS [NONEMPTY]

FROM [AdventureWorks].[Sales].[SalesOrderDetail]

WHERE LEN (CONVERT (NVARCHAR (MAX) ,[rowguid])) > 0 AND LEN (CONVERT (NVARCHAR (MAX) ,[rowguid])) IS

NOT NULL ;

Database: AdventureWorks

QueryId: 184

Script:

/*AI-DBA*/

SELECT LEN ([SalesOrderDetailID]) AS [LENGTH],

count (*) AS [COUNT]

FROM [AdventureWorks].[Sales].[SalesOrderDetail]

GROUP BY LEN ([SalesOrderDetailID])

ORDER BY 1

Database: AdvNew2022Restored2

QueryId: 184

Script:

SELECT db_id () as database_id, sm.[is_inlineable] AS InlineableScalarCount, sm.[inline_type] AS InlineType,

COUNT_BIG (*) AS ScalarCount, COUNT_BIG (CASE WHEN sm.[definition] LIKE '%getdate%' OR sm.[definition] LIKE

'%getutcdate%' OR sm.[definition] LIKE '%sysdatetime%' OR sm.[definition] LIKE '%sysutcdatetime%' OR sm.[definition]

LIKE '%sysdatetimeoffset%' OR sm.[definition] LIKE '%CURRENT_TIMESTAMP%' THEN 1 END) AS

ScalarCountWithDate FROM [sys].[objects] o INNER JOIN [sys].[sql_modules] sm ON o.[object_id] =

sm.[object_id] WHERE o.[type] = 'FN' GROUP BY sm.[is_inlineable], sm.[inline_type]

Database: ReportDB_Copy

QueryId: 186

Script:

SELECT db_id () AS database_id, c.system_type_id, c.user_type_id, c.is_sparse, c.is_column_set,

c.is_filestream, c.encryption_type, CASE WHEN o.object_id IS NOT NULL THEN 1 ELSE 0 END AS is_user, COUNT_BIG

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 94

(*) AS [ColCount], CASE WHEN c.collation_name IS NULL THEN CONVERT (VARCHAR (128) , SERVERPROPERTY (

'Collation')) ELSE c.collation_name END AS collation_name, AVG (c.max_length) AS avg_max_length FROM

sys.columns c WITH (NOLOCK) LEFT OUTER JOIN sys.objects o WITH (NOLOCK) ON o.object_id = c.object_id

AND o.type = 'U' GROUP BY c.system_type_id, c.user_type_id, c.is_sparse, c.is_column_set,

c.encryption_type, c.is_filestream, CASE WHEN o.object_id IS NOT NULL THEN 1 ELSE 0 END, CASE WHEN

c.collation_name IS NULL THEN CONVERT (VARCHAR (128) , SERVERPROPERTY ('Collation')) ELSE c.collation_name END

Database: Adv2022ShalevSoft

QueryId: 187

Script:

(@0 varchar (8000) ,@1 varchar (8000)) select db_id () as database_id , o . [type] as object_type , i . [type] as index_type , p .

[data_compression] , COUNT_BIG (distinct p . [object_id]) as NumTables , COUNT_BIG (distinct CAST (p . [object_id] as

VARCHAR (30)) + '|' + CAST (p . [index_id] as VARCHAR (10))) as NumIndexes , ISNULL (px . [IsPartitioned] , 0)

as IsPartitioned , IIF (px . [IsPartitioned] = 1 , COUNT_BIG (1) , 0) NumPartitions , SUM (p . [rows]) NumRows from sys .

partitions p inner join sys . objects o on o . [object_id] = p . [object_id] inner join sys . indexes i on i . [object_id] = p . [object_id] and i

. [index_id] = p . [index_id] outer APPLY (select x . [object_id] , 1 as [IsPartitioned] from sys . partitions x where x . [object_id] = p .

[object_id] group by x . [object_id] having MAX (x . partition_number) > 1) px where o . [type] not in (@0 , @1) group by o .

[type] , i . [type] , p . [data_compression] , px . [IsPartitioned]

Database: ReportDB678

QueryId: 188

Script:

SELECT db_id () as database_id, sm.[is_inlineable] AS InlineableScalarCount, sm.[inline_type] AS InlineType,

COUNT_BIG (*) AS ScalarCount, COUNT_BIG (CASE WHEN sm.[definition] LIKE '%getdate%' OR sm.[definition] LIKE

'%getutcdate%' OR sm.[definition] LIKE '%sysdatetime%' OR sm.[definition] LIKE '%sysutcdatetime%' OR sm.[definition]

LIKE '%sysdatetimeoffset%' OR sm.[definition] LIKE '%CURRENT_TIMESTAMP%' THEN 1 END) AS

ScalarCountWithDate FROM [sys].[objects] o INNER JOIN [sys].[sql_modules] sm ON o.[object_id] =

sm.[object_id] WHERE o.[type] = 'FN' GROUP BY sm.[is_inlineable], sm.[inline_type]

Database: Demo20240411

QueryId: 189

Script:

SELECT db_id () AS database_id, COUNT_BIG (*) AS [NumExternalStats] FROM sys.tables t WITH (nolock) INNER

JOIN sys.stats s WITH (nolock) ON t.object_id = s.object_id WHERE t.is_external = 1

Database: AdvNew2022Restored

QueryId: 193

Script:

SELECT db_id () AS database_id, c.system_type_id, c.user_type_id, c.is_sparse, c.is_column_set,

c.is_filestream, c.encryption_type, CASE WHEN o.object_id IS NOT NULL THEN 1 ELSE 0 END AS is_user, COUNT_BIG

(*) AS [ColCount], CASE WHEN c.collation_name IS NULL THEN CONVERT (VARCHAR (128) , SERVERPROPERTY (

'Collation')) ELSE c.collation_name END AS collation_name, AVG (c.max_length) AS avg_max_length FROM

sys.columns c WITH (NOLOCK) LEFT OUTER JOIN sys.objects o WITH (NOLOCK) ON o.object_id = c.object_id

AND o.type = 'U' GROUP BY c.system_type_id, c.user_type_id, c.is_sparse, c.is_column_set,

c.encryption_type, c.is_filestream, CASE WHEN o.object_id IS NOT NULL THEN 1 ELSE 0 END, CASE WHEN

c.collation_name IS NULL THEN CONVERT (VARCHAR (128) , SERVERPROPERTY ('Collation')) ELSE c.collation_name END

Database: AdvNew2022Restored2

QueryId: 195

Script:

SELECT db_id () AS database_id, c.system_type_id, c.user_type_id, c.is_sparse, c.is_column_set,

c.is_filestream, c.encryption_type, CASE WHEN o.object_id IS NOT NULL THEN 1 ELSE 0 END AS is_user, COUNT_BIG

(*) AS [ColCount], CASE WHEN c.collation_name IS NULL THEN CONVERT (VARCHAR (128) , SERVERPROPERTY (

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 95

'Collation')) ELSE c.collation_name END AS collation_name, AVG (c.max_length) AS avg_max_length FROM

sys.columns c WITH (NOLOCK) LEFT OUTER JOIN sys.objects o WITH (NOLOCK) ON o.object_id = c.object_id

AND o.type = 'U' GROUP BY c.system_type_id, c.user_type_id, c.is_sparse, c.is_column_set,

c.encryption_type, c.is_filestream, CASE WHEN o.object_id IS NOT NULL THEN 1 ELSE 0 END, CASE WHEN

c.collation_name IS NULL THEN CONVERT (VARCHAR (128) , SERVERPROPERTY ('Collation')) ELSE c.collation_name END

Database: AdvNewDB2022Portal

QueryId: 196

Script:

SELECT db_id () as database_id, sm.[is_inlineable] AS InlineableScalarCount, sm.[inline_type] AS InlineType,

COUNT_BIG (*) AS ScalarCount, COUNT_BIG (CASE WHEN sm.[definition] LIKE '%getdate%' OR sm.[definition] LIKE

'%getutcdate%' OR sm.[definition] LIKE '%sysdatetime%' OR sm.[definition] LIKE '%sysutcdatetime%' OR sm.[definition]

LIKE '%sysdatetimeoffset%' OR sm.[definition] LIKE '%CURRENT_TIMESTAMP%' THEN 1 END) AS

ScalarCountWithDate FROM [sys].[objects] o INNER JOIN [sys].[sql_modules] sm ON o.[object_id] =

sm.[object_id] WHERE o.[type] = 'FN' GROUP BY sm.[is_inlineable], sm.[inline_type]

Database: AdventureWorks

QueryId: 197

Script:

/*AI-DBA*/

SELECT row_type,

SUM (row_count) AS row_count

FROM

(SELECT

CASE WHEN [value] IS NULL then 'NULL'

WHEN row_count = 1 then 'Unique'

ELSE 'Non Unique'

END AS row_type,

row_count

FROM (

SELECT [SalesTaxRateID] [value],

COUNT (1) row_count

FROM [AdventureWorks].[Sales].[SalesTaxRate]

GROUP BY [SalesTaxRateID]) X) Y

GROUP BY row_type

Database: Demo20240411

QueryId: 197

Script:

SELECT db_id () AS database_id, o.[type] AS object_type, i.[type] AS index_type, p.[data_compression],

COUNT_BIG (DISTINCT p.[object_id]) AS NumTables, COUNT_BIG (DISTINCT CAST (p.[object_id] AS VARCHAR (30)) +

'|' + CAST (p.[index_id] AS VARCHAR (10))) AS NumIndexes, ISNULL (px.[IsPartitioned], 0) AS IsPartitioned, IIF (

px.[IsPartitioned] = 1, COUNT_BIG (1) , 0) NumPartitions, SUM (p.[rows]) NumRows FROM sys.partitions p INNER

JOIN sys.objects o ON o.[object_id] = p.[object_id] INNER JOIN sys.indexes i ON i.[object_id] = p.[object_id] AND

i.[index_id] = p.[index_id] OUTER APPLY (SELECT x.[object_id], 1 AS [IsPartitioned] FROM sys.partitions x WHERE

x.[object_id] = p.[object_id] GROUP by x.[object_id] HAVING MAX (x.partition_number) > 1) px WHERE o.[type]

NOT IN ('S', 'IT') GROUP BY o.[type] ,i.[type] ,p.[data_compression] ,px.[IsPartitioned]

Database: AdventureWorks

QueryId: 198

Script:

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 96

/*AI-DBA*/

SELECT COUNT (1) AS [NONEMPTY]

FROM [AdventureWorks].[Sales].[SalesOrderDetail]

WHERE LEN (CONVERT (NVARCHAR (MAX) ,[UnitPriceDiscount])) > 0 AND LEN (CONVERT (NVARCHAR (MAX)

,[UnitPriceDiscount])) IS NOT NULL ;

Database: newdbemo3099

QueryId: 199

Script:

SELECT ISNULL (AVG (c) ,0) AS [XTPAvgNumOfIndexes], ISNULL (MAX (c) ,0) AS [XTPMaxNumOfIndexes], db_id ()

AS database_id FROM (SELECT COUNT_BIG (*) AS c FROM sys.indexes i WITH (nolock) JOIN sys.tables t WITH (

nolock) ON i.object_id = t.object_id WHERE t.is_memory_optimized = 1 GROUP BY i.object_id) a

Database: AdventureWorks

QueryId: 201

Script:

/*AI-DBA*/

SELECT COUNT (1) AS [rows]

FROM [AdventureWorks].[Sales].[SalesOrderDetail] ;

Database: AdvDest20240317

QueryId: 203

Script:

(@0 varchar (8000)) select db_id () as database_id , c . system_type_id , c . user_type_id , c . is_sparse , c . is_column_set , c .

is_filestream , c . encryption_type , case when o . object_id is not null then 1 else 0 end as is_user , COUNT_BIG (*) as [ColCount]

, case when c . collation_name is null then convert (VARCHAR (128) , SERVERPROPERTY ('Collation')) else c .

collation_name end as collation_name , AVG (c . max_length) as avg_max_length from sys . columns c with (NOLOCK) left

outer join sys . objects o with (NOLOCK) on o . object_id = c . object_id and o . type = @0 group by c . system_type_id , c .

user_type_id , c . is_sparse , c . is_column_set , c . encryption_type , c . is_filestream , case when o . object_id is not null then 1 else

0 end , case when c . collation_name is null then convert (VARCHAR (128) , SERVERPROPERTY ('Collation')) else c .

collation_name end

Database: AdventureWorks

QueryId: 210

Script:

/*AI-DBA*/

SELECT

[LineTotal] AS [VALUE],

COUNT (*) [ROW_COUNT]

from [AdventureWorks].[Sales].[SalesOrderDetail]

WHERE [LineTotal] IS NOT null

GROUP BY [LineTotal]

ORDER BY [VALUE] desc

Database: AdventureWorks

QueryId: 215

Script:

SELECT db_id () AS database_id, c.system_type_id, c.user_type_id, c.is_sparse, c.is_column_set,

c.is_filestream, c.encryption_type, CASE WHEN o.object_id IS NOT NULL THEN 1 ELSE 0 END AS is_user, COUNT_BIG

(*) AS [ColCount], CASE WHEN c.collation_name IS NULL THEN CONVERT (VARCHAR (128) , SERVERPROPERTY (

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 97

'Collation')) ELSE c.collation_name END AS collation_name, AVG (c.max_length) AS avg_max_length FROM

sys.columns c WITH (NOLOCK) LEFT OUTER JOIN sys.objects o WITH (NOLOCK) ON o.object_id = c.object_id

AND o.type = 'U' GROUP BY c.system_type_id, c.user_type_id, c.is_sparse, c.is_column_set,

c.encryption_type, c.is_filestream, CASE WHEN o.object_id IS NOT NULL THEN 1 ELSE 0 END, CASE WHEN

c.collation_name IS NULL THEN CONVERT (VARCHAR (128) , SERVERPROPERTY ('Collation')) ELSE c.collation_name END

Database: AdventureWorks

QueryId: 216

Script:

/*AI-DBA*/

SELECT

[Freight] AS [VALUE],

COUNT (*) [ROW_COUNT]

from [AdventureWorks].[Sales].[SalesOrderHeader]

WHERE [Freight] IS NOT null

GROUP BY [Freight]

ORDER BY [VALUE] desc

Database: AdventureWorks

QueryId: 217

Script:

/*AI-DBA*/

SELECT K.TABLE_NAME ,

K.COLUMN_NAME ,

K.CONSTRAINT_NAME

FROM [AdventureWorks].INFORMATION_SCHEMA.TABLE_CONSTRAINTS AS C

JOIN [AdventureWorks].INFORMATION_SCHEMA.KEY_COLUMN_USAGE AS K ON C.TABLE_NAME = K.TABLE_NAME

AND C.CONSTRAINT_CATALOG = K.CONSTRAINT_CATALOG

AND C.CONSTRAINT_SCHEMA = K.CONSTRAINT_SCHEMA

AND C.CONSTRAINT_NAME = K.CONSTRAINT_NAME

WHERE C.CONSTRAINT_TYPE = 'PRIMARY KEY'

AND K.COLUMN_NAME = 'StateProvinceID'

AND '['+K.TABLE_CATALOG+'].['+K.TABLE_SCHEMA+'].['+ K.TABLE_NAME+']' = '[AdventureWorks].[Sales].[SalesTaxRate]' ;

Database: AdvNew2022Restored

QueryId: 219

Script:

SELECT db_id () as database_id, sm.[is_inlineable] AS InlineableScalarCount, sm.[inline_type] AS InlineType,

COUNT_BIG (*) AS ScalarCount, COUNT_BIG (CASE WHEN sm.[definition] LIKE '%getdate%' OR sm.[definition] LIKE

'%getutcdate%' OR sm.[definition] LIKE '%sysdatetime%' OR sm.[definition] LIKE '%sysutcdatetime%' OR sm.[definition]

LIKE '%sysdatetimeoffset%' OR sm.[definition] LIKE '%CURRENT_TIMESTAMP%' THEN 1 END) AS

ScalarCountWithDate FROM [sys].[objects] o INNER JOIN [sys].[sql_modules] sm ON o.[object_id] =

sm.[object_id] WHERE o.[type] = 'FN' GROUP BY sm.[is_inlineable], sm.[inline_type]

Database: Test33

QueryId: 223

Script:

(@0 varchar (8000)) select db_id () as database_id , sm . [is_inlineable] as InlineableScalarCount , sm . [inline_type] as

InlineType , COUNT_BIG (*) as ScalarCount , COUNT_BIG (case when sm . [definition] like '%getdate%' or sm . [definition] like

'%getutcdate%' or sm . [definition] like '%sysdatetime%' or sm . [definition] like '%sysutcdatetime%' or sm . [definition] like

'%sysdatetimeoffset%' or sm . [definition] like '%CURRENT_TIMESTAMP%' then 1 end) as ScalarCountWithDate from [sys] .

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 98

[objects] o inner join [sys] . [sql_modules] sm on o . [object_id] = sm . [object_id] where o . [type] = @0 group by sm . [is_inlineable]

, sm . [inline_type]

Database: AdventureWorks

QueryId: 228

Script:

/*AI-DBA*/

SELECT COUNT (1) AS [NONEMPTY]

FROM [AdventureWorks].[Sales].[SalesOrderDetail]

WHERE LEN (CONVERT (NVARCHAR (MAX) ,[SalesOrderID])) > 0 AND LEN (CONVERT (NVARCHAR (MAX)

,[SalesOrderID])) IS NOT NULL ;

Database: Advnew2022

QueryId: 228

Script:

(@0 int,@1 varchar (8000)) insert into #temp select DB_Name () [DBName] , case when T . system_type_id in (35 , 99 , 167 ,

175 , 239 , 231) then 'Wrong' else 'Right' end as [Design] , Count (*) as [Count] from sys . sysindexkeys IK inner join sys .

all_objects AO on AO . object_id = IK . id and AO . is_ms_shipped = @0 and AO . type = @1 inner join sys . indexes I on I .

index_id = IK . indid and I . object_id = IK . id cross Apply (select * from sys . all_columns AC where AC . column_id = IK . colid

and AC . object_id = IK . id) C inner join sys . types T on T . system_type_id = C . system_type_id group by case when T .

system_type_id in (35 , 99 , 167 , 175 , 239 , 231) then 'Wrong' else 'Right' end

Database: ReportDB678

QueryId: 228

Script:

SELECT db_id () AS database_id, c.system_type_id, c.user_type_id, c.is_sparse, c.is_column_set,

c.is_filestream, c.encryption_type, CASE WHEN o.object_id IS NOT NULL THEN 1 ELSE 0 END AS is_user, COUNT_BIG

(*) AS [ColCount], CASE WHEN c.collation_name IS NULL THEN CONVERT (VARCHAR (128) , SERVERPROPERTY (

'Collation')) ELSE c.collation_name END AS collation_name, AVG (c.max_length) AS avg_max_length FROM

sys.columns c WITH (NOLOCK) LEFT OUTER JOIN sys.objects o WITH (NOLOCK) ON o.object_id = c.object_id

AND o.type = 'U' GROUP BY c.system_type_id, c.user_type_id, c.is_sparse, c.is_column_set,

c.encryption_type, c.is_filestream, CASE WHEN o.object_id IS NOT NULL THEN 1 ELSE 0 END, CASE WHEN

c.collation_name IS NULL THEN CONVERT (VARCHAR (128) , SERVERPROPERTY ('Collation')) ELSE c.collation_name END

Database: AdvDest20240317

QueryId: 231

Script:

(@0 int,@3 varchar (8000) ,@4 varchar (8000) ,@5 varchar (8000) ,@6 varchar (8000) ,@9 varchar (8000) ,@10 varchar (

8000) ,@11 varchar (8000)) with CTE as (select AO . name , sm . definition from sys . all_objects AO inner join sys .

all_sql_modules SM on SM . object_id = AO . object_id where AO . is_ms_shipped = @0 and Replace (lower (Replace (

definition , char (13) + Char (10) , @3)) , @4 , @5) like '%with (%index (%' union all select Object_name (T . objectid

) as [name] , T . text as [definition] from sys . dm_exec_query_stats qs inner join sys . dm_exec_cached_plans CP on CP .

plan_handle = qs . plan_handle cross apply sys . dm_exec_sql_text (qs . Sql_handle) T where CP . objtype = @6 and Replace

(lower (Replace (T . text , char (13) + Char (10) , @9)) , @10 , @11) like '%with (%index (%') insert into #Temp

select DB_NAME () as [DB_Name] , S . [SchemaName] , S . TableName , S . IndexName from CTE C inner join (select ('%' + T

. name + '%' + I . name + '%') as [filter] , schema_name (T . schema_id) as [SchemaName] , T . name as [TableName] , I . name

as [IndexName] from sys . indexes I inner join sys . tables T on T . object_id = I . object_id where I . name is not null) S on C .

definition collate DATABASE_DEFAULT like S . [filter] collate DATABASE_DEFAULT

Database: AdventureWorks

QueryId: 237

Script:

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 99

/*AI-DBA*/

SELECT

[SalesOrderID] AS [VALUE],

COUNT (*) [ROW_COUNT]

from [AdventureWorks].[Sales].[SalesOrderDetail]

WHERE [SalesOrderID] IS NOT null

GROUP BY [SalesOrderID]

ORDER BY [VALUE] desc

Database: AIDBAADV2

QueryId: 238

Script:

SELECT db_id () AS database_id, o.[type] AS object_type, i.[type] AS index_type, p.[data_compression],

COUNT_BIG (DISTINCT p.[object_id]) AS NumTables, COUNT_BIG (DISTINCT CAST (p.[object_id] AS VARCHAR (30)) +

'|' + CAST (p.[index_id] AS VARCHAR (10))) AS NumIndexes, ISNULL (px.[IsPartitioned], 0) AS IsPartitioned, IIF (

px.[IsPartitioned] = 1, COUNT_BIG (1) , 0) NumPartitions, SUM (p.[rows]) NumRows FROM sys.partitions p INNER

JOIN sys.objects o ON o.[object_id] = p.[object_id] INNER JOIN sys.indexes i ON i.[object_id] = p.[object_id] AND

i.[index_id] = p.[index_id] OUTER APPLY (SELECT x.[object_id], 1 AS [IsPartitioned] FROM sys.partitions x WHERE

x.[object_id] = p.[object_id] GROUP by x.[object_id] HAVING MAX (x.partition_number) > 1) px WHERE o.[type]

NOT IN ('S', 'IT') GROUP BY o.[type] ,i.[type] ,p.[data_compression] ,px.[IsPartitioned]

Database: AdventureWorks

QueryId: 240

Script:

/*AI-DBA*/

SELECT COUNT (1) AS [NONEMPTY]

FROM [AdventureWorks].[Sales].[SalesOrderDetail]

WHERE LEN (CONVERT (NVARCHAR (MAX) ,[LineTotal])) > 0 AND LEN (CONVERT (NVARCHAR (MAX) ,[LineTotal]))

IS NOT NULL ;

Database: AdventureWorks

QueryId: 240

Script:

/*AI-DBA*/

SELECT

[CreditCardID] AS [VALUE],

COUNT (*) [ROW_COUNT]

from [AdventureWorks].[Sales].[SalesOrderHeader]

WHERE [CreditCardID] IS NOT null

GROUP BY [CreditCardID]

ORDER BY [VALUE] desc

Database: Test33

QueryId: 243

Script:

(@0 varchar (8000) ,@1 varchar (8000)) select db_id () as database_id , o . [type] as object_type , i . [type] as index_type , p .

[data_compression] , COUNT_BIG (distinct p . [object_id]) as NumTables , COUNT_BIG (distinct CAST (p . [object_id] as

VARCHAR (30)) + '|' + CAST (p . [index_id] as VARCHAR (10))) as NumIndexes , ISNULL (px . [IsPartitioned] , 0)

as IsPartitioned , IIF (px . [IsPartitioned] = 1 , COUNT_BIG (1) , 0) NumPartitions , SUM (p . [rows]) NumRows from sys .

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 100

partitions p inner join sys . objects o on o . [object_id] = p . [object_id] inner join sys . indexes i on i . [object_id] = p . [object_id] and i

. [index_id] = p . [index_id] outer APPLY (select x . [object_id] , 1 as [IsPartitioned] from sys . partitions x where x . [object_id] = p .

[object_id] group by x . [object_id] having MAX (x . partition_number) > 1) px where o . [type] not in (@0 , @1) group by o .

[type] , i . [type] , p . [data_compression] , px . [IsPartitioned]

Database: AdvDest20240317

QueryId: 244

Script:

(@0 varchar (8000)) select db_id () as database_id , sm . [is_inlineable] as InlineableScalarCount , sm . [inline_type] as

InlineType , COUNT_BIG (*) as ScalarCount , COUNT_BIG (case when sm . [definition] like '%getdate%' or sm . [definition] like

'%getutcdate%' or sm . [definition] like '%sysdatetime%' or sm . [definition] like '%sysutcdatetime%' or sm . [definition] like

'%sysdatetimeoffset%' or sm . [definition] like '%CURRENT_TIMESTAMP%' then 1 end) as ScalarCountWithDate from [sys] .

[objects] o inner join [sys] . [sql_modules] sm on o . [object_id] = sm . [object_id] where o . [type] = @0 group by sm . [is_inlineable]

, sm . [inline_type]

Database: NewDB20241029

QueryId: 245

Script:

SELECT db_id () AS database_id, o.[type] AS object_type, i.[type] AS index_type, p.[data_compression],

COUNT_BIG (DISTINCT p.[object_id]) AS NumTables, COUNT_BIG (DISTINCT CAST (p.[object_id] AS VARCHAR (30)) +

'|' + CAST (p.[index_id] AS VARCHAR (10))) AS NumIndexes, ISNULL (px.[IsPartitioned], 0) AS IsPartitioned, IIF (

px.[IsPartitioned] = 1, COUNT_BIG (1) , 0) NumPartitions, SUM (p.[rows]) NumRows FROM sys.partitions p INNER

JOIN sys.objects o ON o.[object_id] = p.[object_id] INNER JOIN sys.indexes i ON i.[object_id] = p.[object_id] AND

i.[index_id] = p.[index_id] OUTER APPLY (SELECT x.[object_id], 1 AS [IsPartitioned] FROM sys.partitions x WHERE

x.[object_id] = p.[object_id] GROUP by x.[object_id] HAVING MAX (x.partition_number) > 1) px WHERE o.[type]

NOT IN ('S', 'IT') GROUP BY o.[type] ,i.[type] ,p.[data_compression] ,px.[IsPartitioned]

Database: AdventureWorks

QueryId: 246

Script:

SELECT db_id () as database_id, sm.[is_inlineable] AS InlineableScalarCount, sm.[inline_type] AS InlineType,

COUNT_BIG (*) AS ScalarCount, COUNT_BIG (CASE WHEN sm.[definition] LIKE '%getdate%' OR sm.[definition] LIKE

'%getutcdate%' OR sm.[definition] LIKE '%sysdatetime%' OR sm.[definition] LIKE '%sysutcdatetime%' OR sm.[definition]

LIKE '%sysdatetimeoffset%' OR sm.[definition] LIKE '%CURRENT_TIMESTAMP%' THEN 1 END) AS

ScalarCountWithDate FROM [sys].[objects] o INNER JOIN [sys].[sql_modules] sm ON o.[object_id] =

sm.[object_id] WHERE o.[type] = 'FN' GROUP BY sm.[is_inlineable], sm.[inline_type]

Database: newdbemo3099

QueryId: 246

Script:

SELECT db_id () AS database_id, o.[type] AS object_type, i.[type] AS index_type, p.[data_compression],

COUNT_BIG (DISTINCT p.[object_id]) AS NumTables, COUNT_BIG (DISTINCT CAST (p.[object_id] AS VARCHAR (30)) +

'|' + CAST (p.[index_id] AS VARCHAR (10))) AS NumIndexes, ISNULL (px.[IsPartitioned], 0) AS IsPartitioned, IIF (

px.[IsPartitioned] = 1, COUNT_BIG (1) , 0) NumPartitions, SUM (p.[rows]) NumRows FROM sys.partitions p INNER

JOIN sys.objects o ON o.[object_id] = p.[object_id] INNER JOIN sys.indexes i ON i.[object_id] = p.[object_id] AND

i.[index_id] = p.[index_id] OUTER APPLY (SELECT x.[object_id], 1 AS [IsPartitioned] FROM sys.partitions x WHERE

x.[object_id] = p.[object_id] GROUP by x.[object_id] HAVING MAX (x.partition_number) > 1) px WHERE o.[type]

NOT IN ('S', 'IT') GROUP BY o.[type] ,i.[type] ,p.[data_compression] ,px.[IsPartitioned]

Database: AdventureWorks

QueryId: 252

Script:

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 101

/*AI-DBA*/

SELECT COUNT (1) AS [NONEMPTY]

FROM [AdventureWorks].[Sales].[SalesOrderDetail]

WHERE LEN (CONVERT (NVARCHAR (MAX) ,[UnitPrice])) > 0 AND LEN (CONVERT (NVARCHAR (MAX) ,[UnitPrice]))

IS NOT NULL ;

Server document for SQL2022
Document is auto-generated by AI-DBA v2.2. (2/17/2025) Page 102

