
Do You Know
The True Cost of
Legacy Testing?

eBook

© 2019 Functionize, Inc. All Rights Reserved.

How to migrate painlessly

Autonomous testing is steadily replacing test automation as the default for UI and web app
verification. However, migrating from your old system can seem like an impossible step.
Many teams feel they are trapped in a migration Catch 22. They fear that migration will
take too much time and effort, disrupting their delivery cycle. But the longer they leave it,
the worse this situation becomes. In this whitepaper, we want to show you how easy it is
to migrate to Functionize, as well as highlighting the true costs of sticking with your legacy
system.

The argument against change

In any business, change can be painful and hard to achieve. This is especially true when
talking about changes to your product delivery pipeline. Some businesses rely on getting
new releases out of the door to stay alive and many need it in order to continue growing
their customer base.

If you introduce a new testing approach, your team will need to learn how to use it
properly, integrate it into your delivery pipeline, and then migrate all your existing tests to
the new system. All this while trying not to disrupt the ongoing testing and delivery of your
product. As a result, there can be apparently compelling arguments against changing.

It’ll cost too much time and effort.

It will disrupt delivery of our new features.

How will we know it’s working correctly?

However, we want to show you that such arguments are specious. To do so, we will draw
on the experiences of real customers.

© 2019 Functionize, Inc. All Rights Reserved.functionize.com 2

https://www.functionize.com/

The issues with legacy test systems

Test automation was revolutionary back in the day. However, test automation has been stuck
in a rut for many years. Test creation often still relies on handcrafted test scripts. Test analysis
is seldom automated. Worst of all, the brittle nature of most test automation tools means
test maintenance dominates a QE’s workload. Let’s explore each of these in more detail.

 Test creation

Test automation tools rely on scripts to select and interact with the system under test. These
scripts are often written using domain-specific languages, such as Selenese. Even where
they use JavaScript or Python, writing tests require real skill. Sadly, the number of Developers
in Test with sufficient skills is pretty low. To try and get around this, various test recorders
have been created. The best-established of these is Selenium IDE. This plugin for Firefox
allows you to record the interactions you made with the system under test. These are then
used to generate a basic test script which can then be adapted and tailored. More modern
recorders seek to be a bit cleverer than Selenium IDE. However, the resulting scripts often
need to be refined by hand.

Another issue that dogs test automation is that these tools were designed in a simpler age.
Nowadays, websites often use deeply nested DOMs, meaning many elements simply aren’t
selectable by the test automation system. At best the test system knows there is an element
present, but actually accessing it can be nigh-impossible. Responsive sites mean that the
HTML is generated on the fly to suit the device it is being displayed on. This takes the pain of
cross-browser testing and multiplies it many times over.

 Test analysis

Once upon a time, analyzing test results was relatively easy. You would know in advance
the result of any given interaction with the system under test. This meant quality engineers
became used to using direct comparators to check if the test was successful or not. The
problem is, modern websites and web apps are usually completely dynamic. Content
changes depending on the user, the time of day, the device being used to view it, and even
the geographic location of the user. In short, life has become much more complex for test
automation engineers.

Nowadays, you have to construct far richer comparators to check for the correct outcome.
For instance, in a shopping site, you may need to check whether there is a valid price, in a

© 2019 Functionize, Inc. All Rights Reserved.functionize.com 3

https://www.functionize.com/

valid currency, and with the correct amount of sales tax added. Ultimately, it often requires
potential test failures to be manually verified, at least until you have sufficiently refined the
script.

 Test maintenance

Before the days of test automation, no one had heard of the concept of test maintenance.
Nowadays, many test automation engineers might wish they still had never heard of it! Test
maintenance is the process of updating your existing tests to cope with changes to your
system. The problem with most legacy test systems is that they are extremely brittle. A
simple change to the UI or layout can break some or all of your tests. This is because even
apparently simple changes can mean that the test script no longer knows which selector it
needs to choose. As a result, you will see a large number of tests failing.

The only solution is for your test automation engineers to manually check every test failure
and work out if it was genuine or just a maintenance issue. If it is the latter, they need to
update the script and rerun the test. Unfortunately, it can be hard to tell the difference. This
is because the actual trigger for the failure often happened several steps earlier in the test.
Take an eCommerce site with two “buy” buttons on the page. The first is for the selected
product, the second is for a special offer. If the site is redesigned so these buttons move,
the test script may select the wrong button. But this is still a valid action, so it won’t break
anything. It’s only when you reach the step where the test verified the cart contents that you
see an error.

The true cost of not migrating

The combination of the above factors has a dramatic impact on the productivity of your
test team. Have you ever looked in detail at what they are doing? Do you know how long
it takes them to create a new test? How efficient are they at analyzing test failures? Most
of all, have you asked them just how much of their time is wasted in maintaining existing
tests? In our experience, test creation using legacy systems is often a matter of hours or
even days. Analyzing failures can depend to a good degree on how complex your system is.
But the biggest issue is test maintenance, which often occupies 50% or more of their time.
And this is entirely wasted resource! Imagine if this was happening in any other part of your
business. Imagine if every time your developers made a small change you had to refactor
your codebase. Or had to redesign your production system I’m sure you’d be looking to fix it
pretty quickly! But somehow, it has become the accepted norm in testing.

© 2019 Functionize, Inc. All Rights Reserved.functionize.com 4

https://www.functionize.com/

Solving the issues with legacy test systems

Here at Functionize, we have set out to make testing truly autonomous. As a result,
migrating to Functionize is pretty painless. Let’s see how our technology helps you with
migration.

Adaptive Language Processing

ALP™ is our proprietary natural language test creation engine. Creating new tests is as
simple as writing the steps down in plain English. ALP™ then takes these steps (aka test
plan) and converts them into a validated test. It does this using NLP (natural language
processing) and other forms of AI. The resulting test runs on the Functionize Test Cloud.

ALP™ understands keywords like “verify”, which makes it easy to construct self-checking
tests (e.g. ones that make sure the correct page has loaded before trying to interact). Best
of all, it can directly ingest the output from most test management systems. As a result, it
makes migration a doddle. All you need to migrate your existing tests is to feed your existing
test plans into our ALP™ engine.

Fingerprinting and Self-Healing

Functionize’s autonomous testing system is based on a number of machine learning
approaches. When you specify an element in a test, this element is fingerprinted and
analyzed. It records hundreds of data points for every action including API calls, element
visibility, and server responses. This fingerprinting also means that our system copes
perfectly with nested DOMs. Because the element is being selected intelligently, it doesn’t
matter if it isn’t in the parent DOM, unlike with legacy test automation systems.

As each successful test run completes, the ML model updates the system’s understanding
of what every element does. This means that simple UI changes and layout changes are no
problem for the system. Just redesigning a button doesn’t change how it interacts with the
system. Equally, moving the button on the page doesn’t alter its behavior. A manual tester
would know this, and so does our system. Put simply, it Self-Heals. This ability to cope with
elements that move means that our system is particularly suitable for testing responsive
sites.

© 2019 Functionize, Inc. All Rights Reserved.functionize.com 5

https://www.functionize.com/

Adaptive Event Analysis

Our AEA™ engine lies at the heart of our autonomous testing. It is designed to dramatically
reduce the burden of test maintenance.

Root Cause Analysis uses a combination of a rule-based expert system and machine
learning in order to identify the most likely root cause of a given failure. This advanced
modeling system relies on historical test data and an understanding of common failure
scenarios in order to help identify the root cause of the current test failure.

Having identified the cause of the failure, you might have a large number of possible
resolutions. The Smart Suggestion engine uses historical data and machine learning
in order to determine what the correct action is most likely to have been. Using this, it is
able to automatically make a number of suggestions for possible failure resolutions. These
suggestions are presented to you. Having chosen the correct resolution, the test is updated
and re-run.

One Click Updates is the highest level in the AEA™ hierarchy. Often, there is more than
one potential root cause for a given failure, and each of those root causes may have several
possible resolutions. In situations where the correct solution may not be immediately
obvious, the self-heal feature allows the test to be re-run with each of the potential solutions.
The results of these are then ranked and presented to the user who can then click to
approve the best resolution. This will automatically update the test for future runs. The idea
here is to replicate what a user would have to do if they were manually updating the test.
This feature has the potential to save a vast amount of QA maintenance time.

What benefits have our customers seen?

6x 	 increase in productivity across your whole team

90%	 cut in test creation time through using ALP™

80%	 reduction in time needed to diagnose test failures

90%	 less time spent on test maintenance.

© 2019 Functionize, Inc. All Rights Reserved.functionize.com 6

https://www.functionize.com/

functionize.com
1-800-826-5051 156 2nd Street

San Francisco, CA 94105
© 2019 Functionize, Inc.
All Rights Reserved.

We make it a point to ensure that customers are happy with the results of migrating to
Functionize. And in most cases, they couldn’t be happier! Here are a few quotes from happy
customers:

Using Functionize I was able to create new tests in minutes instead of hours.

Wilson, TOTVS Labs lead QA Engineer.

We needed a platform that was going to enable this level of automation … and
you guys checked all the boxes.

Kyle Sylvestro, CEO of Sytrue.

With Functionize, I spend almost no time manually maintaining our test suites.

Leslie, SyTrue non-technical employee turned test engineer,
thanks to Functionize.

One day we had restyled a page pretty drastically. The head of QA came to me
and said she couldn’t believe it. None of the tests had failed. All the effort the QA
team puts into writing tests is never lost. The QA team can spend more of their
time on creating new tests and less on maintaining brittle old tests.

Todd Erickson, Director of Technology, Agvance.

Before Functionize, our Quality Engineers had to rely on our DevOps and back-
end engineers to perform their work. Now with Functionize, they can not only
serve more engineers and cover more parts of the product, but they can also
perform their job without the help of other teams.

Vicente Goetten, Executive Director, TOTVS labs.

https://www.functionize.com/
https://twitter.com/functionize
https://www.linkedin.com/company/6578636/
https://www.facebook.com/Functionize/

