
Redis Enterprise on Kubernetes

Container technology has transformed how applications are 
delivered and have become the basic unit of deployment and 
operations for modern applications.

Kubernetes is a container orchestration platform that helps 
organizations embrace containers and microservices, 
handling their deployment and management at scale. 
Designed originally to support stateless applications, 
Kubernetes added support for stateful applications more than 
five years ago through the StatefulSets primitive that allows 
data to persist beyond the lifecycle of a container.

A Kubernetes primitive or Kubernetes object is a building 
block with specific features and functions that manage 
resources within the Kubernetes cluster.

Redis Enterprise takes advantage of the Kubernetes 
StatefulSet primitive and other primitives to deploy and 
orchestrate Redis Enterprise pods as a stateful service.

Kubernetes is a very efficient and effective tool to manage 
and orchestrate a Redis Enterprise cluster running as a 
stateful service in containers. Data is retained even after a 
container is shut down or migrated, enhancing operational 
readiness and accelerating app development and delivery.

A powerful data platform for modern applications Why Redis Enterprise on Kubernetes?

Datasheet

The Redis Enterprise Operator for Kubernetes is a tool that’s 
used to to control the provisioning, scaling, and availability 
of the Redis Enterprise database as well as managing the 
containers’ lifecycle in any infrastructure.

The Operator delivers cloud portability, including on-prem 
and hybrid infrastructure, automating cluster operations, 
relieving organizations from complex infrastructure 
administration, thereby providing great flexibility to adopt 
agile practices.

Manage Kubernetes clusters at scale

Redis Datasheet/ Redis Enterprise on Kubernetes © 2022 Redis



With Redis Enterprise as a service on Kubernetes, application 
developers are better empowered to rapidly spin up database 
instances on demand, breaking the development/operations 
barrier with benefits such as:

1. Deliver persistent storage by attaching the same 
persistent disk to a pod even when rescheduling to a new 
node.

2. Auto bootstrap the Redis Enterprise Cluster pods securely 
to enable on-demand scaling of pods using native 
Kubernetes primitives and reducing operational overhead.

3. Perform rolling upgrades with zero downtime and apply 
updates across the entire cluster by incrementally 
updating pod instances with zero downtime.

4. Enable automatic service discovery with the Redis 
Enterprise custom controller to automatically publish the 
new or deleted database endpoints to the Kubernetes 
service catalog.

5. Gain platform independence with flexible deployment 
options and ensure seamless portability across any cloud-
native platforms, including Amazon Elastic Container 
Service for Kubernetes (EKS), Google Kubernetes Engine 
(GKE), Microsoft Azure Kubernetes Service (AKS), Red Hat 
OpenShift, VMware Tanzu, Rancher Kubernetes Engine 
(RKE), and Community Kubernetes (kOps).

• Data Persistence. Leverage persistent volumes for 
storage and outlive the lifecycle of a container for data 
persistence.

• Improve availability. Maintain uptime with pod readiness 
checks and automatic pod recovery. Ensure instant 
failover and recovery within single-digit seconds for a true 
HA solution.

• Operate at scale. Scale seamlessly across multiple 
Kubernetes pods with a declarative blueprint of the 
desired configuration and state. Linearly scale out your 
Redis Enterprise database with stable and predictable 
performance.

• Tenant isolation. Maximize resource utilization and 
minimize costs by serving a multi-tenant database 
model capable of serving multiple applications and to 
dynamically scale across multiple pods.

1. The Redis Enterprise Operator for Kubernetes reads and 
validates the cluster resource definition (CRD) file for a 
consistent Kubernetes cluster specification.

2. By leveraging the Kubernetes StatefulSets primitive, the 
operator deploys Redis Enterprise as a persistent service.

3. The Operator uses the Redis Enterprise database custom 
resources (CR) file to validate the definition of the Redis 
Enterprise database.

4. The Operator creates the database using the Redis 
Enterprise headless service of the cluster. The database 
access credentials are stored in a Secret primitive to 
protect sensitive cluster information, such as passwords.

5. The service rigger discovers the new database and 
configures the Kubernetes service.

6. The LoadBalancer primitive exposes the REST API and 
the web interface of Redis Enterprise for a consistent 
operational workflow from outside the Kubernetes cluster.

• Most loved NoSQL database - Stack Overflow

• #1 database downloaded on Docker Hub

• Easily manage Redis Enterprise cluster on 
Kubernetes

• Reduce operational complexity with built-in 
automation

• Run on any cloud and hybrid architectures

• Containerized database with sub-millisecond 
performance

• Infinite, seamless linear scale

• True high-availability and instant auto-failover

• Lower TCO with built-in multi-tenancy and tenant-
level tunability

• Future proof technology for application growth

Benefits of Redis Enterprise on Kubernetes Key features

How it works

Quick facts

Get started:
Contact us

Learn more from our tutorials

Learn more about our Kubernetes Operator

Redis Datasheet/ Redis Enterprise on Kubernetes © 2022 Redis

mailto:expert%40redis.com?subject=
https://developer.redis.com/create/kubernetes/kubernetes-gke/
https://developer.redis.com/create/kubernetes/kubernetes-operator/

