
a brand of

TerraProvider
Terraform Provider
for Microsoft 365

Which problem are we trying to solve?

Microsoft 365 tenant (especially Intune) configuration is a complex beast

If you are alone and have just one tenant, you may be ok with 'clicks in portals', but ...

If you are a team of admins, have multiple tenants (staging/production | MSP) to manage,
'clicks in portals' is not a scalable option.

documentation

change tracking / versioning

auditing

detect manual changes

disaster recovery

blueprint tenant creation / automation

The general idea is called or
Configuration-as-Code
(or Desired State Configuration / Infrastructure-as-Code)

If you search for it, you'll find an
amount of community projects

Some are kind of creative, some are
kind of professional including
DevOps integration

There are already solutions for this problem

Microsoft365DSC

Micke-K/IntuneManagement

Don't get me wrong:
We Powershell – but is it the right weapon for
Configuration-as-Code?

Powershell? Nails everywhere...

The law of the instrument, law of the hammer, ... is a cognitive bias that involves an over-
reliance on a familiar tool. Abraham Maslow wrote in 1966, "If the only tool you have is a
hammer, it is tempting to treat everything as if it were a nail."

Beside a lot of design considerations and caveats ...
why not ignoring the hammer and check out which toolchain
is used for nearly 40% of worldwide cloud automation?

Terraform Basics

Terraform
Configuration
Language (.tf)

provider "azurerm" {
 # AzureRM provider 2.x
 version = "~>2.0"
}

Create a resource group
resource "azurerm_resource_group" "ninja" {
 name = "ninja-rg"
 location = "North Central US"
}

Create an Azure Storage Account
resource "azurerm_storage_account" "ninjastorage" {
 name = "ninjastorage"
 resource_group_name = azurerm_resource_group.ninja.name
 location = azurerm_resource_group.ninja.location
 account_tier = "Standard"
 account_replication_type = "GRS"

 tags = {
 environment = "demo"
 }
}

Terraform
Command Line

Initialize Terraform

terraform init

Example Output:
Initializing the backend...
Initializing provider plugins...
Terraform has been successfully
initialized!

Generate an execution plan

terraform plan

Example Output:
Refreshing Terraform state in-
memory prior to plan...
...
Plan: 2 to add, 0 to change, 0 to
destroy.

Apply the configuration

terraform apply

Example Output:
...
...
Apply complete! Resources: 2
added, 0 changed, 0 destroyed.

Destroy resources (optional)

terraform destroy

Example Output:
...
...
...
Destroy complete! Resources: 2
destroyed.

Git?

Basic Terraform Lifecycle

Terraform Provider & Provider Registry

Currently there are about 4.500 providers available in the HashiCorp Registry.

Terraform Provider for
Entra

Side Story:
Static vs Dynamic Configuration

It is not a good idea to create
groups for daily operations via
TF. Conf-as-Code is primarily
intended for fundamental
configuration. That's why this
provider exist (Azure Identities,
etc.)

Terraform Provider for
Power Platform

Terraform Provider for
M365

Provider Story – Some Background

We have been searching for the holy grail of automation for years

We and many customers have been working with Configuration as Code with
Terraform on Azure and AWS for years

The logical consequence: we build a provider

Problem: The Microsoft Graph is constantly getting new functionalities,
we would have to keep coding new features into the provider

Solution: We created a code generator for Graph

It took us more than two years, but we think we have all the graph structures
and wild exceptions in the code generator

Long Story Short: We expect to build new releases every two to three weeks,
covering new graph areas with high code quality.

TerraProvider =
Source Available

TerraProvider License +
Community Edition

Community Edition is free for non-
productive use and for all tenants
with less than 100 users.

TerraProvider
Quick Start Framework*

* Our Quick Start Framework
is not just an immediately
functional starter for a
Tenant configuration. It also
provides a tool that
translates existing tenant
policies into Terraform
code.

TerraProvider
Documentation

Summary: Infrastructure as Code

declarative description of the target
infrastructure

describe what you want in code
(desired state configuration)

Plan – what will
happen?

Write IaC Deploy

Change
Plan – what will

happen?

Deploy

write once - deploy many

documentation of IT estate,
standardized deployment model

Thanks.
Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4: Which problem are we trying to solve?
	Slide 5: There are already solutions for this problem
	Slide 6: Powershell? Nails everywhere...
	Slide 7
	Slide 8: Terraform Basics
	Slide 9: Terraform Configuration Language (.tf)
	Slide 10: Terraform Command Line
	Slide 11: Git?
	Slide 12: Basic Terraform Lifecycle
	Slide 13: Terraform Provider & Provider Registry
	Slide 14: Terraform Provider for Entra
	Slide 15: Terraform Provider for Power Platform
	Slide 16: Terraform Provider for M365
	Slide 17: Provider Story – Some Background
	Slide 18: TerraProvider = Source Available
	Slide 19: TerraProvider License + Community Edition
	Slide 20: TerraProvider Quick Start Framework*
	Slide 21: TerraProvider Documentation
	Slide 22: Summary: Infrastructure as Code
	Slide 23: Thanks.

