
EZSSH
SSH Made Easy!

Cloud adoption is making
companies move to a zero-

trust networks.

99% of compromises involve
a stolen credential1

Linux servers do not use Active
Directory Accounts.

Companies are spending millions of
dollars on improving their corporate
identity.

Stolen SSH credential
attacks are on the rise.

Thousands of keys are leaked on
GitHub each day.2

IN THE
NEWS

WHY GO
PASSWORD LESS?

Passwords are no longer secure
due to brute force attacks.

72% of individuals reuse passwords
in their personal life while nearly half
(49%) of employees simply change or

add a digit or character to their
password when updating their

company password every 90 days.

Microsoft recently announced that a
staggering 44 million accounts were
vulnerable to account takeover due to
compromised or stolen passwords.

Compromised passwords are responsible
for 81% of hacking-related breaches,
according to the Verizon Data Breach
Investigations Report.

Keys must be manually life cycled.

Hard to keep inventory of which key
gives access to who.

Engineers don’t follow best
practices to protect the keys.

Current Linux Systems are protected
in two ways:

o Creating an account for production
and sharing the credentials among
engineers.

o Creating accounts for each
engineer in each of the servers.

Linux servers in large corporations have
between 50 and 200 SSH keys.

o 90% of those keys are not used.

o SSH keys never expire.

o 50-200 keys per server.

No Advance Identity Protection

o Conditional Access

o Smart Alerting

o Just in Time Access

Engineer creates the key. Engineer goes to a site
and learns how to
create an SSH key.

Each User Gets an Account

Sends it to security team or
server admin to be added to the

server.

Security team adds it to
the server.

Engineer gets access to
the server and now can

start their work.

Each User Gets an Account

When engineer no longer needs
access, is the account removed?

Engineer goes to a site and
learns how to create an SSH key.

Poor key hygiene, no key clean up
since it is hard to keep track of

who still needs access.

Long and tedious access reviews.
Keys are not properly protected

by users.

Key reuse over different scopes.

High price to onboard new team
member

Shared Accounts

Engineer gets the key
from team shared

location

Engineer saves the key
in their system

Engineer accesses
server and now can

start their work

Engineer goes to team
wiki to get key

locations

Many of these keys are reused
between test and production.

ONE ACCOUNT FOR ALL
ENGINEERS

Not possible to know who did which change since all
server logs show being done by the same account.

Usually, keys are shared in unsecure ways such as:
email, file shares, wikis, git.

Hard to rotate since all engineers would have to get
the new key.

When an employee leaves, they can maintain access
to servers.

Reuse of “team keys” for many services.

No approval flows to get access to server

Big insider threat opportunity (61% of CIS0s worry
about insider threats).

YOUR
CURRENT
COST

Engineering time creating and
passing the keys

Security team time adding
and removing keys

Added risk for having engineers
manage key and access

Added risk for life cycling accounts out of the
environment when no longer needed

SSH key inventory and access
reviews for all your servers

Need cryptographic
knowledge

Most of the large companies
use it (with custom built tools)

No approval workflow

No automatic provisioning

Manual setup and
management

Poorly documented

1. Request Access

6. Access machine with
Signed Certificate

5. Return Signed
Certificate

2. Approval
Workflow

4. Return Signed
Certificate

3. Request Signed
Certificate

o Works with Azure Security tools
such as Azure JIT and Azure PIM.

o Integrates with Azure RBAC for
automatic access management.

o Automatically adds Azure
Servers to your policies.

Seamlessly integrates with Azure

Automatically removes access
when no longer needed

Approval workflow for critical
environments

Automatically onboards new team
members

Makes security transparent to
the user

Uses your secure corporate account
to create time bound certificates.

Easy setup for all your servers.

Works with hybrid and multi-cloud.

Designed for Zero
Trust networks

Reduce Onboarding time and cost by
removing need to manage SSH keys

Remove key management
overhead from engineers.

Reduce insider threat by having Just In Time
Access with appropriate approval workflows.

Reduce audit costs with
easy to Audit access logs

Reduce offboarding time
and risk.

Native Linux Authentication no
custom PAM module or code

runs on your servers.

Bring your own Certificate
Authority support

DEMO

EZGIT
Protecting GitHub with
SSH Certificates

 Hackers are targeting developer credentials
to steal code.

 SSH Keys are not properly managed by
users.

 SSH Certificates are supported but there is
no infrastructure to issue them.

 Need Secure infrastructure to run your own
Certificate Authority.

 Conditional Access does not apply to the
most critical operations

GitHub Breaches

 GitHub is forcing you to go password-less in 2021.

 Gives you an opportunity to modernize your development security stack.

Reduce engineer
onboarding time

Make security transparent
for your users.

Reduce surface area with short-
term SSH Certificates

Make audits easier with
easy to audit logs

Uses your Secure Azure AD
Identity for Authentication of your
developers.

Automatically removes access
when no longer needed

Integrates with any git tool that uses
ssh-agent as authentication method.

Automatically onboards new team
members

Makes security transparent to
the user

Uses your secure corporate account
to create time bound certificates.

Easy setup with any Git offering.

Seamlessly integrates with our VM offering

DEMO

2010 SSH Certificates
introduced

1995 SSH Created 2021 EZSSH Makes SSH
Certificates easy to use

AZURE
USERS NEED
A SOLUTION

The bulk of insider data breaches

• https://blog.ssh.com/ssh-key-scan-attack-honeypot
• https://www.zdnet.com/article/linux-under-attack-compromised-ssh-keys-lead-to-rootkit/
• https://securityaffairs.co/wordpress/37459/cyber-crime/compromised-ssh-keys.html
• https://www.beckershospitalreview.com/cybersecurity/github-leaks-exposed-up-to-200-000-medical-records-4-

details.html
• https://thehackernews.com/2021/08/how-companies-can-protect-themselves.html
• https://www.lightreading.com/security/t-mobile-admits-breach-after-epic-hacking-claims/d/d-id/771524

https://blog.ssh.com/ssh-key-scan-attack-honeypot
https://www.zdnet.com/article/linux-under-attack-compromised-ssh-keys-lead-to-rootkit/
https://securityaffairs.co/wordpress/37459/cyber-crime/compromised-ssh-keys.html
https://www.beckershospitalreview.com/cybersecurity/github-leaks-exposed-up-to-200-000-medical-records-4-details.html
https://thehackernews.com/2021/08/how-companies-can-protect-themselves.html
https://www.lightreading.com/security/t-mobile-admits-breach-after-epic-hacking-claims/d/d-id/771524

Tool Name How It Works Key Drawbacks

Thycotic Secret Server It is a shared password manager that
allows teams to centralize their
password manager.

- Requires an admin account with
password to run as a high privilege
user to rotate the passwords and
keys.

Hashicorp Vault Hashicorp vault is a vault service that
allows you to store and create secrets for
your endpoints. It also has an SSH CA
feature that allows you to create SSH
certificates.

- While vault offers SSH Certificates
that is the same tech that we use, the
process for the user is still manual
(they must go to vault, create the
certificate and then install it on their
PCs).

- Vault also lacks the advance access
management that EZSSH offers.

Key Factor Key factor allows companies to
centralize their SSH key management
into one portal.

- Requires admin privileges to manage
SSH credentials.

- While key management is centralized,
input from administrators is required
for lifecycle credentials.

Designed for Zero Trust
(No agent or high privilege

account)

Connection with Azure security tools:
Networking JIT, Azure PIM, Sentinel

Transparent security for users,
with easy-to-use tools

Reduce insider threat by having Just In Time
Access with appropriate approval workflows.

Reduce audit costs with
easy to Audit access logs

Centralized management
for hybrid and multi-cloud

environments

Native Linux Authentication no
custom PAM module or code

runs on your servers.

Bring your own Certificate
Authority support

