
Connecting EDI to an API:
Bridging the Data Gap

eBook

Learn how the modern technology of an API takes outdated EDI
to new heights.

https://www.logicbroker.com

2

Connecting EDI to an API: Bridging the Data Gap

www.logicbroker.com

What is EDI?
Established in the late 1960’s, Electronic Data
Interchange (EDI) pioneered structured data
transmission via computer— and many
companies continue to use this method of data
communication today. EDI provides a consistent
and predictable way to transmit data between
two computer systems. Over time, new EDI
standards and new EDI transaction sets were
released to accommodate industry-specific
requirements (e.g., Automotive, Grocery, Apparel),
a changing supply chain landscape (e.g., third
party logistics [3PLs], load tendering, cargo
tracking), and the idiosyncrasies of international
business (e.g., EDIFACT, ZENGIN, TRADACOMS).
These standards left room for interpretation
between buyers and sellers, which led to
organizations defining their own EDI
specifications. This is why an EDI order from Target
doesn’t have the same contents as an EDI order
from Macy’s, Wayfair, Amazon, etc.

EDI suffers from many limitations: it can be difficult
to understand/translate (a necessity for systems
dedicated to processing the format) and can’t
support loosely structured/quickly evolving
data needs. Nevertheless, many systems and
companies still support this format today since
it’s safe, reliable, and suits many of their core
business needs.

What is an API?
Application Programming Interface (API) is the
newest form of data communication. Utilizing
real-time data exchange (rather than batch
exchanges under standard EDI protocols), API
provides data in several structured formats, such
as JSON and XML. APIs and their data formats
are being widely adopted by many companies
to serve their complex data needs. APIs are
typically well documented and present data in a
human-readable format. This enables faster data
mapping since it’s possible to infer the meaning
and usage of many fields directly from the data
itself rather than having to decipher the meaning
of different EDI segments and elements for each
trading partner.

Can I support both
EDI and API?

YES

Yes. Whether your organization is on the buying
or selling side of a business transaction, you’ll
likely need to support both EDI and API. While
many large retailers and distributors mandate EDI,
many online marketplaces and storefronts only
support API. The same can be said from a buying
perspective, as digitally native eCommerce
brands expect API connectivity, while large,
traditionally retail-focused manufacturers and
distributors may prefer EDI. Being able to support
a wide variety of external connections allows your
organization to unlock new sources of revenue
and supply.

Can I support both?

This modern approach to data transmission
enables flexible, future-proofed, and cloud-based
data transmission not only for basic business
transactions but also frequently-changing data
like inventory availability and more complex data
structures required for rich product content.

Both data formats support the same goal—
structured data communication for computer
processing. So, if you’re considering which one to
support, you may be torn as to which best fits your
business needs.

https://www.logicbroker.com
https://dev.logicbroker.com/

3

Connecting EDI to an API: Bridging the Data Gap

www.logicbroker.com

The backend, though, is a different story. Many
software development teams prefer working with
APIs for a few key reasons, particularly the ease
with which data requirements can be understood
through the data itself. Most EDI systems have
thoroughly documented data requirements, but
the learning curve associated with understanding
those requirements presents a sizable barrier
to entry. Supporting both API and EDI could
be a large technical project, likely requiring a
significant amount of code or multiple solution
providers to manage trading partner specific
communications and EDI mapping. On the other
hand, it would enable data connectivity with both
older and modern systems.

If you decide to partner with a company that does
not provide an API, but rather uses structured EDI,
how will you go about creating the link between
an older, rigid data system and a modern, flexible
one? And how will you handle the velocity
required in today’s fast-moving eCommerce
world? Enabling support for both EDI and API
through a single solution allows you to get over
these major hurdles.

Below, we provide a breakdown of the major
data similarities of two formats, using purchase
orders from popular eCommerce retailers. Once
you see the similarities between API and EDI data
structures, you may want to explore creating
your own integration to handle both legacy and
modern data requirements through a single
platform.

Sending & Receiving Orders
The most complex part of mapping EDI data is
understanding which elements are important and
where they reside based on the trading partner’s
EDI specifications. These key elements can be
used when mapping this data back into an API-
friendly data structure. To demonstrate this,
we will use samples of EDI orders from different
organizations. For the API sample data, we will use
examples from the CommerceAPI, made available
by Logicbroker.

Within a purchase order, there is a multitude of
data that may be sent, but for our purposes, we‘ll
focus on purchase order number, ship-to address,
and line-level details (i.e., which products were
sent and their quantity).

When sending/receiving EDI orders (referred to as
an 850 in the X12 standard), this information can
generally be found in the following fields:

○ PO Number - BEG segment

○ Ship To Address - N1, N2, N3, N4
fields

○ Line Level Information

○ Product Identifier - PO1
segment (Any number of
qualifiers)

○ Quantity - PO1 Segment
(Typically Element number 2)

If you decide to partner with
a company that does not
provide an API, but rather
uses structured EDI, how will
you go about creating the
link between an older, rigid
data system and a modern,
flexible one?

“

https://www.logicbroker.com
https://commerceapi.io/

244

Connecting EDI to an API: Bridging the Data Gap

{
 “RequestedShipDate”: “2020-01-02T00:00:00”,
 },
 “TypeCode”: “SA”,
 “SalesRequirement”: 0,
 “OrderLines”: [
 {
 “ItemIdentifier”: {
 “SupplierSKU”: “1263673”,
 “PartnerSKU”: “1263673”
 },
 “Price”: 33.49,
 “PriceCode”: “TE”,
 “Description”: “KS PROTEIN BARS CHOC CHIP”,
 “Discounts”: [
 {
 “DiscountPercent”: 0.0,
 “DiscountAmount”: 0.0
 }
],
 “Taxes”: [],
 “IsDropShip”: false,
 “Quantity”: 1,
 “QuantityUOM”: “EA”,
 “LineNumber”: “01”,
 “Weight”: 5.0,
 “ExtendedAttributes”: [
 {
 “Name”: “PartnerLineID”,
 “Value”: “01”
	 }
]
 }
],
 “OrderNumber”: “840490842”,
 “VendorNumber”: “0002165100”,
 “PartnerPO”: “00847002570589”,
 “OrderDate”: “2020-01-02T00:00:00”,
 “Taxes”: [],
 “PaymentTerm”: {},
 “ShipmentInfos”: [
 {
 “CarrierCode”: “UPSN”,
 “ClassCode”: “UPSN-3D-2”,
 “SenderClassCode”: “UPSN_3D”,
 “ServiceLevelDescription”: “UPS 3 Day
Select”
 }
],
 “ShipToAddress”: {
 “City”: “DELRAY BEACH”,
 “State”: “FL”,
 “Country”: “US”,
 “Zip”: “33445-5308”,
 “AddressCode”: “00011”,

[cont. on next page]

www.logicbroker.com

	○ PO Number = Order.PartnerPO

	○ Ship To Address = Order.
ShipToAddress

	○ Line Level Information

	○ Product Identifier = Order.
OrderItem.ItemIdentifier.
PartnerSKU

The CommerceAPI uses JSON as its standard
format, which allows for programmatic use of
objects to represent each of these relationships.

Here is a sample order from
the CommerceAPI:

To those unfamiliar with EDI, you may immediately
see an issue with the field naming: the
segments are not clearly labeled (“PO1” vs “Line
Information”), and the specific element the data
will appear in is somewhat arbitrary. Because EDI
is an older technology, from the early days of the
Internet, keeping the data as small as possible
was a high priority, since bandwidth was limited.
This is responsible for many of the issues today’s
technical teams have with building their own EDI
integrations.

While the segments are poorly named, and the
elements (where each data point lives) arbitrary,
these values can then be mapped to an API like
so:

https://www.logicbroker.com
https://commerceapi.io/
https://commerceapi.io/

24

Connecting EDI to an API: Bridging the Data Gap

 },
 “BillToAddress”: {
 “City”: “DELRAY BEACH”,
 “State”: “FL”,
 “Country”: “US”,
 “Zip”: “33445”,
 “Province”: “”,
 “StateCode”: “”,
 },

 “ExtendedAttributes”: [
 {
 “Name”: “BEG01_Purpose”,
 “Value”: “00”
 },
 {
 “Name”: “REF - Internal Control Number”,
 “Value”: “815837656”

],
 “TotalAmount”: 33.49,
 “HandlingAmount”: 0.0,
 “DropshipAmount”: 0.0,
 “Note”: “Custom Note”,
 “SenderCompanyId”: 100614,
 “ReceiverCompanyId”: 126739,
 “Identifier”: {
 “SourceKey”: “840490842”,
 “LogicbrokerKey”: “35978387”,
 “LinkKey”: “200116260198”
 },
 “DocumentDate”: “2020-01-02T22:20:49.57”,
 “StatusCode”: 100
}

5www.logicbroker.com

To view all available fields,
view the CommerceAPI
swagger documentation here.

Here, we’ll look at the way three retailers send
order information via EDI:

A Real-Life Example

Macy’s - EDI 850 (Purchase Order)

Wayfair - EDI 850 (Purchase Order)

https://www.logicbroker.com
https://stage.commerceapi.io/swagger/ui/index#!/Order/Order_SearchSalesOrders
https://stage.commerceapi.io/swagger/ui/index#!/Order/Order_SearchSalesOrders

24

“OrderLines”: [
 {
 “ItemIdentifier”: {

“SupplierSKU”: “1263673”,
“PartnerSKU”: “1263673”,
“UPC”: “888126367311”

 },

6

Connecting EDI to an API: Bridging the Data Gap

www.logicbroker.com

Amazon - EDI 850 (Purchase Order)

Through these three examples, you can see
there is a high degree of variance between the
fields retailers may or may not send on their EDI
purchase orders. A generally adopted standard
is putting the purchase order number in the third
element of the BEG segment. However, this is still
difficult to infer without having experience working
with EDI purchase orders and does not apply to
international EDI standards or industry specific
sub-standards. Looking at the PO1 segment, we
see the following from each retailer:

Macy’s:
PO1*01*1*EA*28*TE*******UP*885999115139

Macy’s uses UPC codes as a product identifier,
and this can be determined by their use of the
UP qualifier before the UPC code. But compare to
Amazon’s item identifier usage:

Amazon:
PO1*1*3*EA*146.99*PE*UP*811225030112

Both use UPC as a product identifier and both use
a UPC qualifier. However, they send the value in
a different position, meaning that a specific map
would need to be setup for each retailer that can
identify where this product identifier will be sent,
depending on who is trading.

As can be seen above, Wayfair does not send UPC
codes, and uses a “VN” (vendor number) qualifier
to identify a different type of product identifier
completely.

When leveraging an API, these differences can
be minimized by using clear line-level specific
names. Take for instance how these fields are
mapped in Logicbroker using the CommerceAPI:

Logicbroker uses EDI mapping technology to map
“UP” EDI qualifiers to the UPC field, and supports
vendors who send more than one qualifier via EDI,
i.e. sending a “VN,” in addition to a “UP” qualifier
would mean that both the “SupplierSKU” and
“UPC” item level fields are mapped as needed.

Logicbroker uses EDI
mapping technology to map
“UP” EDI qualifiers to the UPC
field, and supports vendors

who send more than one
qualifier via EDI.

“

https://www.logicbroker.com
https://commerceapi.io/
https://help.logicbroker.com/hc/en-us/articles/360021847452-Introduction-What-is-Logicbroker-

24 7

Connecting EDI to an API: Bridging the Data Gap

www.logicbroker.com

Macy’s: Shipping Address Information

N1*BT*First Last~
N3*123 Address Way~
N4*City*CA*91342-6503*US~
N1*ST*First Last~
N3*123 Address Way~
N4*City*CA*91342-6503*US~
N1*SF**93*NV~
N1*PO**93*0149~

A final example of the variances on EDI 850
Purchase Orders would be the N1-N4 segments,
which describe address information. Taking a look
at the examples from above:

Note the additional “N1*SF” and “N1*PO” segments
indicating special instructions for the vendor and
the way they will ship.

Wayfair: Shipping Address Information

N1*BT*Wayfair
N3*4 Copley Place, Floor 7
N4*Boston*MA*02116*US
PER*BJ*BT*TE*6175326815*FX*617-502-
7798*EM*WayfairOps5@wayfair.com
N1*ST*First Last
N3*123 Address Way
N4*City*OH*43537*US*ZN*R
PER*DC*ST*TE*4195550603***EM*
customeremail@wayfair.com
N1*LW*First Last
N3*123 Address Way
N4*City*OH*43537*US

Note how Wayfair includes information to contact
the customer in the “PER” segment. Additionally,
there is an N1/Address loop that uses an “LW”
qualifier. LW is another way to identify the
customer, but if you had never seen it before, you
may not know what it represents.

Amazon: Shipping Address Information
N1*ST**92*OAK3

Amazon sends a simple address code for where
products need to be sent.

EDI retailers may use the following qualifiers to
identify different address types: Bill To Address
(BT), Ship From Address (SF), and Ship To Address
(ST). However, we see in the above examples
that Amazon sends their address using an
address code (a code that represents the entire
address), another variance that would need to be
accounted for in an address/EDI map.

Logicbroker’s CommerceAPI
documentation.

https://www.logicbroker.com
https://commerceapi.io/
https://commerceapi.io/

24

“ShipToAddress”: {
 “CompanyName”: “string”,
 “FirstName”: “string”,
 “LastName”: “string”,
 “Title”: “string”,
 “Address1”: “string”,
 “Address2”: “string”,
 “City”: “string”,
 “State”: “string”,
 “Country”: “string”,
 “Zip”: “string”,
 “Province”: “string”,
 “AddressCode”: “string”,
 “StateCode”: “string”,
 “CountryCode”: “string”,
 “Phone”: “string”,
 “ContactID”: “string”,
 “ContactType”: 0,
 “Email”: “string”,
 “TaxNumber”: “string”,
 “FaxNumber”: “string”,
 “Note”: “string”,
 “ExtendedAttributes”: [
 {

“Name”: “string”,
“Value”: “string”,
“Section”: “string”

 }
]
 },

 “BillToAddress”: {
 “CompanyName”: “string”,
 “FirstName”: “string”,
 “LastName”: “string”,
 “Title”: “string”,
 “Address1”: “string”,
 “Address2”: “string”,
 “City”: “string”,
 “State”: “string”,
 “Country”: “string”,
 “Zip”: “string”,
 “Province”: “string”,
 “AddressCode”: “string”,
 “StateCode”: “string”,
 “CountryCode”: “string”,
 “Phone”: “string”,
 “ContactID”: “string”,
 “ContactType”: 0,
 “Email”: “string”,
 “TaxNumber”: “string”,
 “FaxNumber”: “string”,
 “Note”: “string”,
 “ExtendedAttributes”: [
 {

“Name”: “string”,
“Value”: “string”,
“Section”: “string”

 }
]
 },

8

Connecting EDI to an API: Bridging the Data Gap

www.logicbroker.com

Logicbroker’s API handles these variances by having a clearly labeled object for each address type, as well
as allowing for specific address codes within each address, which can be mapped later during the order
lifecycle.

Although we have touched on three commonly used EDI segments, retailers may send entirely different
data in completely different ways (e.g., REF segments, DTM, etc.) A key takeaway regarding EDI is that each
piece of information may live in a different data point, but it is up to your EDI system/provider to map these
values in a way that your system can handle.

APIs provide a human-readable format to this data, which allows for quicker system mapping, greatly
reducing the amount of time it takes to onboard and transact data with your partners. To learn more, check
out this additional information about channel integrations via API.

https://www.logicbroker.com
https://help.logicbroker.com/hc/en-us/categories/360001378731-Channel-and-System-Integrations

