JUDLR@! | Engineering

Simplicity

Juniper Cloud Native Router User Guide

Published
2023-03-17

Juniper Networks, Inc.
1133 Innovation Way
Sunnyvale, California 94089
USA

408-745-2000
www.juniper.net

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc.
in the United States and other countries. All other trademarks, service marks, registered marks, or registered service
marks are the property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right
to change, modify, transfer, or otherwise revise this publication without notice.

Juniper Cloud Native Router User Guide
Copyright © 2023 Juniper Networks, Inc. All rights reserved.

The information in this document is current as of the date on the title page.

YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related
limitations through the year 2038. However, the NTP application is known to have some difficulty in the year 2036.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use
with) Juniper Networks software. Use of such software is subject to the terms and conditions of the End User License
Agreement ("EULA") posted at https://support.juniper.net/support/eula/. By downloading, installing or using such
software, you agree to the terms and conditions of that EULA.

https://support.juniper.net/support/eula/

Table of Contents

1 Juniper Cloud-Native Router (JCNR)
Juniper Cloud-Native Router - Overview | 2
Juniper Cloud-Native Router Controller (cRPD) | 9
JCNR-vRouter | 13

JCNR-CNI | 29

2 Juniper Cloud-Native Router - Features

Cloud-Native Router Common Features | 34

Juniper Cloud-Native Router Interface Types | 34
Logging and Notifications | 38

Juniper Cloud-Native Router Licensing | 41
Useful CLI Commands | 42

Cloud-Native Router L2 Features | 45

Juniper Cloud-Native Router Deployment Modes | 45
Juniper Cloud-Native Router L2 Interface Types | 46
L2 Metrics and Telemetry | 50

L2 ACLs (Firewall Filters) | 56

MAC Learning and Aging | 59

BUM Rate Limiting | 61

L2 API to Force Bond Link Switchover | 61

L2 Quality of Service (QoS) | 62

Cloud-Native Router L3 Features | 65

Juniper Cloud-Native Router Deployment Modes | 66

Juniper Cloud-Native Router Security Groups | 66

Juniper Cloud-Native Router Interface Types | 67
Security Groups | 70

L2 API to Force Bond Link Switchover | 71

MPLS Support in Juniper Cloud-Native Router | 71

Juniper Cloud-Native Router (JCNR) - Examples

L2 - Add User Pod with Kernel Access to a Cloud-Native Router Instance | 73

Overview | 73
Before You Begin | 74
Detailed Steps | 75

L2 - Add User Pod with virtio Trunk Ports to a Cloud-Native Router Instance | 83

Overview | 83
Before You Begin | 84
Detailed Steps | 86

L3 - Add User Pod to a Cloud-Native Router Instance | 93

Overview | 93
Before You Begin | 94

Detailed Steps | 96

Juniper Cloud-Native Router (JCNR)

Juniper Cloud-Native Router - Overview | 2
Juniper Cloud-Native Router Controller (cRPD) | 9
JCNR-vRouter | 13

JCNR-CNI | 29

CHAPTER 1

Juniper Cloud-Native Router - Overview

IN THIS CHAPTER

Overview | 2

Benefits of Juniper Cloud-Native Router | 2
Kubernetes | 3

Juniper Cloud-Native Router Components | 4

Ports Used by Cloud-Native Router | 7

Overview

ThelJuniper® Cloud-Native Router (cloud-native router) is a container-based software solution,
orchestrated by Kubernetes. Cloud-native router combines the containerized routing protocol process
(cRPD) and a Data Plane Development Kit (DPDK)-enabled Contrail® Networking™ vRouter (vRouter).
With the cloud-native router, you can enable full Junos-based control plane with the enhanced
forwarding capabilities of the DPDK-enabled vRouter.

Benefits of Juniper Cloud-Native Router

e You can deploy the cloud-native router in either L2 (switch) or L3 (routing) mode
e Higher packet forwarding performance with DPDK-enabled vRouter

e Easy deployment on general-purpose compute devices

o Full routing and forwarding stacks in software

e Out-of-the-box software-based open radio access network (O-RAN) support

e |Pv4 and IPvé6 routing and forwarding

e Quick spin-up with containerized deployment on Kubernetes

Highly scalable solution

Kubernetes

NOTE: Juniper Networks refers to primary nodes and backup nodes in our documentation.
Kubernetes refers to master nodes and worker nodes. References in this guide to primary and
backup correlate with master and worker in the Kubernetes world.

Let's talk a little about Kubernetes in this section. Kubernetes is an orchestration platform for running
containerized applications in a clustered computing environment. Kubernetes provides automatic
deployment, scaling, networking, and management of containerized applications. Because Juniper
Cloud-Native Router is a container-based solution, we've chosen Kubernetes as the orchestration
platform. For complete details about Kubernetes, including installation, cluster creation, management,
and maintenance, see https:/kubernetes.io/.

The major components of a Kubernetes cluster are:

Nodes

Kubernetes uses two types of nodes: a primary (control) node and a compute (worker) node. A
Kubernetes cluster usually consists of one or more master nodes (in active/standby mode) and one or
more worker nodes. You create a node on a physical computer or a virtual machine (VM).

NOTE: In Juniper Cloud-Native Router Release 22.X, you must provide a working, single-node
Kubernetes cluster. Cloud-native router does not support multinode clusters, with primary
and secondary nodes on separate VMs or bare-metal server (BMS).

Pods

Pods live in nodes and provide a space for containerized applications to run. A Kubernetes pod
consists of one or more containers, with each pod representing an instance of the application(s). A
pod is the smallest unit that Kubernetes can manage. All containers in a pod share the same network
namespace.

Namespaces

In Kubernetes, pods operate within a namespace to isolate groups of resources within a cluster. All
Kubernetes clusters have a kube-system namespace, which is for objects created by the Kubernetes
system. Kubernetes also has a default namespace, which holds all objects that don't provide their
own namespace. The last two preconfigured Kubernetes namespaces are kube-public and kube-
node-lease. The kube-public namespace is used to allow unauthenticated users to read some aspects

https://kubernetes.io/

of the cluster. Node leases allow the kubelet to send heartbeats so that the control plane can detect
node failure.

In Juniper Cloud-Native Router Release 22.X, some of the pods run in the kube-systemnamespace
while others provide their own namespace.

e Kubelet

The kubelet is the primary node agent that runs on each node. In the case of Juniper Cloud-Native
Router, only a single kubelet runs on the cluster since we do not support multinode deployments.

e Containers

A container is a single package that consists of an entire runtime environment including the
application and its:

o Configuration files
e Dependencies

e Libraries

e Other binaries

Software that runs in containers can, for the most part, ignore the differences in the those binaries,
libraries, and configurations that may exist between the container environment and the environment
that hosts the container. Common container types are docker, containerd, and Container Runtime
Interface using Open Container Initiative compatible runtimes (CRI-O).

For Juniper Cloud-Native Router Release 22.X, docker is the only supported container type
(container runtime).

Juniper Cloud-Native Router Components

The Juniper Cloud-Native Router solution consists of several components. This section provides a brief
overview of the components of Juniper Cloud-Native Router.

Figure 1 on page 5 shows the components of the Juniper Cloud-Native Router inside a Kubernetes
cluster. The green-colored components are specific to the Juniper Cloud-Native Router, while the others
are required third-party components.

Figure 1: Cloud-Native Router Components

Linux Host running Kubernetes

DPDK Syslog-NG
App App

Pod Pod

Standalone K8s Cluster

eted Multus Calico
CNI CNI
Control Sched Pod Pod
Plane

JCNR-CNI

JCNR e S Telemetry
Controller VIOHMLCE VIOHLSE Exporter
agent agent-dpdk

Pod

Pod

Intel E-810
or
Intel XL710

Data Path

—
—

—
—

jn-000367

TOR Switch

e Juniper Cloud-Native Router Controller (JCNR-controller or cRPD)

The cRPD acts as the control plane for the cloud-native router. It performs management functions
and maintains configuration information for the vRouter forwarding plane. cRPD is based on the
Junos OS control plane. You can configure the JNCR-controller using:

¢ YAML-formatted Helm charts

e Third-party management platforms that use the NETCONF protocol
e API calls to the cRPD MGD

¢ Direct CLI access to the cRPD Pod

This section is only applicable to the L3 version of JCNR.

You can configure the requisite protocols (IGPs and BGPs), using NETCONF or CLI, to the JCNR-
controller to provide reachability over tunnels. JCNR-controller establishes adjacencies for various
protocols, learns and programs the forwarding information base (FIB, also known as forwarding table)
using its routing protocols to the JCNR-vRouter-agent through gRPC services. JCNR-vRouter
provides a bidirectional gRPC channel for communication with the JCNR-controller.

A typical routing update for the underlay network follows the process shown below:

e JCNR-controller learns of a new underlay network route on its vhostO interface

e JCNR-controller sends a gRPC-encoded route message (IPv4 or IPvé) to the vRouter agent using
its gRPC interface

e The vRouter agent performs ARP or NDP look up for the next-hop
e The vRouter agent encapsulates the next-hop into vRouter and waits for ACK message in return
o The vRouter agent programs the underlay route into vRouter and waits for ACK message in return

Once a learned underlay route is no longer valid, JCNR-controller sends a route delete message to
the vRouter agent which signals the vRouter to delete the route and next-hop as needed.

A typical routing update for the overlay (Pod-to-Pod) network follows the process shown below:
e A new remote Pod route (Pod-to-Pod) is learned by JCNR-controller through BGP.

e JCNR-controller resolves the next-hop over an SR-MPLS tunnel whose label stack is populated by
ISIS. This creates next-hop information for the Pod's IP that contains the service label and the
transport labels associated with the MPLS tunnel.

o JCNR-controller then sends a gRPC-encoded route message to the vRouter agent that contains
the pod_ip, vrf name, next-hop IP, service label and between 0 and 4 transport labels.

e The vRouter agent resolves the next-hop IP using NDP or ARP depending on whether the address
is IPv6 or IPv4 respectively.

e The vRouter agent creates an MPLS tunnel next-hop (if not already present) and programs it to
the vRouter.

e The vRouter creates the MPLS tunnel next-hop, adds it to the next-hop table and sends an ACK
message to the vRouter agent in response.

e The vRouter agent the programs the Pod route in the Pod VRF along with the next-hop created in
the previous step.

e The vRouter adds the route entry for the Pod in the Pod VRF along with a pointer to the next-
hop. vRouter then sends an ACK message to vRouter agent in response.

When the overlay route is withdrawn, JCNR-controller sends a route delete message to vRouter
agent which signals the vRouter to delete the route and next-hop information from the forwarding
tables.

Access control lists (ACLs) are supported on JCNR-controller to configure the networking policy for
application pods. The integration with JCNR-vRouter-agent means that these network policies are
automatically shared with the JCNR-vRouter.

¢ Juniper Cloud-Native Router -vRouter (JCNR-vRouter or vRouter)

JCNR-vRouter acts as the forwarding, or data, plane for Juniper Cloud-Native Router. It interacts
with the JCNR-controller through the vRouter-agent and receives and forwards packets through its
various interfaces.

JCNR-vRouter enables applications built using the DPDK framework to send and receive packets
directly between the application and vRouter without passing through the kernel.

The vRouter receives configuration and management information from JCNR-controller through the
JCNR vRouter-agent using the gRPC protocol.

¢ Juniper Cloud-Native Router-Container Network Interface (JCNR-CNI)
JCNR-CNI is a Kubernetes CNI and is responsible for provisioning network interfaces for application
Pods. vRouter acts as the data-plane for these application Pod interfaces. JCNR-CNI interacts with
Kubernetes, JCNR-controller and JCNR-vRouter. JCNR-CNI manages the vRouter interface lifecycles
and cRPD configuration. When you remove an application Pod, JCNR-CNI removes the
corresponding interface configuration from cRPD and state information from the vRouter-DPDK
forwarding plane.

Ports Used by Cloud-Native Router

Juniper Cloud-Native Router listens on certain TCP and UDP ports. Table 1 on page 7 shows the
ports, protocols, and a description for each one.

Table 1: Cloud-Native Router Listening Ports
Protocol Port Description

TCP 8085 vRouter introspect-Used to gain
internal statistical information
about vRouter

TCP 8070 Telemetry information-Used to see
telemetry data from cloud-native
router

TCP 9091 vRouter health check-cloud-native

router checks to ensure contrail-
vrouter-dpdk process is running,
etc.

Table 1: Cloud-Native Router Listening Ports (Continued)

Protocol

TCP

TCP

TCP

TCP

TCP

TCP

TCP

TCP

TCP

ubP

Port

50052

24

830

666

1883

9500

21883

50051

51051

50055

Description

gRPC port-JCNR listens on both
IPv4 and IPv6

cRPD SSH

cRPD NETCONF

rpd

Mosquito mqtt-Publish/subscribe
messaging utility

agentd on cRPD

na-mqttd

jsd on cRPD

jsd on cRPD

Syslog-NG

CHAPTER 2

Juniper Cloud-Native Router Controller (cRPD)

IN THIS CHAPTER

Benefits of Juniper Cloud-Native Router Controller | 9
Configuration Options | 10
Access to the CLI | 10

Read this chapter to understand the Juniper Cloud-Native Router-controller (cloud-native router
controller or cRPD), which is the Juniper Cloud-Native Router control plane.

Benefits of Juniper Cloud-Native Router Controller

The cRPD acts as the control plane in the Juniper Cloud-Native Router solution. The cRPD provides
configuration interfaces to users (CLI) and applications (API) alike. You can use these interfaces to
configure or program the Juniper Cloud-Native Router-vRouter forwarding plane. You can also configure
the following using the Juniper Cloud-Native Router-controller:

e Virtual function (VF) fabric interfaces
e VF workload interfaces

e Trunk interfaces

e Access interfaces

e L2 ACLs (firewall rules)

e Bridge domains

e Ethernet switching

e VLANSs

The cRPD performs the following functions:

e Supports JCNR-vRouter as the forwarding plane

¢ Maintains configuration for vRouter interfaces including trunk and access interfaces, virtual function
interfaces (VFs), VLANs, and more

e Maintains configuration of bridge domains

e Maintains configuration for L2 firewall

¢ Maintains configuration for bridge domains, VLANSs, virtual-switches, and so on
e Passes configuration information to the vRouter through the vRouter-agent

e Stores license key information

Configuration Options

During deployment, you can configure the cRPD by changing the values of the key:value pairs contained
within the values.yaml file that we include in the software distribution TAR file.

After deployment, we recommend that you use the NETCONF protocol with PyEZ to configure cRPD.
See https:/www.juniper.net/documentation/us/en/software/junos-pyez/junos-pyez-developer/
index.html for details about PyEZ. Alternatively, you can SSH directly to the cRPD on TCP port 24 or
using NETCONF on TCP port 830. Finally, you can also configure the cloud-native router by accessing
the Junos CLI on the cRPD using Kubernetes commands to connect to the cRPD Pod.

Access to the CLI

In this procedure, we provide CLI commands that you run on the host server. We do not show a
prompt before the commands so that you can copy and paste the commands into your own cloud-
native router.

kubectl get pods -A

The output should look like:

NAMESPACE NAME READY STATUS
RESTARTS AGE

https://www.juniper.net/documentation/us/en/software/junos-pyez/junos-pyez-developer/index.html
https://www.juniper.net/documentation/us/en/software/junos-pyez/junos-pyez-developer/index.html

contrail-deploy contrail-k8s-deployer-7b5dd699b9-smggn 1/1 Running
0 37h

contrail contrail-vrouter-masters-htcvt 3/3 Running
0 37h

default delete-crpd-dirs--1-bjngd 0/1 Completed
0 37h

default delete-vrouter-dirs--1-k5wgb 0/1 Completed
0 37h

default odu-pktgen-trunkint 1/1 Running
0 24h

default odu-subinterface-3003 1/1 Running
0 7d

kube-system calico-kube-controllers-57b9767bdb-76fvw 1/1 Running
52 (8d ago) 107d

kube-system calico-node-pgljp 1/1 Running
18 (8d ago) 107d

kube-system coredns-8474476ff8-2nbnv 1/1 Running
38 (8d ago) 107d

kube-system dns-autoscaler-7f76f4dd6-8b4w5 1/1 Running
18 (8d ago) 107d

kube-system kube-apiserver-nodem27.englab. juniper.net 1/1 Running
45 (8d ago) 107d

kube-system kube-controller-manager-nodem27.englab. juniper.net 1/1 Running
34 (8d ago) 107d

kube-system kube-crpd-worker-ds-89wzg 1/1 Running
0 32h

kube-system kube-multus-ds-amd64-f2pls 1/1 Running
0 8d

kube-system kube-proxy-vrqgjm 1/1 Running
18 (8d ago) 107d

kube-system kube-scheduler-nodem27.englab. juniper.net 1/1 Running
35 (8d ago) 107d

kube-system nodelocaldns-hm56k 1/1 Running
43 (8d ago) 107d

kube-system syslog-ng-54749b7b77-tqvpk 1/1 Running
0 37h

The command to access the cRPD CLlI is in the form: kubectl exec -n kube-system -it <full cRPD Pod
name> -- bash. If we use the output mentioned earlier in this section, the command appears as:

kubectl exec -n kube-system -it kube-crpd-worker-ds-89wzg -- bash

The output from the command (when you use the full name of your cRPD Pod) should look like:

Defaulted container "kube-crpd-worker" out of: kube-crpd-worker, jcnr-crpd-config (init),

install-cni (init)

===
Containerized Routing Protocols Daemon (CRPD)
Copyright (C) 2020-2021, Juniper Networks, Inc. All rights reserved.

This output indicates that you have accessed the cRPD CLI. At this point, your access level is root
and you are in shell mode. Just as when you connect as root to any Junos OS-based device, you
must enter the cli command to access the Junos CLI in operation mode.

CHAPTER 3

JCNR-vRouter

IN THIS CHAPTER

Benefits of JCNR vRouter | 13

Access vRouter CLI | 15

L2 Mode Packet Flow in vRouter | 16
Monitoring vRouter with CLI Commands | 18
The dropstats Command | 22

The dpdkinfo Command | 23

Troubleshooting vRouter | 27

Read this chapter to understand more about JCNR-vRouter, which is the JCNR DPDK-based forwarding
plane.

Benefits of JCNR vRouter

¢ Integration of the DPDK into the JCNR-vRouter:

e Forwarding plane provides faster forwarding capabilities than kernel-based forwarding
o Forwarding plane is more scalable than kernel-based forwarding
e Support for the following NICs:

¢ Intel E810 (Columbiaville) with Intel Adapter Virtual Function (IAVF) and Dynamic Device
Personalization (DDP)

e Intel XL710 (Fortville) with Intel Adapter Virtual Function (IAVF)

NOTE: Dynamic Device Personalization (DDP) is not supported on the Intel XL710 NIC

Support for the following drivers on Intel XL710 NICs:
¢ Intel Adapter Virtual Function (IAVF)

e Linux base driver i40E

Interface Support:

Pod interfaces using virtio

You define these DPDK-enabled vhost-based user socket interfaces as workload interfaces in the
values.yaml file. The system maintains the socket details for all active interfaces of this type in the /
dpdk directory of the workload container. You usually define this type of pod interfaces as trunk
interfaces rather than access interfaces.

Pod interfaces using kernel veth pair

You define pod interfaces with kernel veth pairs in the values.yaml file as access interfaces so the
pod can pass traffic through the kernel rather than using DPDK.

DPDK Virtual Function (VF) workload interfaces

You define the DPDK VF fabric trunk interfaces in the values.yaml file that is used in the vRouter
deployment. This makes JCNR aware of the names of the interfaces, their MAC addresses, and
their PCl slot ID.

DPDK VF fabric trunk interfaces

You define the DPDK VF fabric trunk interfaces in the values.yaml file that is used in the vRouter
deployment. This makes JCNR aware of the names of the interfaces, their MAC addresses, and
their PCl slot ID. To keep traffic flows manageable, we apply VLAN filtering to the physical
interfaces. When you configure VLANSs for use with the cloud-native router, only the configured
VLANSs can pass through the physical interfaces.

Physical Function (PF) workload interfaces

You define PF workload interfaces in the values_I3.yaml file. The system equips each PF workload
interfaces with only one receive and one transmit queue. The system assigns one forwarding CPU
core to the task of polling the interface for traffic.

PF fabric interfaces

You define PF fabric interfaces in the values.yaml file. The system equips each PF fabric interface
with as many receive and transmit queues as you assign forwarding CPU cores to handle the
polling. For example, if you assign three forwarding CPU cores to the PF fabric interface, the
system allocates three receive and three transmit queues to the PF fabric interface.

No vhost@ interface when run in L2 mode

vRouter-agent detects L2 mode in values.yaml, so does not wait for the vhosto interface to come
up before completing installation. There is no vhost interface add message sent so the vRouter
doesn't create the vhost@ interface.

¢ Interface Bonding

DPDK vRouter supports interface bonding in active/standby mode on DPDK VF fabric interfaces.
The values.yaml file specifies the interface names, mode value, and primary and secondary interface
designations. DPDK contains a library with its own bonding driver that it uses for bonding. In
operation, the vRouter uses the primary interface to pass traffic. If the primary link goes down, the
secondary interface in the pair passes traffic until the primary interface reconnects.

¢ Pod DPDK Interfaces

JCNR-vRouter supports virtio communication to the POD application. The JCNR-CNI allocates
unique socket directories that it passes to Pod applications and to vRouter. JCNR-CNI ensures that
one Pod cannot access the resources of another Pod through isolation of vhost sockets and Pod
volume mounts.

e Pod Kernel Interfaces

JCNR supports the vethinterface type to communicate with pod applications that use the Linux
Kernel's networking stack.

Access VRouter CLI

kubectl get pods -n contrail

The output of the command looks like:

NAME READY STATUS RESTARTS AGE

contrail-vrouter-masters-97v8z 3/3 Running @ 6d1h

To access the vRouter-agent CLI, you use the full pod name from your system in the following command:

kubectl exec -n contrail -it contrail-vrouter-masters-97v8z -- bash

The output of the command looks like: Defaulted container "contrail-vrouter-agent" out of: contrail-vrouter-
agent, contrail-vrouter-agent-dpdk, contrail-vrouter-telemetry-exporter, contrail-init (init), contrail-vrouter-
kernel-init-dpdk (init).

After you access the vRouter CLI, there are a number of commands that you can run to monitor and
troubleshoot the system. We illustrate some of the available commands in "Monitoring vRouter with CLI
Commands" on page 18.

L2 Mode Packet Flow in vRouter

To understand a switch or router, you must know what happens to packets as they flow through. This
section describes the life of a packet in the vRouter when deployed in L2 mode. In this section, we show
how the vRouter MAC and bridge domain (BD) tables are populated and introduces some of the CLI
commands that you can use to see various parts of the vRouter from inside.

The flowchart Figure 2 on page 17 illustrates one possible generic packet flow through cloud-native
router. It does not cover all possible interactions with the packet.

Figure 2: The Life of a Packet in vRouter

Receive packet

from any interface

Drop packet

?

No

Packet has
VLAN header?

Is it Access
interface?

Yes
Packet has
VLAN header?
(Interface is
trunk or
sub-interface)

Yes

Insert VLAN tag from
Access interface

Is packet’s
A 4 VLAN allow on
interface?

No

Drop
packet

Yes

L

Yes

(Sub-interface)

Parent
has sub-interface
for packets
VLAN?

Send packet
on that
sub-interface

Is packet
received on parent
interface?

Packet ACL .
Fail
validation @

Drop packet

Lookup source
MAC, VLAN in
MAC table
Entry does
not exist

Entry exists

Punt packet to agent
for MAC learning

(MAC move)

Packet received
on same interface
as stored in
MAC table

Packet is
bcast/mcast

Lookup
destination
MAC, VLAN in MAC
Table

Entry exists exist
Forward packet on
learned interface
(Unknown
Unicast)
Lookup BD table
using packet’s VLAN
ID and flood on all P v
interfaces which are (Flood)

part of BD (except
incoming interface

jn-000416

The vRouter makes a lot of decisions about a received packet to ensure that the packet is handled
correctly. Let's look at what the vRouter does with a packet. You can see in Figure 2 on page 17 that
there are several choices made based on the VLAN or BD. One of the tables that vRouter consults for
making forwarding decisions is the Table 2 on page 17.

Table 2: BD Table

VLAN ID (KEY)

1024

Interface ID List (Value)

2,34

Table 2: BD Table (Continued)

VLAN ID (KEY) Interface ID List (Value)
1042 4,5

1022 1

1044 6

The BD table tells the vRouter which interfaces can carry traffic with a specific VLAN ID. Thus, the
VLAN ID serves as the key for the table while the Interface ID List serves as the values for each entry.

The Table 3 on page 18 is closely related to the BD table. The MAC table uses the MAC address and
VLAN ID as a key pair. Then, the Interface ID and hit count serve as the values for each entry in the
table as shown in this section.

Table 3: MAC Table

MAC Address VLAN ID Interface ID Hit Count
00:11:22:33:44:55 1024 2 123234
00:22:33:44:55:66 1042 4 823948
00:33:44:55:66:77 1022 1 45980
00:44:55:66:77:88 1044 6 86578

The primary purpose of the MAC table is to map which MAC addresses can be reached through which
interface. The vRouter makes entries in and consults the MAC table while processing packets.

Monitoring vRouter with CLI Commands

In the vRouter, CLI commands are useful for troubleshooting and monitoring purposes. As mentioned in
"Access VRouter CLI" on page 15, you can access the CLI of the vRouter. By executing commands in that
CLI, you can learn about various aspects of the running vRouter. The following examples assume that
you have already connected to the vRouter CLI. The commands that we show in this section do not
show a command prompt so that you can copy and paste them into your own vRouter.

We use the purel2cli command in most of the examples in this setion. The command has more options
than we show in the examples. In addition, the purel2cli has a help command that you can use to see
the available options.

The purel2cli Command

To see all the options of the purel2cli command in the vRouter CLI, execute the command with the
--help option.

purel2cli --help

Usage: purel2cli [--mac show]
[--vlan show]
[--vlan get <VLAN_ID>]
[--acl show <VLAN_ID>]
[--acl reset-counters <VLAN_ID>]
[--12stats get <VIF_ID> <VLAN_ID>]
[--clear VLAN_ID]
[--sock-dir <sock dir>]
[--help]

See the Current Status of Your Running vRouter

To see the status of the vRouter, enter the following command in the vRouter CLI:

ps -eaf|grep dpdk

The output from the command above looks like: root 127 93 99 Jul29 ? 82-20:31:49 /contrail-vrouter-

dpdk --no-daemon --socket-mem=1024 1024 --allow=0000:01:10.1 --allow=0000:01:10.0 --12_table_size=10240 --
yield_option @ --ddp --12_mode

The output contains several elements.

Table 4: vRouter Status

Flag Meaning

--12_mode The vRouter is running in L2 mode.

Table 4: vRouter Status (Continued))

Flag

--12_table_size

--allow=<PCI Id>

--ddp

Show MAC Table

Meaning

The current number of entries in the MAC table.
The default size is 10240 entries.

The PCI ID of fabric and fabric workload interfaces.
More than one ID can appear in the output. These
IDs serve as an allowlist.

Enable Intel DDP support.

We enable DDP by default in the values.yaml file in
the vRouter.

NOTE: The Intel XL710 NIC does not support DDP.

The following command shows the MAC addresses that the vRouter has dynamically learned.

purel2cli --mac show

The output from the above command looks like:

|| MAC vlan port

hit_count]| |

00:01:01:01:01:03 1221
00:01:01:01:01:02 1221
00:01:01:01:01:04 1221
00:01:01:01:01:01 1221
ba:4c:4c:75:90:fe 1250
Total Mac entries 5

g NN NN

1101892
1101819
1101863
1101879
12

Show Bridge Domain Table

The following command shows the VLAN to port mapping in the vRouter.

purel2cli --vlan show

The output from the above command looks like:

VLAN PORT

1201 1,2,3,4,
1202 1,2,3,4,
1203 1,2,3,4,
1204 1,2,3,4,
1205 1,2,3,4,

You can use the following form of the purel2cli command to see the bridge domain table entry for
a specific VLAN: purel2cli --vlan get <vlan-id>

Show L2 Statistics

There are several variations of the purel2cli command that allow you to display and filter L2
statistics in the vRouter. The base form of the command is: purel2cli -- 12stats get
<virtual_interface_ID> <VLAN_ID>. The table Table 5 on page 21 shows the available command
options and what they do. This section also provides a sample output using one of the options.

Table 5: purel2cli Command Options for L2 Statistics

Sample Command Function

purel2cli --12stats get 'x' 'x' Get statistics for all virtual interfaces (vif) and all
VLAN IDs.

purel2cli --12stats get 'x' 100 Get statistics for all vif that are part of VLAN 100

purel2cli --12stats get 1 '' Get statistics for all VLANSs for which interface 1 is
a member

purel2cli --12stats get 1 100 Get statistics for interface 1 and VLAN 100

The following command is an example of the L2 statistics for interface 2 and VLAN 1221:

purel2cli --12stats get 2 1221

Vlan id count: 1

Rx Pkts Rx Bytes Tx Pkts Tx Bytes
Unicast 245344824 48152682842 835552 1667761792
Broadcast 0 0 0 0
Multicast 0 0 0 0
Flood 0 0 0 0

Clear L2 Statistics

The following example shows commands that allow you to clear L2 statistics information from the
vRouter.

You can clear the statistics from the vRouter with the purel2cli command in the form: purel2cli --
clear <VLAN_ID>.

purel2cli --clear 's'

Clears all statistics from all VLANSs in the vRouter.

purel2cli --clear 100

Clears all statistics for VLAN id 100.

The dropstats Command

The vRouter tracks the packets that it drops and includes the reason for dropping them. Table 6 on page
23shows the common reasons for vRouter to drop a packet. When you execute the dropstats
command, the vRouter does not show a counter if the count for that counter is O.

Table 6: Dropstats Counters

Counter Name Meaning

L2 bd table drop No interfaces in bridge domain

L2 untag pkt drop Untagged packet arrives on trunk or sub-interface
L2 Invalid Vlan Packet VLAN does not match interface VLAN

L2 Mac Table Full No more entries available in the MAC table

L2 ACL drop Packet matched firewall filter (ACL) drop rule

L2 Src Mac lookup fail Unable to match (or learn) the source MAC address

Example output from the dropstats command looks like:

dropstats

L2 bd table Drop 43

L2 untag pkt drop 716

L2 Invalid Vlan 7288253

Rate limit exceeded 673179706

L2 Mac Table Full 41398787

L2 ACL drop 8937037

L2 Src Mac lookup fail 247046
The dpdkinfo Command

The dpdkinfo command provides insight into the status and statistics of DPDK. The dpdkinfo command
has many options. The following sections describe the available options and the example output from
the dpdkinfo command. You can run the dpdkinfo command only from within the vRouter-agent CLI.

dpdkinfo Command Usage

dpdkinfo

Usage: dpdkinfo [--help]

--version|-v Show
DPDK Version

--bond|-b Show
Master/Slave bond information

--lacp|-1 <all/conf> Show
LACP information from DPDK

--mempool |-m <all/<mempool-name>> Show

Mempool information

--stats|-n <vif index value> Show
Stats information

--xstats|-x <vif index value> Show

Extended Stats information

--1core|-c Show
Lcore information

--app|-a Show
App information

--ddp|-d <list> <list-flow> Show DDP
information for X710 NIC

--rx_vlan|-z <value> Show

VLan information
Optional: --buffsz <value> Send
output buffer size (less than 1000Mb)

dpdkinfo Lcore Information

This command shows the Lcores assigned to DPDK VF fabric interfaces and the queue ID for each
interface.

dpdkinfo -c

No. of forwarding lcores: 4

Lcore 10:
Interface: 0000:18:01.1 Queue ID: 0
Interface: 0000:18:0d.1 Queue ID: 0

Interface: 0000:86:00.0 Queue ID: 0

Lcore 11:

Interface: 0000:18:01.1 Queue ID: 1

Interface: 0000:18:0d.1 Queue ID: 1

Interface: 0000:86:00.0 Queue ID: 1
Lcore 12:

Interface: 0000:18:01.1 Queue ID: 2

Interface: 0000:18:0d.1 Queue ID: 2

Interface: 0000:86:00.0 Queue ID: 2
Lcore 13:

Interface: 0000:18:01.1 Queue ID: 3

Interface: 0000:18:0d.1 Queue ID: 3

Interface: 0000:86:00.0 Queue ID: 3

dpdkinfo Memory Pool Information

This command shows all of the memory pool information.

dpdkinfo -m all

rss_mempool 16384 1549 14835
frag_direct_mempool 4096 0 4096
frag_indirect_mempool 4096 0 4096
packet_mbuf_pool 8192 2 8190

dpdkinfo Statistics Information

This command displays statistical information for a specific interface.

dpdkinfo -n 3

Interface Info(0000:18:0d.1):
RX Device Packets:6710, Bytes:1367533, Errors:@, Nombufs:0
Dropped RX Packets:0

TX Device Packets:0, Bytes:0, Errors:0
Queue Rx:

Tx:

Rx Bytes:

Tx Bytes:

Errors:

dpdkinfo Extended Statistics Information

This command displays extended statistical information for a specific interface.

dpdkinfo -x 3

Driver Name:net_iavf

Interface Info:0000:18:0d.1

Rx Packets:
rx_good_packets: 6701
rx_unicast_packets: 0
rx_multicast_packets: 2987
rx_broadcast_packets: 3714
rx_dropped_packets: 0

Tx Packets:
tx_good_packets: @
tx_unicast_packets: 0
tx_multicast_packets: @
tx_broadcast_packets: @
tx_dropped_packets: 0

Rx Bytes:
rx_good_bytes: 1365696

Tx Bytes:
tx_good_bytes: 0

Errors:
rx_missed_errors: 0
rx_errors: 0
tx_errors: 0
rx_mbuf_allocation_errors: 0
inline_ipsec_crypto_ierrors: 0
inline_ipsec_crypto_ierrors_sad_lookup: @
inline_ipsec_crypto_ierrors_not_processed: 0
inline_ipsec_crypto_ierrors_icv_fail: @

inline_ipsec_crypto_ierrors_length: 0

Others:
inline_ipsec_crypto_ipackets: @

Troubleshooting vRouter

For vRouter-agent debugging, we use Introspect. You can access the Introspect data at http:/<host
server |IP>:8085. Table 7 on page 27 shows a sample of the Introspect data..

NOTE: The table, Table 7 on page 27 shows grouped output. The cloud-native router does not

group or sort the output on live systems.

The http:// host server IP address.8085 page displays only a list of HTML links.

Table 7: Modules shown in contrail-vrouter-agent debug output

Link

agent.xml

agent_ksync.xml

agent_profile.xml

agent_stats_interval.xml

controller.xml

cpuinfo.xml

and Description

Shows agent operational data. Using this introspect,
you can see the list of interfaces, VMs, VNs, VRFs,
security groups, ACLs and mirror configurations.

Shows agent ksync layer for data objects such as
interfaces and bridge ports.

shows agent operdb, tasks, flows, and statistics
summary.

View and set collection period for statistics.

Shows the connection status of the jenr-controller
(cRPD)

Shows the CPU load and memory usage on the
compute node.

Table 7: Modules shown in contrail-vrouter-agent debug output (Continued)

Link and Description

ifmap_agent.xml Shows the current configuration data received from
ifmap.

kstate.xml Shows data configured in the vRouter data path.

mac_learning.xml Shows entries in vRouter-agent MAC learning table.

sandesh_trace.xml Gives the different agent module traces such as oper,

ksync, mac learning, and grpc.

sandesh_uve.xml Lists all the user visible entitities (UVESs) in the
vRouter-agent. The UVEs are used for analytics and
telemetry.

stats.xml Shows vRouter-agent slow path statistics such as error

packets, trapped packets, and debug statistics.

task.xml Shows vRouter-agent worker task details.

CHAPTER 4

JCNR-CNI

IN THIS CHAPTER

Benefits of JCNR-CNI | 30
JCNR-CNI Inside Cloud-Native Router | 30
JCNR-CNI Role in pod Creation | 31

Network Attachment Definitions | 32

Read this chapter to learn about JCNR-CNI, which is the primary container network interface for JCNR.

The JCNR-CNI manages the secondary interfaces that the pods use. It creates the required interfaces
based on the configuration in YAML-formatted network attachment definition (NAD) files. The JNCR-
CNI configures some interfaces before passing them to their final location or connection point and
provides an API for further interface configuration options.

JCNR-CNI instantiates different kinds of pod interfaces.

Creates virtio-based high performance interfaces for pods that leverage the DPDK data plane
Creates veth pair interfaces that allow pods to communicate using the Linux Kernel networking stack
Creates pod interfaces in access or trunk mode

Attaches pod interfaces to bridge domains

Supports IPAM plug-in for Dynamic IP address allocation

Allocates unique socket interfaces for virtio interfaces

Applies L2 access control lists (ACLs) to JCNR-vRouter

Attaches pod interfaces to a bridge domain

Manages the networking tasks in pods such as assigning IP addresses and setting up of interfaces
between the pod and host in a Kubernetes cluster

Applies Kubernetes network policies that are translated to firewall filter rules. The JCNR-CNI sends
the firewall policies to JCNR-vRouter for application in the data plane.

e Connects pod interface to network: pod-to-pod and pod-to-network

o Integrates with JCNR-vRouter for offloading packet processing

Benefits of JCNR-CNI

e Improved pod interface management
e Customizable administrative and monitoring capabilities
e Improved application security

¢ Increased performance through tight integration with cRPD and vRouter components

JCNR-CNI Inside Cloud-Native Router

JCNR-CNI is a specialized container network interface that can make a variety of network connections.
It operates together with the Multus CNI. Figure 3 on page 31 shows how JCNR-CNI interacts with the
other components in Juniper Cloud-Native Router.

Figure 3: JCNR-CNI in an L2 Deployment

K8s/kubelet/Multus

Towards
PE

I JCNR-CNI Role in pod Creation

When you create a pod for use in the cloud-native router, the Kubernetes component known as kubelet
calls the Multus CNI to set up pod networking and interfaces. Multus reads the annotations section of
the pod.yaml file to find the NADs. If a NAD points to JCNR-CNI as the CNI plug in, Multus calls the
JCNR-CNI to set up the pod interface. JCNR-CNI creates the interface as specified in the NAD. JCNR-
CNI then generates and pushes a configuration into cRPD.

31

Network Attachment Definitions

The NAD files are YAML files that the Multus CNI uses during the interface creation phase of pod
creation. A NAD specifies the interface MAC addresses and allocates IP addresses. Each pod can use
one or more NAD, typically one per pod interface. In the pod YAML file, the NAD to use for pod
creation is listed under the network annotations section. In addition to creating the interface on pods,

NADs can create virtual switches. The NAD attaches pod interfaces to L2 switching instances. The table,

Table 8 on page 32 describes the L2 interface types and modes supported.

Table 8: NAD - L2 Interface Modes

Interface Mode

Access

Trunk

Characteristics

Allows untagged packets to
traverse the link to the pod

Allows packets within specifically
configured VLAN range

No IP address allocation by CNI

If IP address is needed, the pod
must have its own allocation
method such as DHCP

Comments

Must be explicitly bound to a
bridge domain

Virtual switches use access mode
for non-DPDK interfaces and
applications like SSH and syslog

Implicitly part of one or more
bridge domains

Virtual switches in trunk mode
carry DU user-plane traffic

Dynamically add and remove
network slices in 5G environments
without restarting the Pod

Juniper Cloud-Native Router -

Features

Cloud-Native Router Common Features | 34
Cloud-Native Router L2 Features | 45

Cloud-Native Router L3 Features | 65

Cloud-Native Router Common Features

SUMMARY IN THIS SECTION
Read this chapter to learn about the common Juniper Cloud-Native Router Interface
features of the Juniper Cloud-Native Router. We Types | 34

discuss cloud-native router interface types and other

features that are present in both L2 and L3
deployment mode. Juniper Cloud-Native Router Licensing | 41

Logging and Notifications | 38

Useful CLI Commands | 42

Juniper Cloud-Native Router Interface Types

Juniper Cloud-Native Router supports the following types of interfaces:
o Agent interface

vRouter has only one agent interface. The agent interface enables communication between the
vRouter-agent and the vRouter. On the vRouter CLI when you issue the vif --list command, the
agent interface looks like this:

vifo/0 Socket: unix
Type:Agent HWaddr:00:00:5e:00:01:00
Vrf:65535 Flags:L2 QO0S:-1 Ref:3
RX queue errors to lcore 2 0 0 00 0000000
RX packets:0 bytes:0 errors:0
TX packets:650 bytes:99307 errors:0
Drops: 0

e Data Plane Development Kit (DPDK) Virtual Function (VF) workload interfaces

These interfaces connect to the radio units (RUs) or millimeter-wave distributed units (mmWave-
DUs) On the vRouter CLI when you issue the vif --list command, the DPDK VF workload interface
looks like this:

vife/5 PCI: 0000:ca:19.1 (Speed 10000, Duplex 1)
Type:Workload HWaddr:9e:52:29:9e:97:9b
Vrf:0 Flags:L2Vof Q0S:-1 Ref:9
RX queue packets:29087 errors:0
RX queue errors to lcore 0 0 0 0 0000000000
Fabric Interface: 0000:ca:19.1 Status: UP Driver: net_iavf
Vlan Mode: Access Vlan Id: 1250 OVlan Id: 1250
RX packets:29082 bytes:6766212 errors:5
TX packets:0 bytes:0 errors:0
Drops:29896

o DPDK VF fabric interfaces

DPDK VF fabric interfaces, which are associated with the physical network interface card (NIC) on
the host server, accept traffic from multiple VLANs. On the vRouter CLI when you issue the vif --list
command, the DPDK VF fabric interface looks like this:

vife/1 PCI: 0000:31:01.0 (Speed 10000, Duplex 1)
Type:Physical HWaddr:d6:22:c5:42:de:c3
Vrf:65535 Flags:L2Vof Q0S:-1 Ref:12
RX queue packets:11813 errors:1
RX queue errors to lcore 00 0 0 0000000010
Fabric Interface: 0000:31:01.0 Status: UP Driver: net_iavf
Vlan Mode: Trunk Vlan: 1001-1100
RX packets:0 bytes:0 errors:49962
TX packets:18188356 bytes:2037400554 errors:0Q
Drops:49963

e Active or standby bond interfaces

Bond interfaces accept traffic from multiple VLANs. A bond interface runs in the active or standby
mode (mode 0).

On the vRouter CLI when you issue the vif --1list command, the bond interface looks like this:

vife/2 PCI: 0000:00:00.0 (Speed 10000, Duplex 1)
Type:Physical HWaddr:32:f8:ad:8c:d3:bc
Vrf:65535 Flags:L2Vof Q0S:-1 Ref:8
RX queue packets:1882 errors:0
RX queue errors to lcore 00 0 000000000
Fabric Interface: eth_bond_bond® Status: UP Driver: net_bonding
Slave Interface(@): 0000:81:01.0 Status: UP Driver: net_iavf
Slave Interface(1): 0000:81:03.0 Status: UP Driver: net_iavf
Vlan Mode: Trunk Vlan: 751-755
RX packets:8108366000 bytes:486501960000 errors:4234
TX packets:65083776 bytes:4949969408 errors:0
Drops: 8108370394

e Pod interfaces using virtio and the DPDK data plane

Virtio interfaces accept traffic from multiple VLANs and are associated with pod interfaces that use
virtio on the DPDK data plane.

On the vRouter CLI when you issue the vif --list command, the virtio with DPDK data plane
interface looks like this:

vife/3 PMD: vhost242ip-93883f16-9ebb-4acf-b
Type:Virtual HWaddr:00:16:3e:7e:84:a3
Vrf:65535 Flags:L2 Q0S:-1 Ref:13
RX queue errors to lcore 0 0 0 0 0 000000000
Vlan Mode: Trunk Vlan: 1001-1003
RX packets:0 bytes:@ errors:0
TX packets:10604432 bytes:1314930908 errors:0
Drops:0
TX port packets:@ errors:10604432

e Pod interfaces using virtual Ethernet (veth) pairs and the DPDK data plane

Pod interfaces that use veth pairs and the DPDK data plane are access interfaces rather than trunk
interfaces. This type of a pod interface allows traffic from only one VLAN to pass.

On the vRouter CLI when you issue the vif --1list command, the veth pair with DPDK data plane
interface looks like this:

vife/4 Ethernet: jvknet1-88c44c3
Type:Virtual HWaddr:02:00:00:3a:8f:73
Vrf:0 Flags:L2Vof Q0S:-1 Ref:10
RX queue packets:524 errors:0
RX queue errors to lcore 2 0 0 0 0 000000000
Vlan Mode: Access Vlan Id: 3001 OVlan Id: 3001
RX packets:9 bytes:802 errors:515
TX packets:0 bytes:0@ errors:0
Drops: 525

e VLAN sub-interfaces

Starting in Juniper Cloud-Native Router Release 22.4, the cloud-native router supports the use of
VLAN sub-interfaces. VLAN sub-interfaces are like logical interfaces on a physical switch or router.
When you run the cloud-native router in L2 mode, you must associate each sub-interface with a
specific VLAN. On the JCNR-vRouter, a VLAN sub-interface look like this:

vife/5 Virtual: vhostnet1-71cd7db1-1a5e-49.3003 Vlan(o/i)(,S): 3003/3003 Parent:vife/4
Type:Virtual(Vlan) HWaddr:00:99:99:99:33:09
Vrf:0 Flags:L2 Q0S:-1 Ref:3
RX queue errors to lcore 00 0 000000000
RX packets:@ bytes:0 errors:0
TX packets:0 bytes:0 errors:0
Drops:0

e Physical Function (PF) workload interfaces
e PF fabric interfaces

e The vhostO interface

The vhost@ interface is an L3-only interface. When you run the cloud-native router in L3 mode, you
must map the vhoste interface to a kernel-based physical interface such as ethe, en1, etc. You make the
mapping by adjusting the value of the vrouter_dpdk_physical_interface: key in the file
Juniper_Cloud_Native_Router_version/helmchart/values_L3.yaml prior to deployment. In this
configuration, the system uses the same physical interface for both IPv4 and IPvé traffic.

Alternatively, you can choose specific interfaces for IPv4 and IPvé traffic by entering the appropriate
physical interface name in the vhost_interface_ipv4: and vhost_interface_ipv6: keys respectively.

NOTE: vRouter does not support the vhoste interface when run in L2 mode.

The vRouter-agent detects L2 mode in values.yaml during deployment, so does not wait for the
vhost@ interface to come up before completing installation. The vRouter-agent does not send a
vhost interface add message so the vRouter doesn't create the vhost0 interface.

Pods are the Kubernetes element that contains the interfaces used in cloud-native router. You control
interface creation by manipulating the value portion of the key:value pairs in YAML configuration files.
The cloud-native router uses a pod-specific file and a network attachment device (NAD)-specific file for
pod and interface creation. During pod creation, Kubernetes consults the pod and NAD configuration
files and creates the needed interfaces from the values contained within the NAD configuration file.

You can see example NAD and pod YAML files in the "L2 - Add User Pod with Kernel Access to a Cloud-
Native Router Instance" on page 73 and "L2 - Add User Pod with virtio Trunk Ports to a Cloud-Native
Router Instance" on page 83 examples.

Logging and Notifications

IN THIS SECTION

File Locations | 38

Notifications | 39

Read this topic to learn about logging and notification functions in Juniper Cloud-Native Router. We
discuss the location of log files, what you can log, and various log levels. You can also learn about the
available notifications and how the notifications are implemented in the cloud-native router.

File Locations

The Juniper Cloud-Native Router pods and containers use syslog as their logging mechanism. You can
determine the location of the log files at the deployment time by retaining or changing the value of the
log_path key in the values.yaml file. By default, the location of the log files is /var/log/jcnr. The system
stores log files from all the cloud-native router pods and containers in the log_path directory.

In addition, a syslog-ng pod stores event notification data in JSON format on the host server. The
syslog-ng pod stores the JSON-formatted notifications in the directory specified by the
syslog_notifications key in the values.yaml file. By default, the file location is /var/log/jcnr and the
filename is jenr_notifications.json. You can change the location and filename by changing the value of
the syslog_notifications key before the cloud-native router deployment.

When you use the default file locations, the /var/log/jcnr directory displays the following files:

[root@jcnr-1 /var/log/jcnrl# 1s

contrail-vrouter-agent.log contrail-vrouter-agent.log.2 contrail-vrouter-dpdk.log
jenr_notifications. json

contrail-vrouter-agent.log.1 contrail-vrouter-dpdk-init.log jcnr-cni.log

vrouter-kernel-init.log

NOTE: The host server must manage the log rotation for the contrail-vrouter-dpdk.log and the

jcnr-cni.log files.

Notifications

The syslog-ng pod continuously monitors the preceding log files for notification events such as interface
up, interface down, interface add, and so on. When these events appear in a log file, syslog-ng converts
the log events into notification events and stores the events in JSON format within the
syslog_notifications file configured in the values.yaml file.

As of Juniper Cloud-Native Router Release 22,2 syslog-ng stores the following notifications:

Table 9: Supported Notifications

Notification Source Pod
License Near Expiry cRPD
License Expired cRPD
License Invalid cRPD

License OK cRPD

Table 9: Supported Notifications (Continued)

Notification Source Pod

JCNR Init Success Deployer

JCNR Init Failure Deployer

Upstream Fabric Bond Member Link Up vRouter

Upstream Fabric Bond Member Link Down vRouter

Upstream Fabric Bond Link Up vRouter

Upstream Fabric Bond Link Down vRouter

Downstream Fabric Link Up vRouter

Downstream Fabric Link Down vRouter

Appliance Link Up vRouter

Appliance Link Down vRouter

Any JCNR Application Critical Errors vRouter

JCNR MAC Table Limit Reached vRouter

JCNR CLI Start cRPD or vRouter-Agent
JCNR CLI Stop cRPD or vRouter-Agent
JCNR Kernel App Interface Up vRouter

JCNR Kernel App Interface Down vRouter

Table 9: Supported Notifications (Continued)

Notification Source Pod
JCNR Virtio User Interface Up vRouter
JCNR Virtio User Interface Down vRouter
SEE ALSO
| No Link Title

Juniper Cloud-Native Router Licensing

IN THIS SECTION

Licensing in the Juniper Cloud-Native Router | 41

Read this section to learn about Juniper Cloud-Native Router licensing.

Licensing in the Juniper Cloud-Native Router

Starting in Juniper Cloud-Native Router Release 22.2, we've enabled our Juniper Agile Licensing (JAL)

model. JAL ensures that features are used in compliance with Juniper's end-user license agreement. You

can purchase licenses for the Juniper Cloud-Native Router software through your Juniper Account Team.
You can apply the licenses by using the CLI of the cloud-native router controller. For details about
managing multiple license files for multiple cloud-native router deployments, see Juniper Agile Licensing

Overview

If your cRPD pod displays its state as running when you issue the command kubectl get pods -A on the

host server, then you have properly applied your license file.

https://www.juniper.net/documentation/us/en/software/license/licensing/topics/topic-map/jal-overview.html
https://www.juniper.net/documentation/us/en/software/license/licensing/topics/topic-map/jal-overview.html

NOTE: In Juniper Cloud-Native Router Releases 22.3 and 22.4, we only monitor license
compliance. We do not enforce license compliance.

After configuring, apply your firewall filters to a bridge domain using a cRPD configuration
command similar to:set routing-instances vswitch bridge-domains bd3001 forwarding-options filter input
filter1l. Then, commit the configuration for the firewall filter to take effect.

To see the how many packets matched the filter (per VLAN), you can use the cRPD CLI and issue
the command:

show firewall filter filter1

The output from the above command looks like:

Filter : filterl vlan-id : 3001
Term Packet
t1 0

In this example, we applied the filter to the bridge domain bd3001. The filter has not yet matched
any packets.

Useful CLI Commands

This section provides some example CLI commands and their outputs. We also provide some command
completion example outputs. These outputs allow you to see the available command hierarchy which
you can explore on your cloud-native router system.

You can see the bridge command hierarchy with the show bridge ? command shown as follows.

show bridge ?
Possible completions:
mac-table Show media access control table

statistics Show bridge statistics information

If you look further into the hierarchy, you see:

show bridge mac-table ?

Possible completions:

<[Enter]> Execute this command

count Number of MAC address

mac-address MAC address in the format XX:XX:XX:XX:XX:XX

vlan-id Display MAC address learned on a specified VLAN or 'all-vlan'

| Pipe through a command

If you use the <[Enter]> option, you see something like:

show bridge mac-table

Routing Instance : default-domain:default-project:ip-fabric:__default__

Bridging domain VLAN id : 3002

MAC MAC Logical
address flags interface
00:00:5E:00:53:01 D bond@

The show bridge mac-table command displays the L2 MAC table which is dynamically learned by the

vRouter.

If you look at the other option, statistics, you see:

show bridge statistics ?
Possible completions:

<[Enter]> Execute this command

vlan-id Display statistics for a particular vlan (1..4094)

| Pipe through a command

If you use the <[Enter]> option, you see:

show bridge statistics
Bridge domain vlan-id: 100

Local interface: bond@

Broadcast packets Tx : @ Rx : 0
Multicast packets Tx : @ Rx : 0
Unicast packets Tx : 0 Rx : 0
Broadcast bytes Tx 0 Rx : 0

Multicast bytes Tx 0 Rx : 0
Unicast bytes Tx 0 Rx : 0
Flooded packets 0
Flooded bytes : 0
Local interface: ensifovi
Broadcast packets Tx 0 Rx : 0
Multicast packets Tx 0 Rx : 0
Unicast packets Tx : 0 Rx : 0
Broadcast bytes Tx 1 0 Rx : 0
Multicast bytes Tx : 0 Rx : 0
Unicast bytes Tx 1 0 Rx : 0
Flooded packets : 0
Flooded bytes 1 0
Local interface: ensi1f3vi
Broadcast packets Tx 0 Rx : 0
Multicast packets Tx 0 Rx : 0
Unicast packets Tx 1 0 Rx : 0
Broadcast bytes Tx : 0 Rx : 0
Multicast bytes Tx 1 0 Rx : 0
Unicast bytes Tx : 0 Rx : 0
Flooded packets 1 0

The show bridge statistics command displays the L2 VLAN traffic statistics per interface within a
bridge domain.

To see the firewall (ACL) configuration:

show configuration firewall:firewall
family {
bridge {
filter filterl {
term t1 {
from {
destination-mac-address 10:30:30:30:30:31;
source-mac-address 10:30:30:30:30:30;

ether-type oam;

}

then {
discard;

}

Cloud-Native Router L2 Features

SUMMARY IN THIS SECTION
Read this chapter to learn about the features of the Juniper Cloud-Native Router Deployment
Juniper Cloud-Native Router running in L2 mode. We Modes | 45

discuss L2 metrics and telemetry, L2 ACLs (firewall
filters), MAC learning and aging, and L2 BUM traffic
rate limiting.

Juniper Cloud-Native Router L2 Interface
Types | 46

L2 Metrics and Telemetry | 50

L2 ACLs (Firewall Filters) | 56

MAC Learning and Aging | 59

BUM Rate Limiting | 61

L2 API to Force Bond Link Switchover | 61
L2 Quality of Service (QoS) | 62

Juniper Cloud-Native Router Deployment Modes

Starting in Juniper Cloud-Native Router Release 22.4, you can deploy and operate Juniper Cloud-Native
Router in either L2 or L3 mode. You control the deployment mode by editing the appropriate values.yaml
file prior to deployment.

To deploy the cloud-native router in L2 mode, retain or modify the values in the file
Juniper_Cloud_Native_Router_version-number/helmchart/values.yaml.

Throughout the rest of this chapter we identify those features that are only available in L2 mode by
beginning the feature name with L2.

In L2 mode, the cloud-native router behaves like a switch and so performs no routing functions and runs
no routing protocols. The pod network uses VLANSs to direct traffic to various destinations.

To deploy the cloud-native router in L3 mode, retain or modify the values in the file
Juniper_Cloud_Native_Router_version-number/helmchart/values_L3.yaml,

In L3 mode, the cloud-native router behaves like a router and so performs routing functions and runs
routing protocols such as ISIS, BGP, OSPF, and segment routing-MPLS. In L3 mode, the pod network is
divided into an IPv6 underlay network and an IPv4 or IPvé overlay network. The IPvé underlay network
is used for control plane traffic.

Juniper Cloud-Native Router L2 Interface Types

Juniper Cloud-Native Router supports the following types of interfaces:
e Agent interface

vRouter has only one agent interface. The agent interface enables communication between the
vRouter-agent and the vRouter. On the vRouter CLI when you issue the vif --list command, the
agent interface looks like this:

vifo/0 Socket: unix
Type:Agent HWaddr:00:00:5e:00:01:00
Vrf:65535 Flags:L2 Q0S:-1 Ref:3
RX queue errors to lcore 0 0 0 0 0 0 0 00000
RX packets:0 bytes:0 errors:0
TX packets:650 bytes:99307 errors:0
Drops:0

¢ Data Plane Development Kit (DPDK) Virtual Function (VF) workload interfaces

These interfaces connect to the radio units (RUs) or millimeter-wave distributed units (mmWave-
DUs) On the vRouter CLI when you issue the vif --list command, the DPDK VF workload interface
looks like this:

vife/5 PCI: 0000:ca:19.1 (Speed 10000, Duplex 1)
Type:Workload HWaddr:9e:52:29:9e:97:9b
Vrf:0 Flags:L2Vof Q0S:-1 Ref:9
RX queue packets:29087 errors:0
RX queue errors to lcore 0 0 0 0 0000000000
Fabric Interface: 0000:ca:19.1 Status: UP Driver: net_iavf

Vlan Mode: Access Vlan Id: 1250 0Vlan Id: 1250
RX packets:29082 bytes:6766212 errors:5

TX packets:0 bytes:0 errors:0

Drops:29896

e DPDK VF fabric interfaces

DPDK VF fabric interfaces, which are associated with the physical network interface card (NIC) on
the host server, accept traffic from multiple VLANs. On the vRouter CLI when you issue the vif --list
command, the DPDK VF fabric interface looks like this:

vife/1 PCI: 0000:31:01.0 (Speed 10000, Duplex 1)
Type:Physical HWaddr:d6:22:c5:42:de:c3
Vrf:65535 Flags:L2Vof Q0S:-1 Ref:12
RX queue packets:11813 errors:1
RX queue errors to lcore 0 0 0 00 000000010
Fabric Interface: 0000:31:01.0 Status: UP Driver: net_iavf
Vlan Mode: Trunk Vlan: 1001-1100
RX packets:0 bytes:@ errors:49962
TX packets:18188356 bytes:2037400554 errors:0
Drops:49963

o Active or standby bond interfaces

Bond interfaces accept traffic from multiple VLANs. A bond interface runs in the active or standby
mode (mode 0).

On the vRouter CLI when you issue the vif --list command, the bond interface looks like this:

vife/2 PCI: 0000:00:00.0 (Speed 10000, Duplex 1)
Type:Physical HWaddr:32:f8:ad:8c:d3:bc
Vrf:65535 Flags:L2Vof Q0S:-1 Ref:8
RX queue packets:1882 errors:0
RX queue errors to lcore 0 0 000000000
Fabric Interface: eth_bond_bondd Status: UP Driver: net_bonding
Slave Interface(9): 0000:81:01.0 Status: UP Driver: net_iavf
Slave Interface(1): 0000:81:03.0 Status: UP Driver: net_iavf
Vlan Mode: Trunk Vlan: 751-755
RX packets:8108366000 bytes:486501960000 errors:4234

TX packets:65083776 bytes:4949969408 errors:0
Drops: 8108370394

Pod interfaces using virtio and the DPDK data plane

Virtio interfaces accept traffic from multiple VLANs and are associated with pod interfaces that use
virtio on the DPDK data plane.

On the vRouter CLI when you issue the vif --list command, the virtio with DPDK data plane
interface looks like this:

vifo/3 PMD: vhost242ip-93883f16-9ebb-4acf-b
Type:Virtual HWaddr:00:16:3e:7e:84:a3
Vrf:65535 Flags:L2 Q0S:-1 Ref:13
RX queue errors to lcore 0 0 0 0 0 0 00000000
Vlan Mode: Trunk Vlan: 1001-1003
RX packets:0 bytes:@ errors:0
TX packets:10604432 bytes: 1314930908 errors:0
Drops:0
TX port packets:@ errors:10604432

Pod interfaces using virtual Ethernet (veth) pairs and the DPDK data plane

Pod interfaces that use veth pairs and the DPDK data plane are access interfaces rather than trunk
interfaces. This type of a pod interface allows traffic from only one VLAN to pass.

On the vRouter CLI when you issue the vif --1list command, the veth pair with DPDK data plane
interface looks like this:

vife/4 Ethernet: jvknet1-88c44c3
Type:Virtual HWaddr:02:00:00:3a:8f:73
Vrf:0 Flags:L2Vof Q0S:-1 Ref:10
RX queue packets:524 errors:0
RX queue errors to lcore 0 0 0 0 0000000000
Vlan Mode: Access Vlan Id: 3001 OVlan Id: 3001
RX packets:9 bytes:802 errors:515
TX packets:0 bytes:0@ errors:0
Drops: 525

VLAN sub-interfaces

Starting in Juniper Cloud-Native Router Release 22.4, the cloud-native router supports the use of
VLAN sub-interfaces. VLAN sub-interfaces are like logical interfaces on a physical switch or router.
When you run the cloud-native router in L2 mode, you must associate each sub-interface with a
specific VLAN. On the JCNR-vRouter, a VLAN sub-interface look like this:

vife/5 Virtual: vhostnet1-71cd7db1-1a5e-49.3003 Vlan(o/i)(,S): 3003/3003 Parent:vifo/4
Type:Virtual(Vlan) HWaddr:00:99:99:99:33:09
Vrf:0 Flags:L2 QO0S:-1 Ref:3
RX queue errors to lcore 0 0 0 000000000
RX packets:0 bytes:0@ errors:0
TX packets:0 bytes:0 errors:0
Drops:0

e Physical Function (PF) workload interfaces

e PF fabric interfaces

NOTE: vRouter does not support the vhoste interface when run in L2 mode.

The vRouter-agent detects L2 mode in values.yaml during deployment, so does not wait for the
vhost@ interface to come up before completing installation. The vRouter-agent does not send a
vhost interface add message so the vRouter doesn't create the vhosto interface.

In L3 mode, the vhosto interface is present and functional.

Pods are the Kubernetes element that contains the interfaces used in cloud-native router. You control
interface creation by manipulating the value portion of the key:value pairs in YAML configuration files.
The cloud-native router uses a pod-specific file and a network attachment device (NAD)-specific file for
pod and interface creation. During pod creation, Kubernetes consults the pod and NAD configuration
files and creates the needed interfaces from the values contained within the NAD configuration file.

You can see example NAD and pod YAML files in the "L2 - Add User Pod with Kernel Access to a Cloud-
Native Router Instance" on page 73 and "L2 - Add User Pod with virtio Trunk Ports to a Cloud-Native
Router Instance" on page 83 examples.

L2 Metrics and Telemetry

IN THIS SECTION

Viewing L2 Metrics | 50

Read this topic to learn how to view Layer 2 (L2) metrics from an instance of Juniper Cloud-Native
Router.

Viewing L2 Metrics

Juniper Cloud-Native Router comes with telemetry capabilities that enable you to see performance
metrics and telemetry data. The container contrail-vrouter-telemetry-exporter provides you this
visibility. This container runs along side the other vRouter containers in the contrail-vrouter-masters
pod.

The telemetry exporter periodically queries the Introspect agent on the vRouter-agent for statistics and
reports metrics information in response to the Prometheus scrape requests. You can directly view the
telemetry data by using the following URL: http:// host server IP address.8070. The following table
shows a sample output.

NOTE: We've grouped the output shown in the following table. The cloud-native router does not
group or sort the output on live systems.

Table 10: Sample Telemetry Output

Group

Memory usage per
vRouter

Sample Output

TYPE virtual_router_system_memory_cached_bytes gauge

HELP virtual_router_system_memory_cached_bytes Virtual router system memory cached
virtual_router_system_memory_cached_bytes{vrouter_name="jcnr.example.com"} 2635970448
TYPE virtual_router_system_memory_buffers gauge

HELP virtual_router_system_memory_buffers Virtual router system memory buffer
virtual_router_system_memory_buffers{vrouter_name="jcnr.example.com"} 32689

TYPE virtual_router_system_memory_bytes gauge

HELP virtual_router_system_memory_bytes Virtual router total system memory
virtual_router_system_memory_bytes{vrouter_name="jcnr.example.com"} 2635970448

TYPE virtual_router_system_memory_free_bytes gauge

HELP virtual_router_system_memory_free_bytes Virtual router system memory free
virtual_router_system_memory_free_bytes{vrouter_name="jcnr.example.com"} 2635969296
TYPE virtual_router_system_memory_used_bytes gauge

HELP virtual_router_system_memory_used_bytes Virtual router system memory used
virtual_router_system_memory_used_bytes{vrouter_name="jcnr.example.com"} 32689

TYPE virtual_router_virtual_memory_kilobytes gauge

HELP virtual_router_virtual_memory_kilobytes Virtual router virtual memory
virtual_router_virtual_memory_kilobytes{vrouter_name="jcnr.example.com"} @

TYPE virtual_router_resident_memory_kilobytes gauge

HELP virtual_router_resident_memory_kilobytes Virtual router resident memory
virtual_router_resident_memory_kilobytes{vrouter_name="jcnr.example.com"} 32689

TYPE virtual_router_peak_virtual_memory_bytes gauge

HELP virtual_router_peak_virtual_memory_bytes Virtual router peak virtual memory

virtual_router_peak_virtual_memory_bytes{vrouter_name="jcnr.example.com"} 2894328001

Table 10: Sample Telemetry Output (Continued)

Group

Packet count per
interface

Sample Output

TYPE virtual_router_phys_if_input_packets_total counter

HELP virtual_router_phys_if_input_packets_total Total packets received by physical
interface
virtual_router_phys_if_input_packets_total{vrouter_name="jcnr.example.com",interface_n
ame="bond@"} 1483

TYPE virtual_router_phys_if_output_packets_total counter

HELP virtual_router_phys_if_output_packets_total Total packets sent by physical
interface
virtual_router_phys_if_output_packets_total{vrouter_name="jcnr.example.com",interface_
name="bond@"} 32969

TYPE virtual_router_phys_if_input_bytes_total counter

HELP virtual_router_phys_if_input_bytes_total Total bytes received by physical
interface
virtual_router_phys_if_input_bytes_total{interface_name="bond0",vrouter_name="jcnr.exa
mple.com"} 125558

TYPE virtual_router_phys_if_output_bytes_total counter

HELP virtual_router_phys_if_output_bytes_total Total bytes sent by physical
interface
virtual_router_phys_if_output_bytes_total{vrouter_name="jcnr.example.com",interface_na
me="bond0"} 4597076
virtual_router_phys_if_input_bytes_total{vrouter_name="jcnr.example.com",interface_nam
e="bond@"} 228300499320
virtual_router_phys_if_output_bytes_total{interface_name="bond@",vrouter_name="jcnr.ex
ample.com"} 228297889634
virtual_router_phys_if_input_packets_total{interface_name="bond@",vrouter_name="jcnr.e
xample.com"} 1585421179
virtual_router_phys_if_output_packets_total{vrouter_name="jcnr.example.com",interface_
name="bond@"} 1585402623
virtual_router_phys_if_output_packets_total{interface_name="bond@",vrouter_name="jcnr.
example.com"} 1585403344

Table 10: Sample Telemetry Output (Continued)

Group

CPU usage per
vRouter

Drop packet count
per vRouter

Sample Output

TYPE virtual_router_cpu_Imin_load_avg gauge

HELP virtual_router_cpu_lmin_load_avg Virtual router CPU 1 minute load average
virtual_router_cpu_1min_load_avg{vrouter_name="jcnr.example.com"} 0.11625

TYPE virtual_router_cpu_5min_load_avg gauge

HELP virtual_router_cpu_5min_load_avg Virtual router CPU 5 minute load average
virtual_router_cpu_5min_load_avg{vrouter_name="jcnr.example.com"} 0.109687

TYPE virtual_router_cpu_15min_load_avg gauge

HELP virtual_router_cpu_15min_load_avg Virtual router CPU 15 minute load average

virtual_router_cpu_15min_load_avg{vrouter_name="jcnr.example.com"} 0.110156

TYPE virtual_router_dropped_packets_total counter
HELP virtual_router_dropped_packets_total Total packets dropped

virtual_router_dropped_packets_total{vrouter_name="jcnr.example.com"} 35850

Table 10: Sample Telemetry Output (Continued)

Group

Packet count per
interface per VLAN

Sample Output

TYPE virtual_router_interface_vlan_multicast_input_packets_total counter

HELP virtual_router_interface_vlan_multicast_input_packets_total Total number of
multicast packets received on interface VLAN
virtual_router_interface_vlan_multicast_input_packets_total{interface_id="1",vlan_id="
100"} ©

TYPE virtual_router_interface_vlan_broadcast_output_packets_total counter

HELP virtual_router_interface_vlan_broadcast_output_packets_total Total number of
broadcast packets sent on interface VLAN
virtual_router_interface_vlan_broadcast_output_packets_total{interface_id="1",vlan_id=
"100"} ©

TYPE virtual_router_interface_vlan_broadcast_input_packets_total counter

HELP virtual_router_interface_vlan_broadcast_input_packets_total Total number of
broadcast packets received on interface VLAN
virtual_router_interface_vlan_broadcast_input_packets_total{interface_id="1",vlan_id="
100"} @

TYPE virtual_router_interface_vlan_multicast_output_packets_total counter

HELP virtual_router_interface_vlan_multicast_output_packets_total Total number of
multicast packets sent on interface VLAN
virtual_router_interface_vlan_multicast_output_packets_total{interface_id="1",vlan_id=
"100"} ©

TYPE virtual_router_interface_vlan_unicast_input_packets_total counter

HELP virtual_router_interface_vlan_unicast_input_packets_total Total number of
unicast packets received on interface VLAN
virtual_router_interface_vlan_unicast_input_packets_total{interface_id="1",vlan_id="10
0"} 0

TYPE virtual_router_interface_vlan_flooded_output_bytes_total counter

HELP virtual_router_interface_vlan_flooded_output_bytes_total Total number of

output bytes flooded to interface VLAN
virtual_router_interface_vlan_flooded_output_bytes_total{interface_id="1",vlan_id="100
"} o

TYPE virtual_router_interface_vlan_multicast_output_bytes_total counter

HELP virtual_router_interface_vlan_multicast_output_bytes_total Total number of
multicast bytes sent on interface VLAN
virtual_router_interface_vlan_multicast_output_bytes_total{interface_id="1",vlan_id="1
00"} 0

TYPE virtual_router_interface_vlan_unicast_output_packets_total counter

HELP virtual_router_interface_vlan_unicast_output_packets_total Total number of
unicast packets sent on interface VLAN
virtual_router_interface_vlan_unicast_output_packets_total{interface_id="1",vlan_id="1
00"} 0

Table 10: Sample Telemetry Output (Continued)

Group Sample Output

TYPE virtual_router_interface_vlan_broadcast_input_bytes_total counter

HELP virtual_router_interface_vlan_broadcast_input_bytes_total Total number of
broadcast bytes received on interface VLAN
virtual_router_interface_vlan_broadcast_input_bytes_total{interface_id="1",vlan_id="10
0"} 0

TYPE virtual_router_interface_vlan_multicast_input_bytes_total counter

HELP virtual_router_interface_vlan_multicast_input_bytes_total Total number of
multicast bytes received on interface VLAN
virtual_router_interface_vlan_multicast_input_bytes_total{vlan_id="100",interface_id="
1"} 0

TYPE virtual_router_interface_vlan_unicast_input_bytes_total counter

HELP virtual_router_interface_vlan_unicast_input_bytes_total Total number of
unicast bytes received on interface VLAN
virtual_router_interface_vlan_unicast_input_bytes_total{interface_id="1",vlan_id="100"
}eo

TYPE virtual_router_interface_vlan_flooded_output_packets_total counter

HELP virtual_router_interface_vlan_flooded_output_packets_total Total number of
output packets flooded to interface VLAN
virtual_router_interface_vlan_flooded_output_packets_total{interface_id="1",vlan_id="1
00"} 0

TYPE virtual_router_interface_vlan_broadcast_output_bytes_total counter

HELP virtual_router_interface_vlan_broadcast_output_bytes_total Total number of
broadcast bytes sent on interface VLAN
virtual_router_interface_vlan_broadcast_output_bytes_total{interface_id="1",vlan_id="1
00"} 0

TYPE virtual_router_interface_vlan_unicast_output_bytes_total counter

HELP virtual_router_interface_vlan_unicast_output_bytes_total Total number of
unicast bytes sent on interface VLAN
virtual_router_interface_vlan_unicast_output_bytes_total{interface_id="1",vlan_id="100
"} 0

Prometheus is an open-source systems monitoring and alerting toolkit. You can use Prometheus to
retrieve telemetry data from the cloud-native router host servers and view that data in the HTTP
format. A sample of Prometheus configuration looks like this:

- job_name: "prometheus-JCNR-1a2b3c"

metrics_path defaults to '/metrics'
scheme defaults to 'http'.

static_configs:
- targets: ["<host-server-IP>:8070"]

SEE ALSO

\ No Link Title

L2 ACLs (Firewall Filters)

IN THIS SECTION

L2 Firewall Filters | 56
Firewall Filter Example | 57
L2 Firewall Filter (ACL) Troubleshooting | 58

Read this topic to learn about Layer 2 access control lists (L2 ACLs) in the cloud-native router.

L2 Firewall Filters

Starting with Juniper Cloud-Native Router Release 22.2 we've included a limited firewall filter capability.
You can configure the filters using the Junos OS CLI within the cloud-native router controller, using
NETCONF, or the cloud-native router APIs.

During deployment, the system defines and applies firewall filters to block traffic from passing directly
between the router interfaces. You can dynamically define and apply more filters. Use the firewall filters
to:

o Define firewall filters for bridge family traffic.

e Define filters based on one or more of the following fields: source MAC address, destination MAC
address, or EtherType.

o Define multiple terms within each filter.
e Discard the traffic that matches the filter.

e Apply filters to bridge domains.

Firewall Filter Example

Below you can see an example of a firewall filter configuration from a cloud-native router deployment.

root@jcnr@1> show configuration firewall:firewall
family {
bridge {
filter example {
term t1 {
from {
destination-mac-address 10:10:10:10:10:11;
source-mac-address 10:10:10:10:10:10;
ether-type arp;
}
then {

discard;

NOTE: You can configure up to 16 terms in a single firewall filter.

The only then action you can configure in a firewall filter is the discard action.

After configuration, you must apply your firewall filters to a bridge domain using a cRPD configuration
command similar to:set routing-instances vswitch bridge-domains 643007 forwarding-options filter input Ffilter]
Then you must commit the configuration for the firewall filter to take effect.

To see how many packets matched the filter (per VLAN), you can issue the following command on the
cRPD CLI:

show firewall filter filter7

The command output looks like this:

Filter : filterl vlan-id : 3001

Term Packet
t1 0

In the preceding example, we applied the filter to the bridge domain bd3001. The filter has not yet
matched any packets.

L2 Firewall Filter (ACL) Troubleshooting

The following table lists some of the potential problems that you might face when you implement
firewall rules or ACLs in the cloud-native router. You run most of these commands on the host server.
The "Command" column indicates whether the command shown needs to run somewhere else.

Table 11: L2 Firewall Filter or ACL Troubleshooting
Problem Possible Causes and Resolution Command

Firewall filters or ACLs not working = gRPC connection (port 50052) to

the vRouter is down. netstat -antp|grep 50052

Check the gRPC connection.

The ui-pubd process is not running.
ps aux|grep ui-pubd

Check whether ui-pubd is running.

Firewall filter or ACL show The gRPC connection (port 50052)

commands not working to the vRouter is down. netstat -antp|grep 50052

Check the gRPC connection.

The firewall service is not running.
ps aux|grep firewall

show log filter.log

You must run this command in the
JCNR-controller (cRPD) CLI.

SEE ALSO

No Link Title
No Link Title
No Link Title

MAC Learning and Aging

IN THIS SECTION

MAC Learning | 59
MAC Entry Aging | 60

Juniper Cloud-Native Router provides automated learning and aging of MAC addresses. Read this topic
for an overview of the MAC learning and aging functionality in the cloud-native router.

MAC Learning

MAC learning enables the cloud-native router to efficiently send the received packets to their respective
destinations.The cloud-native router maintains a table of MAC addresses grouped by interface. The

table includes MAC addresses, VLANSs, and the interface on which the vRouter learns each MAC address
and VLAN. The MAC table informs the vRouter about the MAC addresses that each interface can reach.

The cloud-native router caches the source MAC address for a new packet flow to record the incoming
interface into the MAC table. The router learns the MAC addresses for each VLAN or bridge domain.
The cloud-native router creates a key in the MAC table from the MAC address and VLAN of the packet.
Queries sent to the MAC table return the interface associated with the key. To enable MAC learning, the
cloud-native router performs these steps:

e Records the incoming interface into the MAC table by caching the source MAC address for a new
packet flow.

e Learns the MAC addresses for each VLAN or bridge domain.
e Creates a key in the MAC table from the MAC address and VLAN of the packet.

If the destination MAC address and VLAN are missing (lookup failure), the cloud-native router floods the
packet out all the interfaces (except the incoming interface) in the bridge domain.

By default:
e MAC table entries time out after 60 seconds.
e The MAC table size is limited to 10,240 entries.

You can configure the aging timeout and MAC table size during deployment by editing the values.yaml
file under the jenr-vrouter directory on the host server. We recommend that you do not change the
default values.

You can see the MAC table entries by using:

e Introspect agent at http:/ host server IP.-8085/mac_learning.xml#Snh_FetchL2MacEntry.
e The command show bridge mac-table on the cRPD CLI.

e The command purel2cli --mac show on the CLI of the contrail-tools pod.

If you exceed the MAC address limit, the counter pkt_drop_due_to_mactable_limit increments. You can
see this counter by using the introspect agent at http:// host server IP.8085/Snh_AgentStatsReq.

If you delete or disable an interface, the cloud-native router deletes all the MAC entries associated with
that interface from the MAC table.

MAC Entry Aging

The aging timeout for cached MAC entries is 60 seconds. You can configure the aging timeout at
deployment time by editing the values.yaml file. The minimum timeout is 60 seconds and the maximum
timeout is 10,240 seconds. You can see the time that is left for each MAC entry through introspect at
http:// host server IP-8085/mac_learning.xml#Snh_FetchL2MacEntry. We show an example of the
output below:

12_mac_entry_list

vrf_id vlan_id mac index packets
time_since_add last_stats_change

0 1001 00:10:94:00:00:01 5644 615123154
12:55:14.248785 00:00:00.155450

0 1001 00:10:94:00:00:65 6480 615108294
12:55:14.247765 00:00:00.155461

0 1002 01:10:94:00:00:02 5628 615123173

12:55:14.248295 00:00:00.155470

BUM Rate Limiting

The rate limiting feature controls the rate of egress broadcast, unknown unicast, and multicast (BUM)
traffic on fabric interfaces. You specify the rate limit in bytes per second by adjusting
stormControlProfiles in the values.yaml file before deployment. The system applies the configured
profiles to all specified fabric interfaces in the cloud-native router. The maximum per-interface rate limit
value you can set is 1,000,000 bytes per second.

If the unknown unicast, broadcast, or multicast traffic rate exceeds the set limit on a specified fabric
interface, the vRouter drops the traffic. You can see the drop counter values by running the dropstats
command in the vRouter CLI. You can see the per-interface rate limit drop counters by running the
vRouter CLI command vif --get fabric_vif_ id --get-drop-statsFor example:

dropstats
L2 untag pkt drop 8832
L2 Src Mac lookup fail 880

Rate limit exceeded 29312474

When you configure a rate limit profile on a fabric interface, you can see the configured limit in bytes per
second when you run either vif --list or vif --get fabric_vif_id.

L2 API to Force Bond Link Switchover

When you run cloud-native router in L2 mode with cascaded nodes you can configure those nodes to
use bond interfaces. If you also configure the bond interfaces as BONDING_MODE_ACTIVE_BACKUP, the vRouter-
agent exposes the REST API call: curl -X POST http://127.0.0.1:9091/bond-switch/bond® on localhost port
9091. You can use this REST API call to force traffic to switch from the active interface to the standby
interface.

The vRouter contains two CLI commands that allow you to see the active interface in a bonded pair and
to see the traffic statistics associated with your bond interfaces. These commands are: dpdkinfo -b and
dpdkinfo -n respectively.

L2 Quality of Service (QoS)

IN THIS SECTION

QoS Overview | 62
QoS Example Configuration | 64

Viewing the QoS Configuration | 64

Starting in Juniper Cloud-Native Router Release 22.4, you can configure quality of service (QoS)
parameters including classification, marking, and queuing. The cloud-native router performs
classification and marking operations in vRouter and queing (scheduling) operations in the physical
network interface card (NIC). Scheduling is only supported on the E810 NIC.

QoS Overview

You enable QoS prior to the deploy time by editing the values.yaml file in Juniper-Cloud-Native-Router-
version-number/helmchart directory and changing the gosEnable value to true. The default value for the
QoS feature is false (disabled).

NOTE: You can only enable the QoS feature if the host server on which you install your cloud-
native router contains an Intel E810 NIC that is running lldp.

You enable lldp on the NIC using the 11dptool which runs on the host server as a CLI application. Issue
the following command to enable lldp on the E810 NIC. For example, you could use the following
command:

1ldptool -T -i INTERFACE -V ETS-CFG willing=no
tsa=0:strict,1:strict,2:strict,3:strict,4:strict,
5:strict,6:strict,7:strict
up2tc=0:0,1:1,2:2,3:3,4:0,5:1,6:2,7:3

The details of the above command are:

e ETS-Enhanced Transmission Selection

o willing-The willing attribute determines whether the system uses locally configured packet
forwarding classification (PFC) or not. If you set willing to no(the default setting), the cloud-native
router applies local PFC configuration. If you set willing to yes, and the cloud-native router receives
TLV from the peer router, the cloud-native router applies the received values.

e tsa-The transmission selection algorithm is a comma seperated list of traffic class to selection
algorithm maps. You can choose ets, strict, or vendor as selection algorithms.

e up2tc-Comma-separated list that maps user priorities to traffic classes

The list below provides an overview of the classification, marking, and queueing operations performed
by cloud-native router.

o Classification:
o VvRouter classifies packets by examining the priority bits in the packet
e vRouter derives traffic class and loss priority
e vRouter can apply traffic classifiers to fabric, traffic, and workload interface types
e vRouter maintains 16 entries in its classifier map

e Marking (Re-write):

vRouter performs marking operationsMarking is done in Vrouter. eRe-write of p-bits done in
egress path. eAt egress based on traffic class and drop priority new priority is derived. eMarking
can be applied to Fabric interface only.

e vRouter performs rewriting of p-bits in the egress path
o VvRouter derives new traffic priority based on traffic class and drop priority at egress

e vRouter can apply marking to packets only on fabric interfaces

vRouter maintains 8 entries in its marking map

e Queueing (Scheduling):
¢ Cloud-native router performs strict priority scheduling in hardware (E810 NIC)
e Cloud-native router maps each traffic class to one queue
¢ Cloud-native router limits the maximum number of traffic queue to 4

e Cloud-native router maps 8 possible priorities to 4 traffic classes; It also maps each traffic class 1
hardware queue

e Cloud-native router can apply scheduling to fabric interface only

¢ Virtual functions (VFs) leverage the queues that you configure in the physical functions
(interfaces)

e vRouter maintains 8 entries in its scheduler map

QoS Example Configuration

You configure QoS classifiers, rewrite rules, and schedulers in the cRPD using Junos set commands or
remotely using NETCONF. We display a Junos-based example configuration below.

set class-of-service classifiers ieee-802.1 classl
forwarding-class assured-forwarding loss-priority
high code-points 011
set class-of-service rewrite-rules ieee-802.1 Rule_1
forwarding-class assured-forwarding loss-priority
high code-point 110
set class-of-service schedulers schl priority high
set class-of-service scheduler-maps sch1l forwarding-class
assured-forwarding scheduler schi
set class-of-service interfaces enp175s1 scheduler-map schi
set class-of-service interfaces enp175s1 unit @ rewrite-rules ieee-802.1 Rule_1
set class-of-service interfaces vhostnet123-3546aefd-7af8-4fe5 unit @ classifiers ieee-802.1

class1

Viewing the QoS Configuration

You view the QoS configuration in the cRPD CLI using show commands in Junos operation mode, The
show commands reveal the configuration of classifiers, rewrite rules, or scheduler maps individually. We
display three examples below; one example for each operation.

e Show Classifier

user@jcnr1> show class-of-service classifier

Classifier: classl, Code point type: ieee802.1p
Code point Forwarding class Loss priority
011 assured-forwarding high

e Show Rewrite-Rule

user@jcnr1> show class-of-service rewrite-rule

Rewrite rule: Rule_1, Code point type: ieee802.1p
Forwarding class Loss priority Code point
assured-forwarding high 110

e Show Scheduler-Map

show class-of-service scheduler-map schi
Scheduler map: schi
Scheduler: schl, Forwarding class: assured-forwarding

Transmit rate: unspecified, Rate Limit: none, Priority: high

Cloud-Native Router L3 Features

SUMMARY IN THIS SECTION
Read this chapter to learn about operation, and Juniper Cloud-Native Router Deployment
monitoring of the Juniper Cloud-Native Router Modes | 66

running in L3 mode. We discuss cloud-native router
deployment modes, interface types, and segment
routing MPLS tunnels.

Juniper Cloud-Native Router Security
Groups | 66

Juniper Cloud-Native Router Interface
Types | 67

Security Groups | 70
L2 API to Force Bond Link Switchover | 71

MPLS Support in Juniper Cloud-Native
Router | 71

Juniper Cloud-Native Router Deployment Modes

Starting in Juniper Cloud-Native Router Release 22.4, you can deploy and operate Juniper Cloud-Native
Router in either L2 or L3 mode. You control the deployment mode by editing the appropriate values.yaml
file prior to deployment.

To deploy the cloud-native router in L2 mode, retain or modify the values in the file
Juniper_Cloud_Native_Router_ version-number/helmchart/values.yaml.

Throughout the rest of this chapter we identify those features that are only available in L2 mode by
beginning the feature name with L2.

In L2 mode, the cloud-native router behaves like a switch and so performs no routing functions and runs
no routing protocols. The pod network uses VLANSs to direct traffic to various destinations.

To deploy the cloud-native router in L3 mode, retain or modify the values in the file
Juniper_Cloud_Native_Router_version-number/helmchart/values_L3.yaml,

In L3 mode, the cloud-native router behaves like a router and so performs routing functions and runs
routing protocols such as ISIS, BGP, OSPF, and segment routing-MPLS. In L3 mode, the pod network is
divided into an IPv6 underlay network and an IPv4 or IPvé6 overlay network. The IPvé underlay network
is used for control plane traffic.

Juniper Cloud-Native Router Security Groups

Starting in Juniper Cloud-Native Router Release 22.4, you control the types of traffic with the use of
security groups when you use cloud-native router in L3 mode.

A security group is a container for security group rules. Security groups and security group rules allow
administrators to specify the type of traffic that passes through an interface port. When you create a
pod in a virtual network (VN), you can associate a security group with the pod and its virtual machine
interface (VMI). The VMl is the interface connecting the pod to the vrouter-dpdk. When the cloud-
native router launches the pod, it applies the rules in the security group to the pod's VMI port. If you do
not specify a security group for the pod, the cloud-native router associates a default security group with
the pod's VMI. The default security group rule is to allow all traffic to and from the port. The default
security group allows both ingress and egress traffic. Security rules can be added to the default security
group to change the traffic behavior.

You can apply each rule in the security group to either ingress or egress traffic. Ingress traffic is the
traffic coming to the pod's VMI. Egress traffic is the traffic that leaves the pod through the VMI.

Juniper Cloud-Native Router Interface Types

Juniper Cloud-Native Router supports the following types of interfaces:
e Agent interface

vRouter has only one agent interface. The agent interface enables communication between the
vRouter-agent and the vRouter. On the vRouter CLI when you issue the vif --list command, the
agent interface looks like this:

vife/e Socket: unix
Type:Agent HWaddr:00:00:5e:00:01:00
Vrf:65535 Flags:L2 Q0S:-1 Ref:3
RX queue errors to lcore 00 0000000000
RX packets:@ bytes:0 errors:0
TX packets:650 bytes:99307 errors:0
Drops:0

¢ Data Plane Development Kit (DPDK) Virtual Function (VF) workload interfaces

These interfaces connect to the radio units (RUs) or millimeter-wave distributed units (mmWave-
DUs) On the vRouter CLI when you issue the vif --list command, the DPDK VF workload interface
looks like this:

vife/5 PCI: 0000:ca:19.1 (Speed 10000, Duplex 1)
Type:Workload HWaddr:9e:52:29:9e:97:9b
Vrf:0 Flags:L2Vof Q0S:-1 Ref:9
RX queue packets:29087 errors:0
RX queue errors to lcore 0 0 0 0 00 00000000
Fabric Interface: 0000:ca:19.1 Status: UP Driver: net_iavf
Vlan Mode: Access Vlan Id: 1250 OVlan Id: 1250
RX packets:29082 bytes:6766212 errors:5
TX packets:0 bytes:0@ errors:0
Drops:29896

e DPDK VF fabric interfaces

DPDK VF fabric interfaces, which are associated with the physical network interface card (NIC) on
the host server, accept traffic from multiple VLANs. On the vRouter CLI when you issue the vif --list
command, the DPDK VF fabric interface looks like this:

vife/1 PCI: 0000:31:01.0 (Speed 10000, Duplex 1)
Type:Physical HWaddr:d6:22:c5:42:de:c3
Vrf:65535 Flags:L2Vof Q0S:-1 Ref:12
RX queue packets:11813 errors:1
RX queue errors to lcore 0 0 0 00 000000010
Fabric Interface: 0000:31:01.0 Status: UP Driver: net_iavf
Vlan Mode: Trunk Vlan: 1001-1100
RX packets:0 bytes:@ errors:49962
TX packets:18188356 bytes:2037400554 errors:0Q
Drops:49963

e Active or standby bond interfaces

Bond interfaces accept traffic from multiple VLANs. A bond interface runs in the active or standby
mode (mode 0).

On the vRouter CLI when you issue the vif --1list command, the bond interface looks like this:

vife/2 PCI: 0000:00:00.0 (Speed 10000, Duplex 1)
Type:Physical HWaddr:32:f8:ad:8c:d3:bc
Vrf:65535 Flags:L2Vof Q0S:-1 Ref:8
RX queue packets:1882 errors:0
RX queue errors to lcore 00 0 000000000
Fabric Interface: eth_bond_bond® Status: UP Driver: net_bonding
Slave Interface(0): 0000:81:01.0 Status: UP Driver: net_iavf
Slave Interface(1): 0000:81:03.0 Status: UP Driver: net_iavf
Vlan Mode: Trunk Vlan: 751-755
RX packets:8108366000 bytes:486501960000 errors:4234
TX packets:65083776 bytes:4949969408 errors:0
Drops: 8108370394

o Pod interfaces using virtio and the DPDK data plane

Virtio interfaces accept traffic from multiple VLANs and are associated with pod interfaces that use
virtio on the DPDK data plane.

On the vRouter CLI when you issue the vif --1ist command, the virtio with DPDK data plane
interface looks like this:

vife/3 PMD: vhost242ip-93883f16-9ebb-4acf-b
Type:Virtual HWaddr:00:16:3e:7e:84:a3
Vrf:65535 Flags:L2 Q0S:-1 Ref:13
RX queue errors to lcore 0 0 0 0 0 000000000
Vlan Mode: Trunk Vlan: 1001-1003
RX packets:0 bytes:@ errors:0
TX packets:10604432 bytes:1314930908 errors:0
Drops:0
TX port packets:@ errors:10604432

e Pod interfaces using virtual Ethernet (veth) pairs and the DPDK data plane

Pod interfaces that use veth pairs and the DPDK data plane are access interfaces rather than trunk
interfaces. This type of a pod interface allows traffic from only one VLAN to pass.

On the vRouter CLI when you issue the vif --1list command, the veth pair with DPDK data plane
interface looks like this:

vifo/4 Ethernet: jvknet1-88c44c3
Type:Virtual HWaddr:02:00:00:3a:8f:73
Vrf:0 Flags:L2Vof Q0S:-1 Ref:10
RX queue packets:524 errors:0
RX queue errors to lcore 0 0 0 0 00 0 0000000
Vlan Mode: Access Vlan Id: 3001 OVlan Id: 3001
RX packets:9 bytes:802 errors:515
TX packets:0 bytes:@ errors:0
Drops: 525

e VLAN sub-interfaces

Starting in Juniper Cloud-Native Router Release 22.4, the cloud-native router supports . VLAN sub-
interfaces are like logical interfaces on a physical switch or router. When we run the cloud-native

router in L2 mode, each sub-interface must be associated with a specific VLAN. On the JCNR-
vRouter, a VLAN sub-interface look like this:

vife/5 Virtual: vhostnet1-71cd7db1-1a5e-49.3003 Vlan(o/i)(,S): 3003/3003 Parent:vifo/4
Type:Virtual(Vlan) HWaddr:00:99:99:99:33:09
Vrf:0 Flags:L2 QO0S:-1 Ref:3
RX queue errors to lcore 0 0 0 000000000
RX packets:0 bytes:0@ errors:0
TX packets:0 bytes:0 errors:0
Drops:0

e Physical Function (PF) workload interfaces

e PF fabric interfaces

NOTE: vRouter does not support the vhoste interface when run in L2 mode.

The vRouter-agent detects L2 mode in values.yaml during deployment, so does not wait for the
vhost@ interface to come up before completing installation. The vRouter-agent does not send a
vhost interface add message so the vRouter doesn't create the vhosto interface.

In L3 mode, the vhoste interface is present and functional.

Pods are the Kubernetes element that contains the interfaces used in cloud-native router. You control
interface creation by manipulating the value portion of the key:value pairs in YAML configuration files.
The cloud-native router uses a pod-specific file and a network attachment device (NAD)-specific file for
pod and interface creation. During pod creation, Kubernetes consults the pod and NAD configuration
files and creates the needed interfaces from the values contained within the NAD configuration file.

You can see example NAD and pod YAML files in the "L2 - Add User Pod with Kernel Access to a Cloud-
Native Router Instance" on page 73 and "L2 - Add User Pod with virtio Trunk Ports to a Cloud-Native
Router Instance" on page 83 examples.

Security Groups

A security group is a construct for holding security rules. When you create a pod in a virtual network,
the cloud-native router associates a security group with the Virtual Management Interface (VMI). The
VMl is the interface connecting the Pod and the vRouter container. Each rule in the security group is
applied to either ingress or egress traffic. Ingress traffic is the traffic coming from the Pod over the VMIL.
Egress traffic is the traffic going from the VMI to the Pod.

With the Cloud-Native Router, you configure networking policy, including security groups, locally using
gRPC messages from the cloud-native router controller. You can configure security groups using API
calls, NETCONF, or the cloud-native router controller CLI by using the edit routing-options flow
security-group security group namerule rule name command hierarchy.

L2 API to Force Bond Link Switchover

When you use bond interfaces on cascaded nodes in L2 mode, you can make an API call to force traffic
to switch from the active interface to the standby interface.

MPLS Support in Juniper Cloud-Native Router

The Juniper Cloud-Native Router contains support for MPLS routing protocols. You use the JCNR-
controller, or cRPD, to configure MPLS. The cRPD then sends the configuration to the vRouter-agent,
using gRPC. The vRouter-agent then converts the configuration to network policies that it imlements in
the vRouter. The cloud-native router supports the following MPLS-based routing protocols:

e L3 MPLS VPN (MPLS)-L3 MPLS VPNs are also known as BGP/MPLS VPNs because BGP is used to
distribute VPN routing information across the provider’s backbone, and MPLS is used to forward
VPN traffic across the backbone to remote VPN sites. The cloud-native router can particpate as a
sending, receiving, or transit router using the MPLS protocol

e Segment Routing-MPLS (SR-MPLS)-Segment routing is a control-plane architecture that enables an
ingress router to steer a packet through a specific set of nodes and links in the network without
relying on the intermediate nodes in the network to determine the actual path it should take. SR-
MPLS employs segment routing in MPLS. The cloud-native router can participate as a sending,
receiving or transit router in SR-MPLS networks.

e MPLS over UDP (MPLSoUDP)-MPLSoUDP is an overlay technology that encapsulates MPLS packets
within UDP packets to traverse through some networks that do not support native MPLS or SR-
MPLS. The cloud-native router can participate as a sending, receiving, or transit router using
MPLSoUDP.

Juniper Cloud-Native Router (JCNR) -
Examples

L2 - Add User Pod with Kernel Access to a Cloud-Native Router Instance | 73

L2 - Add User Pod with virtio Trunk Ports to a Cloud-Native Router Instance |
83

L3 - Add User Pod to a Cloud-Native Router Instance | 93

L2 - Add User Pod with Kernel Access to a Cloud-
Native Router Instance

SUMMARY IN THIS SECTION

Read this topic to learn how to add a user pod with a Overview | 73
kernel access interface to an instance of the cloud-

Before You Begin | 74
native router.

Detailed Steps | 75

Overview

IN THIS SECTION

High-Level Steps | 73

To add a user pod to the cloud-native router, your high-level tasks are:

e Ensure that a network attachment definition (NAD) exists.

o Apply a pod YAML file to your cloud-native router cluster.

Throughout this example, we use the kubectl command with various options. You must run this command

on the host-server CLI.

High-Level Steps

In this example, we assume that this is the first user pod that you are adding to your newly installed
cloud-native router. Therefore, we provide the steps to create a NAD on the cluster and then add the
new user pod.

Below we provide a list of the individual steps we perform in this example. Each step in the list is a link
to the detailed description of the step.

1. View the vRouter interface list

2. Examine the example NAD YAML file
3. Apply the NAD to the cluster

4. Verify the NAD

5. Examine the example Pod YAML file
6. Apply the Pod to the cluster

7. Verify the Pod

8. View the updated vRouter interface list

Before You Begin

IN THIS SECTION

Access the vRouter-Agent CLI | 74

Access the vRouter-Agent CLI

You perform the first and last steps of this example procedure on the CLI of the vRouter agent. We
recommend that you open two SSH (terminal) sessions to the host server. You can use one session to
run the CLI commands on the vRouter agent and the other session to run the kubectl commands that
deploy the NAD and the pod on the cluster.

NOTE: To make it easy to copy and paste commands from here to your system, we do not
include paths or shell prompts from the host server in the command listings.

Access the CLI of the contrail-vrouter-agent container in the contrail-vrouter-masters pod.

In one terminal, enter this command:

kubectl get pods -n contrail

The output should be a single line that looks like this:

NAME READY STATUS RESTARTS AGE

contrail-vrouter-masters-97v8z 3/3 Running @ 6h10m

This output gives you the name and specific instance hash of the vRouter pod, contrail-vrouter-
masters-97v8z. We use this name in the next command to access the vRouter CLI. The name of your
vRouter pod will have a different hash at the end. Use the pod name from your system in place of
<contrail-vrouter-masters-hash> in the following command.

Enter the following command:

kubectl exec -n contrail -it <contrail-vrouter-masters-hash> -c <container name>-- bash

You should see the following two-line output:

Defaulted container "contrail-vrouter-agent" out of: contrail-vrouter-agent, contrail-vrouter-
agent-dpdk, contrail-vrouter-telemetry-exporter, contrail-init (init), contrail-vrouter-kernel-
init-dpdk (init)

root@jcnrl:/#

Note that the shell prompt has changed from what it was when you entered the command. On the

system we used to create this example, the prompt changed from [root@jcnr1 ~J# to root@jcnr1: /4. This
change in prompt indicates that you have successfully connected to the CLI of the vRouter agent.

You can now see the following detailed steps to complete the example.

Detailed Steps

1. View the vRouter-agent interface list.

In the terminal session connected to the vRouter-agent CLI, enter the following command:

vif --list

The output looks like this:

Vrouter Operation Mode: Purel2

Vrouter Interface Table

Flags: P=Policy, X=Cross Connect, S=Service Chain, Mr=Receive Mirror

Mt=Transmit Mirror, Tc=Transmit Checksum Offload, L3=Layer 3, L2=Layer 2

D=DHCP, Vp=Vhost Physical, Pr=Promiscuous, Vnt=Native Vlan Tagged

Mnp=No MAC Proxy, Dpdk=DPDK PMD Interface, Rfl=Receive Filtering Offload,
Mon=Interface is Monitored

Uuf=Unknown Unicast Flood, Vof=VLAN insert/strip offload, Df=Drop New Flows, L=MAC
Learning Enabled

Proxy=MAC Requests Proxied Always, Er=Etree Root, Mn=Mirror without Vlan Tag, HbsL=HBS
Left Intf

HbsR=HBS Right Intf, Ig=Igmp Trap Enabled, M1=MAC-IP Learning Enabled, Me=Multicast
Enabled

vifo/0 Socket: unix
Type:Agent HWaddr:00:00:5e:00:01:00
Vrf:65535 Flags:L2 Q0S:-1 Ref:3
RX queue errors to lcore 0 0 0 0 0 000000000
RX packets:0 bytes:0 errors:0
TX packets:2127928 bytes:510246290 errors:0
Drops:0

vife/1 PCI: 0000:00:00.0 (Speed 10000, Duplex 1)
Type:Physical HWaddr:3a:b2:ee:fe:a7:62
Vrf:65535 Flags:L2Vof Q0S:-1 Ref:12
RX queue packets:172174354904 errors:20998087137
RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 7293345594 6559356797 7145384746
Fabric Interface: eth_bond_bond@ Status: UP Driver: net_bonding
Slave Interface(0): 0000:18:09.1 Status: UP Driver: net_iavf
Slave Interface(1): 0000:18:05.1 Status: UP Driver: net_iavf
Vlan Mode: Trunk Vlan: 100 200 300 500 3001-3004 3201-3250
RX packets:172172714121 bytes:33745848248728 errors:1642900
TX packets:2272839360 bytes:4536582775436 errors:0
Drops: 80189427216

vife/2 PCI: 0000:18:01.1 (Speed 1000, Duplex 1)
Type:Physical HWaddr:a6:c1:0b:12:8c:44
Vrf:65535 Flags:L2Vof Q0S:-1 Ref:12
RX queue packets:108 errors:0
RX queue errors to lcore 0 0 0 0 0 000000000
Fabric Interface: 0000:18:01.1 Status: DOWN Driver: net_iavf
Vlan Mode: Trunk Vlan: 100 200 300 500 3001-3004 3201-3250
RX packets:0 bytes:0 errors:108
TX packets:61278711540 bytes:15781059334468 errors:0

vifo/3

vifo/4

Drops:108

PCI: 0000:18:0d.1 (Speed 10000, Duplex 1)

Type:Physical HWaddr:7a:30:33:68:6¢:70

Vrf:65535 Flags:L2Vof Q0S:-1 Ref:12

RX queue packets:91255 errors:626

RX queue errors to lcore @ 0 0 0 0 0 0 0 0 @ 0 120 397 109
Fabric Interface: 0000:18:0d.1 Status: UP Driver: net_iavf
Vlan Mode: Trunk Vlan: 100 200 300 500 3001-3004 3201-3250
RX packets:2015 bytes:170734 errors:89240

TX packets:61279338241 bytes:15781182125402 errors:0
Drops:91703

PCI: 0000:86:00.0 (Speed 1000, Duplex 1)

Type:Physical HWaddr:40:a6:b7:0d:7b:b8

Vrf:65535 Flags:TcL2Vof Q0S:-1 Ref:12

RX queue errors to lcore 0 0 0 0 0 000000000

Fabric Interface: 0000:86:00.0 Status: DOWN Driver: net_i40e
Vlan Mode: Trunk Vlan: 100 200 300 500 3001-3004 3201-3250

RX packets:0 bytes:0 errors:0

TX packets:61278779459 bytes:15781072646592 errors:0

Drops:0

As you can see, the vRouter agent knows about five interfaces

e vif0/0

e vifO/1

e vif0/2

e vif0/3

e vifO/4

"Back to high-level steps" on page 73
. Examine the NAD YAML file.
In this step, we look at a commented NAD file in the YAML format. The comments start with a hash

symbol (#) and are displayed in boldface. You do not need to change most of the values because this
file contains a NAD example. The NAD specifies the parameters of a virtual device that enables the

pod to connect to the network. You can use this example file on your cloud-native router only if you
remove the comments from the file.

cat nad-kernel_access_bd3001.yaml

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
name: nad-vswitch-bd3001 #Name of the NAD
spec:
config: '{
"cniVersion":"0.4.0",
"name": "nad-vswitch-bd3001", #This is the name of the NAD as it appears in the K8s
cluster.
"capabilities":{"ips":true},
"plugins": [
{
"type": "jcnr", #Always define as jcnr
"args": {
"instanceName": "vswitch", #Prefix for the name of the NAD within the cluster
"instanceType": "virtual-switch", #What type of NAD is this?
"bridgeDomain": "bd3001", #The name of the bridge domain
"bridgeVlanId": "3001", #Which VLAN ID is allowed on this bridge domain
"dataplane":"dpdk", #Which dataplane to use. Options are dpdk and kernel
"mtu": "9000",
"interfaceType":"veth" #0ptions are veth or virtio. For this example veth is the
correct option
B
"ipam": {
"type": "static", #IP address type. Leave as static in 22.2 release
"capabilities":{"ips":true}, #Does this ipam definition support IP addresses?
"addresses": [

{
"address":"2001:db8:3001::10.30.0.1/64", #IPv6 address of the IFL
"gateway":"2001:db8:3001::10.30.0.254" #IPv6 gateway for the IFL
B
{
"address":"10.30.0.1/24", #IPv4 address for the IFL
"gateway":"10.30.0.254" #IPv4 Gateway for the IFL
}

]
})
"kubeConfig":"/etc/kubernetes/kubelet.conf"

]
} 1

When you apply the NAD YAML file to the cluster, the virtual device becomes visible in the
Kubernetes cluster.

"Back to high-level steps" on page 73
. Apply the NAD to the cluster.

If you use the same file name for your version of the NAD file, you can run the following command
on the host-server CLI:

kubectl apply -f nad-kernel_access_vlan_3001.yaml

The command output looks like this:

networkattachmentdefinition.k8s.cni.cncf.io/nad-vswitch-bd3001 created

"Back to high-level steps" on page 73
. Verify the NAD.

On the host-server CLlI, issue the following command:

kubectl get network-attachment-definitions

The output from the command looks like this:

NAME AGE
vswitch 1d
nad-vswitch-bd3001 3m47s

"Back to high-level steps" on page 73
. Examine the example Pod YAML file.

Similar to the NAD YAML file, the pod YAML file or the pod definition specifies the configuration of
the user pod that you want to create. In this example, we create a pod that works with the pod1-
vswitch-bd3001 NAD that we just applied. You can use the following file on your cloud-native router
deployment .

cat pod-kernel-access-vlan-3001.yaml

apiVersion: vi
kind: Pod

metadata:
name: odu-kernel-pod-bd3001
annotations:
k8s.v1.cni.cncf.io/networks: pod1-vswitch-bd3001
spec:
containers:
- name: odu-kernel-pod-bd3001
image: svl-artifactory.juniper.net/junos-docker-local/warthog/pktgen19116:20210303
imagePullPolicy: IfNotPresent
command: ["/bin/bash","-c","sleep infinity"]
securityContext:
privileged: false
env:
- name: KUBERNETES_POD_UID
valueFrom:
fieldRef':
fieldPath: metadata.uid
volumeMounts:
- name: dpdk
mountPath: /dpdk
subPathExpr: $(KUBERNETES_POD_UID)
volumes:
- name: dpdk
hostPath:

path: /var/run/jcnr/containers

"Back to high-level steps" on page 73
6. Apply the pod to the cluster.

If you have used the preceding filename for the pod YAML file, then you can run the following
command on the host-server CLI to apply the pod to the cluster:

kubectl apply -f pod-kernel-access-vlan-3001.yaml

The command output looks like this:

pod/odu-kernel-pod-bd3001 created created
"Back to high-level steps" on page 73

7. Verify the pod.

On the host-server CLI, issue the following command to verify the pod creation:

kubectl get pods odu-kernel-pod-bd3001

The command output looks like this:

NAME READY STATUS RESTARTS AGE
odu-kernel-pod-bd3001 1/1 Running @ 58s

"Back to high-level steps" on page 73
. View the updated vRouter interface list.

On the vRouter-agent CLI, issue the following command:

vif --list

The command output looks like this:

Flags: P=Policy, X=Cross Connect, S=Service Chain, Mr=Receive Mirror

Mt=Transmit Mirror, Tc=Transmit Checksum Offload, L3=Layer 3, L2=Layer 2

D=DHCP, Vp=Vhost Physical, Pr=Promiscuous, Vnt=Native Vlan Tagged

Mnp=No MAC Proxy, Dpdk=DPDK PMD Interface, Rfl=Receive Filtering Offload,
Mon=Interface is Monitored

Uuf=Unknown Unicast Flood, Vof=VLAN insert/strip offload, Df=Drop New Flows, L=MAC
Learning Enabled

Proxy=MAC Requests Proxied Always, Er=Etree Root, Mn=Mirror without Vlan Tag, HbsL=HBS
Left Intf

HbsR=HBS Right Intf, Ig=Igmp Trap Enabled, MI=MAC-IP Learning Enabled, Me=Multicast
Enabled

vife/e Socket: unix
Type:Agent HWaddr:00:00:5e:00:01:00
Vrf:65535 Flags:L2 Q0S:-1 Ref:3
RX queue errors to lcore 0 0 0 0 0 00 0000000
RX packets:0 bytes:0 errors:0
TX packets:14 bytes:1672 errors:0
Drops:0

vife/1 PCI: 0000:00:00.0 (Speed 10000, Duplex 1)

Type:Physical HWaddr:3a:b2:ee:fe:a7:62

Vrf:65535 Flags:L2Vof Q0S:-1 Ref:12

RX queue packets:971 errors:0

RX queue errors to lcore 0 0 0 0 0 00 0000000

Fabric Interface: eth_bond_bond@ Status: UP Driver: net_bonding
Slave Interface(0): 0000:18:05.1 Status: UP Driver: net_iavf
Slave Interface(1): 0000:18:09.1 Status: UP Driver: net_iavf
Vlan Mode: Trunk Vlan: 100 200 300 500 3001-3004 3201-3250

RX packets:18 bytes:1256 errors:965

TX packets:26 bytes:2204 errors:0

Drops:989

vife/2 PCI: 0000:18:01.1 (Speed 1000, Duplex 1)
Type:Physical HWaddr:a6:c1:0b:12:8c:44
Vrf:65535 Flags:L2Vof Q0S:-1 Ref:12
RX queue errors to lcore 0 0 0 0 0 00 0000000
Fabric Interface: 0000:18:01.1 Status: DOWN Driver: net_iavf
Vlan Mode: Trunk Vlan: 100 200 300 500 3001-3004 3201-3250
RX packets:0 bytes:0 errors:0
TX packets:37 bytes:2862 errors:0
Drops:0

vife/3 PCI: 0000:18:0d.1 (Speed 10000, Duplex 1)
Type:Physical HWaddr:7a:30:33:68:6¢:70
Vrf:65535 Flags:L2Vof Q0S:-1 Ref:12
RX queue packets:331 errors:0
RX queue errors to lcore 0 0 0 0 0 00 0000000
Fabric Interface: 0000:18:0d.1 Status: UP Driver: net_iavf
Vlan Mode: Trunk Vlan: 100 200 300 500 3001-3004 3201-3250
RX packets:7 bytes:590 errors:324
TX packets:37 bytes:2870 errors:0
Drops:331

vife/4 PCI: 0000:86:00.0 (Speed 1000, Duplex 1)
Type:Physical HWaddr:40:a6:b7:0d:7b:b8
Vrf:65535 Flags:TcL2Vof Q0S:-1 Ref:12
RX queue errors to lcore 0 0 0 0 0 000000000
Fabric Interface: 0000:86:00.0 Status: DOWN Driver: net_i40e
Vlan Mode: Trunk Vlan: 100 200 300 500 3001-3004 3201-3250
RX packets:0 bytes:0 errors:0
TX packets:37 bytes:2862 errors:0
Drops:0

vife/5 Ethernet: jvknet1-0ea0f72
Type:Virtual HWaddr:02:00:00:b3:b9:a1
Vrf:0 Flags:L2Vof Q0S:-1 Ref:10
RX queue packets:23 errors:0
RX queue errors to lcore 0 0 0 0 0 00 0000000
Vlan Mode: Access Vlan Id: 3001 OVlan Id: 3001
RX packets:19 bytes:1614 errors:4
TX packets:0 bytes:0@ errors:0
Drops:24

The vRouter agent now knows about six interfaces. This is because the Pod created the sub-interface
and the parent interface. You can see above that the virtual VLAN interface, vife/4, shows the parent
interface as vif@/3. The interface, vife/3, is a virtual interface with a name that includes "net1" as
defined in the NAD and pod YAML files.

"Back to high-level steps" on page 73

L2 - Add User Pod with ..o Trunk Ports to a Cloud-
Native Router Instance

SUMMARY IN THIS SECTION

Read this topic to learn how to add a user pod with a Overview | 83
VLAN sub-interface to an instance of the cloud-

Before You Begin | 84
native router.

Detailed Steps | 86

Overview

IN THIS SECTION

High-Level Steps | 84

To add a user pod to the cloud-native router, your high-level tasks are:

e Apply a network attachment definition (NAD) to your cluster.

e Apply a pod YAML file to your cloud-native router cluster.

Throughout this example, we use the kubectl] command with various options. You must run this command

on the host-server CLI.

High-Level Steps

In this example, we assume that you are adding the first user pod to your newly installed cloud-native
router. Therefore, we provide the steps to create a new NAD and then add the new user pod.

Below is a list of the individual steps we take in this example. Each step in the list is a link to the detailed
description of the step.

1. View the vRouter interface list

2. Examine the example NAD YAML file
3. Apply the NAD to the cluster

4. Verify the NAD

5. Examine the example Pod YAML file
6. Apply the Pod to the cluster

7. Verify the Pod

8. View the updated vRouter interface list

Before You Begin

IN THIS SECTION

Access the vRouter-Agent CLI | 85

Access the vRouter-Agent CLI

You perform the first and last steps of this example procedure on the vRouter-agent CLI. We
recommend that you open two SSH (terminal) sessions to the host server. You can use one session to
run the CLI commands on the vRouter agent and the other session to run the kubectl commands that
deploy the NAD and the pod on the cluster.

NOTE: We have not included paths or shell prompts from the host server in the command
listings. Therefore you can easily copy commands from here to your system.

Access the CLI of the contrail-vrouter-agent container in the contrail-vrouter-masters pod.

In one terminal enter the following command:

kubectl get pods -n contrail

You will see a single line of output that looks like:

NAME READY STATUS RESTARTS AGE

contrail-vrouter-masters-97v8z 3/3 Running @ 6h10m

This command gives us the name and specific instance hash of the vRouter Pod, contrail-vrouter-
masters-97v8z. We use this name in the next command to access the vRouter CLI. The name of your
vRouter pod will have a different hash at the end. Use the pod name from your system in place of
contrail-vrouter-masters-hashin the command below.

Enter the following command:

kubectl exec -n contrail -it <contrail-vrouter-masters-hash> -c <container name>-- bash

You will see the following two-line output:

Defaulted container "contrail-vrouter-agent" out of: contrail-vrouter-agent, contrail-vrouter-
agent-dpdk, contrail-vrouter-telemetry-exporter, contrail-init (init), contrail-vrouter-kernel-
init-dpdk (init)

root@jcnri:/#

Note that the shell prompt has changed from what it was when you entered the command. On the
system we used to create this example, the prompt changed from [root@jcnr1 ~J# to root@jcnr1:/#. This
change in prompt indicates that you have successfully connected to the vRouter-agent CLI.

You can now see the following detailed steps to complete the example.

Detailed Steps

1. View the vRouter-agent interface list

In the terminal session connected to the vRouter-agent, enter the following command in the CLI:

vif --list

The output looks like this:

Vrouter Operation Mode: Purel2

Vrouter Interface Table

Flags: P=Policy, X=Cross Connect, S=Service Chain, Mr=Receive Mirror

Mt=Transmit Mirror, Tc=Transmit Checksum Offload, L3=Layer 3, L2=Layer 2

D=DHCP, Vp=Vhost Physical, Pr=Promiscuous, Vnt=Native Vlan Tagged

Mnp=No MAC Proxy, Dpdk=DPDK PMD Interface, Rfl=Receive Filtering Offload,
Mon=Interface is Monitored

Uuf=Unknown Unicast Flood, Vof=VLAN insert/strip offload, Df=Drop New Flows, L=MAC
Learning Enabled

Proxy=MAC Requests Proxied Always, Er=Etree Root, Mn=Mirror without Vlan Tag, HbsL=HBS

Left Intf

HbsR=HBS Right Intf, Ig=Igmp Trap Enabled, M1=MAC-IP Learning Enabled, Me=Multicast
Enabled
vifo/e Socket: unix

Type:Agent HWaddr:00:00:5e:00:01:00

Vrf:65535 Flags:L2 QO0S:-1 Ref:3

RX queue errors to lcore 0 0 0 0 0 000000000
RX packets:@ bytes:0 errors:0

TX packets:2127928 bytes:510246290 errors:0

Drops:0

vife/1 PCI: 0000:00:00.0 (Speed 10000, Duplex 1)

Type:Physical HWaddr:3a:b2:ee:fe:a7:62

Vrf:65535 Flags:L2Vof Q0S:-1 Ref:12

RX queue packets:172174354904 errors:20998087137

RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 7293345594 6559356797 7145384746
Fabric Interface: eth_bond_bond@ Status: UP Driver: net_bonding
Slave Interface(0): 0000:18:09.1 Status: UP Driver: net_iavf
Slave Interface(1): 0000:18:05.1 Status: UP Driver: net_iavf
Vlan Mode: Trunk Vlan: 100 200 300 500 3001-3004 3201-3250

RX packets:172172714121 bytes:33745848248728 errors:1642900

TX packets:2272839360 bytes:4536582775436 errors:0

Drops: 80189427216

vife/2 PCI: 0000:18:01.1 (Speed 1000, Duplex 1)
Type:Physical HWaddr:a6:c1:0b:12:8c:44
Vrf:65535 Flags:L2Vof Q0S:-1 Ref:12
RX queue packets:108 errors:0
RX queue errors to lcore 0 0 0 0 0 000000000
Fabric Interface: 0000:18:01.1 Status: DOWN Driver: net_iavf
Vlan Mode: Trunk Vlan: 100 200 300 500 3001-3004 3201-3250
RX packets:0 bytes:0 errors:108
TX packets:61278711540 bytes:15781059334468 errors:0
Drops:108

vife/3 PCI: 0000:18:0d.1 (Speed 10000, Duplex 1)
Type:Physical HWaddr:7a:30:33:68:6¢:70
Vrf:65535 Flags:L2Vof Q0S:-1 Ref:12
RX queue packets:91255 errors:626
RX queue errors to Icore © 0 0 0 0 0 0 0 0 0 0 120 397 109
Fabric Interface: 0000:18:0d.1 Status: UP Driver: net_iavf
Vlan Mode: Trunk Vlan: 100 200 300 500 3001-3004 3201-3250
RX packets:2015 bytes:170734 errors:89240
TX packets:61279338241 bytes:15781182125402 errors:0
Drops:91703

vife/4 PCI: 0000:86:00.0 (Speed 1000, Duplex 1)
Type:Physical HWaddr:40:a6:b7:0d:7b:b8
Vrf:65535 Flags:TcL2Vof QO0S:-1 Ref:12
RX queue errors to lcore 0 0 0 0 0 00 0000000
Fabric Interface: 0000:86:00.0 Status: DOWN Driver: net_i40e
Vlan Mode: Trunk Vlan: 100 200 300 500 3001-3004 3201-3250
RX packets:0 bytes:0 errors:0

TX packets:61278779459 bytes:15781072646592 errors:0
Drops:0

As you can see, the vRouter agent knows about five interfaces.

"Back to high-level steps" on page 84
2. Examine the NAD YAML file.

In this step, we look at a commented NAD file in the YAML format. The comments start with a hash
symbol (#) and are in boldface. You do not need to change most of the values because this file
contains a NAD example. The NAD specifies the parameters of a virtual device that enables the pod
to connect to the network. You can use this example file on your cloud-native router only if you
remove the comments from the file.

cat nad-virtio-trunk1.yaml

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
name: vswitch-trunk9 #This is the name of the NAD as it appears in the K8s cluster.
spec:
config: '{
"cniVersion":"0.4.0",
"name": "vswitch-trunk9", # Name of the NAD
"type": "jcnr", # Always define as jcnr
"args": {
"instanceName": "vswitch",
"instanceType": "virtual-switch",
"dataplane": "dpdk", #Leave as DPDK for this example. Options are DPDK or kernel
"vlanIdList": "3001, 3002, 3003, 3210" #List of allowed VLANs. You can allow a range
like this: 100-200
3,
"kubeConfig":"/etc/kubernetes/kubelet.conf"
)

When you apply the NAD YAML file to the cluster, the virtual device becomes visible in the

Kubernetes cluster.

"Back to high-level steps" on page 84
3. Apply the NAD to the cluster.

If you use the same file name for your version of the NAD file, you can run the following command
on the host-server CLI:

kubectl apply -f nad-virtio-trunk1.yaml

The command output looks like this:

networkattachmentdefinition.k8s.cni.cncf.io/nad-virtio-trunkl.yaml created

"Back to high-level steps" on page 84
. Verify the NAD.

On the host-server CLI, issue the following command:

kubectl get network-attachment-definitions

The command output looks like this:

NAME AGE
vswitch 25h
vswitch-trunkl 54s

"Back to high-level steps" on page 84
. Examine the example pod YAML file.

Similar to the NAD YAML file, the pod YAML file or the pod definition specifies the configuration of
the user pod that you want to create. In this example, we create a pod that works with the vswitch-
trunk1 NAD that we just applied. You can use the following example file on your cloud-native router
deployment.

cat pod-virtio-trunk1.yaml

apiVersion: vi
kind: Pod
metadata:
name: pod-virtio-trunkl #
annotations:
k8s.v1.cni.cncf.io/networks: vswitch-trunki
spec:
containers:
- name: pod-virtio-trunkl

image: svl-artifactory.juniper.net/junos-docker-local/warthog/pktgen19116:20210303

imagePullPolicy: IfNotPresent
securityContext:
privileged: true
resources:
requests:
memory: 2Gi
limits:
hugepages-1Gi: 2Gi
env:
- name: KUBERNETES_POD_UID
valueFrom:
fieldRef':
fieldPath: metadata.uid
volumeMounts:
- name: dpdk
mountPath: /dpdk
subPathExpr: $(KUBERNETES_POD_UID)
- mountPath: /dev/hugepages
name: hugepage
volumes:
- name: dpdk
hostPath:
path: /var/run/jcnr/containers
- name: hugepage
emptyDir:

medium: HugePages

"Back to high-level steps" on page 84
6. Apply the pod to the cluster.

If you have used the same filename shown above for the pod YAML file, then you can run the
following command on the host-server CLI to apply the pod to the cluster:

kubectl apply -f pod-virtio-trunkl.yaml

The command output looks like this:

pod/pod-virtio-trunkl created
"Back to high-level steps" on page 84
7. Verify the pod.

On the host-server CLI, issue the following command to verify the pod creation:

kubectl get pods pod-virtio-trunkil

The command output looks like this:

NAME READY STATUS RESTARTS AGE
pod-virtio-trunkil 1/1 Running 0 1m21s

"Back to high-level steps" on page 84
. View the updated vRouter interface list.

On the vRouter-agent CLI, issue the following command:

vif --list

The command output looks like this:

Vrouter Operation Mode: Purel2

Vrouter Interface Table

Flags: P=Policy, X=Cross Connect, S=Service Chain, Mr=Receive Mirror

Mt=Transmit Mirror, Tc=Transmit Checksum Offload, L3=Layer 3, L2=Layer 2

D=DHCP, Vp=Vhost Physical, Pr=Promiscuous, Vnt=Native Vlan Tagged

Mnp=No MAC Proxy, Dpdk=DPDK PMD Interface, Rfl=Receive Filtering Offload,
Mon=Interface is Monitored

Uuf=Unknown Unicast Flood, Vof=VLAN insert/strip offload, Df=Drop New Flows, L=MAC
Learning Enabled

Proxy=MAC Requests Proxied Always, Er=Etree Root, Mn=Mirror without Vlan Tag, HbsL=HBS
Left Intf

HbsR=HBS Right Intf, Ig=Igmp Trap Enabled, M1=MAC-IP Learning Enabled, Me=Multicast
Enabled

vifo/0 Socket: unix
Type:Agent HWaddr:00:00:5e:00:01:00
Vrf:65535 Flags:L2 Q0S:-1 Ref:3
RX queue errors to lcore 00 0 0 0 0 000000
RX packets:0 bytes:0 errors:0
TX packets:205 bytes:74417 errors:0

Drops:0

vife/1 PCI: 0000:00:00.0 (Speed 10000, Duplex 1)
Type:Physical HWaddr:32:f8:ad:8c:d3:bc
Vrf:65535 Flags:L2Vof Q0S:-1 Ref:8
RX queue packets:3120 errors:0
RX queue errors to lcore 0 0 0 0 0 0000000
Fabric Interface: eth_bond_bond® Status: UP Driver: net_bonding
Slave Interface(@): 0000:81:01.0 Status: UP Driver: net_iavf
Vlan Mode: Trunk Vlan: 751-755
RX packets:0 bytes:0 errors:7020
TX packets:0 bytes:0 errors:0
Drops:7020

vife/2 PCI: 0000:81:09.0 (Speed 10000, Duplex 1)
Type:Workload HWaddr:ca:ce:fc:d3:28:1e
Vrf:0 Flags:L2Vof Q0S:-1 Ref:7
RX queue packets:3120 errors:0
RX queue errors to lcore 0 0 0 0 0 0000000
Fabric Interface: 0000:81:09.0 Status: UP Driver: net_iavf
Vlan Mode: Access Vlan Id: 756 OVlan Id: 756
RX packets:7020 bytes:1496820 errors:0
TX packets:0 bytes:0@ errors:0
Drops:7215

vifo/3 PMD: vhostnet1-8ca7c251-481b-48
Type:Virtual HWaddr:00:99:99:99:33:09
Vrf:65535 Flags:L2 QO0S:-1 Ref:10
RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0
RX packets:0 bytes:0 errors:0
TX packets:0 bytes:0 errors:0
Drops:0

vifo/4 Virtual: vhostnet1-8ca7c251-481b-48.3003 Vlan(o/i)(,S): 3003/3003 Parent:vifo/3
Type:Virtual(Vlan) HWaddr:00:99:99:99:33:09
Vrf:0 Flags:L2 QO0S:-1 Ref:3
RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0
RX packets:0 bytes:0 errors:0
TX packets:0 bytes:@ errors:0
Drops:0

vife/5 PMD: vhostnet1-35fee25e-7646-4281-ab
Type:Virtual HWaddr:02:00:00:ac:88:fd

Vrf:65535 Flags:L2 Q0S:-1 Ref:13

RX queue errors to lcore 0 0 0 0 0 @ 0
Vlan Mode: Trunk Vlan: 3001-3003 3210
RX packets:0 bytes:0 errors:0

TX packets:1 bytes:64 errors:0
Drops:0

TX port packets:0 errors:1

0000000

The vRouter agent now knows about six interfaces because the pod created the trunk interface. You
can see in the preceding output that the vife/5 interface shows the VLAN mode as Trunk and the

correct list of VLANs that the vRouter allows to pass.

"Back to high-level steps" on page 84

L3 - Add User Pod to a Cloud-

Instance

SUMMARY

Read this topic to see an example of how to add an
L3 user pod to a cloud-native router instance.

Overview

IN THIS SECTION

High-Level Steps | 94

Native Router

IN THIS SECTION

Overview | 93
Before You Begin | 94

Detailed Steps | 96

To add a user pod to the cloud-native router running in L3 mode, your high-level tasks are:

e Apply a network attachment definition (NAD) to your cluster.

e Apply a pod YAML file to your cloud-native router cluster.

Throughout this example, we use the kubectl] command with various options. You must run this command

on the host-server CLI.

High-Level Steps

In this example, we assume that you are adding the first user pod to your newly installed cloud-native
router. Therefore, we provide the steps to create a new NAD and then add the new user pod.

Below is a list of the individual steps we take in this example. Each step in the list is a link to the detailed
description of the step.

1. View the vRouter interface list

2. Examine the example NAD YAML file
3. Apply the NAD to the cluster

4. Verify the NAD

5. Examine the example Pod YAML file
6. Apply the Pod to the cluster

7. Verify the Pod

8. View the updated vRouter interface list

Before You Begin

IN THIS SECTION

Access the vRouter-Agent CLI | 95

Access the vRouter-Agent CLI

You perform the first and last steps of this example procedure on the vRouter-agent CLI. We
recommend that you open two SSH (terminal) sessions to the host server. You can use one session to
run the CLI commands on the vRouter agent and the other session to run the kubectl commands that
deploy the NAD and the pod on the cluster.

NOTE: We have not included paths or shell prompts from the host server in the command
listings. Therefore you can easily copy commands from here to your system.

Access the CLI of the contrail-vrouter-agent container in the contrail-vrouter-masters pod.

In one terminal enter the following command:

kubectl get pods -n contrail

You will see a single line of output that looks like:

NAME READY STATUS RESTARTS AGE

contrail-vrouter-masters-6av7b 3/3 Running @ Shim

This command gives us the name and specific instance hash of the vRouter Pod, contrail-vrouter-
masters-97v8z. We use this name in the next command to access the vRouter CLI. The name of your
vRouter pod will have a different hash at the end. Use the pod name from your system in place of
contrail-vrouter-masters-hashin the command below.

Enter the following command:

kubectl exec -n contrail -it contrail-vrouter-masters-hash -- bash

You will see the following two-line output:

Defaulted container "contrail-vrouter-agent" out of: contrail-vrouter-agent, contrail-vrouter-
agent-dpdk, contrail-vrouter-telemetry-exporter, contrail-init (init), contrail-vrouter-kernel-
init-dpdk (init)

root@jcnri:/#

Note that the shell prompt has changed from what it was when you entered the command. On the
system we used to create this example, the prompt changed from [root@jcnr1 ~J# to root@jcnr1:/#. This
change in prompt indicates that you have successfully connected to the vRouter-agent CLI.

You can now use the following detailed steps to complete the example.

Detailed Steps

1. View the vRouter-agent interface list

In the terminal session connected to the vRouter-agent, enter the following command in the CLI:

vif --list

The output looks like this:

vif --list
Vrouter Interface Table

Flags: P=Policy, X=Cross Connect, S=Service Chain, Mr=Receive Mirror

Mt=Transmit Mirror, Tc=Transmit Checksum Offload, L3=Layer 3, L2=Layer 2

D=DHCP, Vp=Vhost Physical, Pr=Promiscuous, Vnt=Native Vlan Tagged

Mnp=No MAC Proxy, Dpdk=DPDK PMD Interface, Rfl=Receive Filtering Offload,
Mon=Interface is Monitored

Uuf=Unknown Unicast Flood, Vof=VLAN insert/strip offload, Df=Drop New Flows, L=MAC
Learning Enabled

Proxy=MAC Requests Proxied Always, Er=Etree Root, Mn=Mirror without Vlan Tag, HbsL=HBS

Left Intf

HbsR=HBS Right Intf, Ig=Igmp Trap Enabled, M1=MAC-IP Learning Enabled, Me=Multicast
Enabled
vife/o PCI: 0000:00:00.0 (Speed 20000, Duplex 1) NH: 4

Type:Physical HWaddr:b4:96:91:e3:ba:52 IPaddr:0.0.0.0

Vrf:0 Mcast Vrf:65535 Flags:TcL3L2VpVofErMe Q0S:-1 Ref:15

RX port packets:3936680 errors:0

RX queue errors to lcore 0 0 0 0 0 00 0000000

Fabric Interface: eth_bond_bond@ Status: UP Driver: net_bonding
Slave Interface(0): 0000:31:00.0 Status: UP Driver: net_ice
Slave Interface(1): 0000:31:00.1 Status: UP Driver: net_ice

RX packets:3936680 bytes:376494695 errors:0

TX packets:1346179 bytes:103926504 errors:0
Drops:0
TX port packets:1346162 errors:17

vifo/1 PMD: vhost® NH: 5
Type:Host HWaddr:b4:96:91:e3:ba:52 IPaddr:17.1.0.205
IP6addr:2001:db8: :b696:91ff:fee3:ba52
Vrf:0 Mcast Vrf:65535 Flags:L3DEr Q0S:-1 Ref:15
RX device packets:1136926 bytes:88046862 errors:0
RX queue packets:1136926 errors:0
RX queue errors to lcore 0 0 0 0 0 0 0 0000000
RX packets:1136926 bytes:88046862 errors:0
TX packets:4133648 bytes:384767351 errors:0
Drops:0
TX queue packets:4133648 errors:0
TX device packets:4133648 bytes:384767351 errors:0

vifo/2 Socket: unix
Type:Agent HWaddr:00:00:5e:00:01:00 IPaddr:0.0.0.0
Vrf:65535 Mcast Vrf:65535 Flags:L3Er QO0S:-1 Ref:3
RX port packets:406221 errors:0
RX queue errors to lcore 0 0 0 0 0 00 0000000
RX packets:406221 bytes:42026022 errors:0
TX packets:65953 bytes:6995184 errors:0
Drops:0

As you can see, the vRouteragent knows about three interfaces.

"Back to high-level steps" on page 94

. Examine the NAD YAML file.

In this step, we look at a commented NAD file in the YAML format. The comments start with a hash
symbol (#) and are in boldface. You do not need to change most of the values because this file
contains a NAD example. The NAD specifies the parameters of a virtual device that enables the pod
to connect to the network. You can use this example file on your cloud-native router only if you
remove the comments from the file.

cat L3_nad-net1.yaml

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition

metadata:

name: netl #This is the name of the NAD as it appears in the K8s cluster.
spec:
config: '{
"cniVersion":"0.4.0",
"name": "net1", # Name of the NAD
"type": "jcnr", #Always define as type jcnr
"args": {
"vrfName": "net1", #Virtual routing and forwarding instance name
"vrfTarget": "1:11" #Virtual routing and forwarding target
3,
"kubeConfig":"/etc/kubernetes/kubelet.conf"
)

When you apply the NAD YAML file to the cluster, the virtual device becomes visible in the

Kubernetes cluster.

"Back to high-level steps" on page 94
. Apply the NAD to the cluster.

If you use the same file name for your version of the NAD file, you can run the following command
on the host-server CLI:

kubectl apply -f L3_nad-netl.yaml

The command output looks like this:

networkattachmentdefinition.k8s.cni.cncf.io/L3_nad-net1.yaml created

"Back to high-level steps" on page 94
. Verify the NAD.

On the host-server CLlI, issue the following command:

kubectl get network-attachment-definitions

The command output looks like this:

NAME AGE
vswitch 22h
net1l 41s

"Back to high-level steps" on page 94

5. Examine the example pod YAML file.

Similar to the NAD YAML file, the pod YAML file or the pod definition specifies the configuration of
the user pod that you want to create. In this example, we create a pod that works with the net1t NAD
that we just applied. You can use the following example file on your cloud-native router deployment.

cat L3-pktgen-odul.yaml

apiVersion: vi
kind: Pod
metadata:
name: L3-pktgen-odul
annotations:
k8s.v1.cni.cncf.io/networks: |

L

"name": "net1",

"interface":"net1",

"cni-args": {
"mac":"aa:bb:cc:dd:ee:51",
"dataplane":"vrouter",

"ipConfig":{

"ipv4":{

"address":"10.1.51.2/30",
"gateway":"10.1.51.1",
"routes":[

"10.1.51.0/30"
]

1,

"ipv6":{
"address":"2001:db8::10:1:51:2/126",
"gateway":"2001:db8::10:1:51:1",
"routes":[

"2001:db8::10:1:51:0/126"

spec:
containers:
- name: L3-pktgen-odul

image: svl-artifactory.juniper.net/blr-data-plane/dpdk-app/dpdk:21.11
imagePullPolicy: IfNotPresent
command: ["/bin/bash","-c","sleep infinity"]
securityContext:
privileged: false
env:
- name: KUBERNETES_POD_UID
valueFrom:
fieldRef:
fieldPath: metadata.uid
resources:
requests:
memory: 4Gi
limits:
hugepages-1Gi: 4Gi
name: hugepages
command: ["sleep"]
args: ["infinity"]
volumeMounts:
- name: dpdk
mountPath: /dpdk
subPathExpr: $(KUBERNETES_POD_UID)
- name: hugepages
mountPath: /hugepages
volumes:
- name: dpdk
hostPath:
path: /var/run/jcnr/containers
- name: hugepages
emptyDir:
medium: HugePages

"Back to high-level steps" on page 94
. Apply the pod to the cluster.

If you have used the same filename shown above for the pod YAML file, then you can run the
following command on the host-server CLI to apply the pod to the cluster:

kubectl apply -f L3-pktgen-odul.yaml

The command output looks like this:

pod/L3-pktgen-odul created
"Back to high-level steps" on page 94
7. Verify the pod.

On the host-server CLI, issue the following command to verify the pod creation:

kubectl get pods L3-pktgen-odul

The command output looks like this:

NAME READY STATUS RESTARTS AGE
L3-pktgen-odul 11 Running 0 ml1s

"Back to high-level steps" on page 94
8. View the updated vRouter interface list.

On the vRouter-agent CLI, issue the following command:

vif --list

The command output looks like this:

vif --list
Vrouter Interface Table

Flags: P=Policy, X=Cross Connect, S=Service Chain, Mr=Receive Mirror

Mt=Transmit Mirror, Tc=Transmit Checksum Offload, L3=Layer 3, L2=Layer 2

D=DHCP, Vp=Vhost Physical, Pr=Promiscuous, Vnt=Native Vlan Tagged

Mnp=No MAC Proxy, Dpdk=DPDK PMD Interface, Rfl=Receive Filtering Offload,
Mon=Interface is Monitored

Uuf=Unknown Unicast Flood, Vof=VLAN insert/strip offload, Df=Drop New Flows, L=MAC
Learning Enabled

Proxy=MAC Requests Proxied Always, Er=Etree Root, Mn=Mirror without Vlan Tag, HbsL=HBS

Left Intf

HbsR=HBS Right Intf, Ig=Igmp Trap Enabled, M1=MAC-IP Learning Enabled, Me=Multicast
Enabled
vife/e PCI: 0000:00:00.0 (Speed 20000, Duplex 1) NH: 4

Type:Physical HWaddr:b4:96:91:e3:ba:52 IPaddr:0.0.0.0
Vrf:0 Mcast Vrf:65535 Flags:TcL3L2VpVofErMe Q0S:-1 Ref:15

RX port packets:3936680 errors:0

RX queue errors to lcore 0 0 0 0 0 00 0000000

Fabric Interface: eth_bond_bond@ Status: UP Driver: net_bonding
Slave Interface(0): 0000:31:00.0 Status: UP Driver: net_ice
Slave Interface(1): 0000:31:00.1 Status: UP Driver: net_ice

RX packets:3936680 bytes:376494695 errors:0

TX packets:1346179 bytes:103926504 errors:0

Drops:0

TX port packets:1346162 errors:17

vifo/1 PMD: vhost® NH: 5
Type:Host HWaddr:b4:96:91:e3:ba:52 IPaddr:10.17.1.205
IP6addr:2001:db8: :b696:91ff:fee3:ba52
Vrf:0 Mcast Vrf:65535 Flags:L3DEr Q0S:-1 Ref:15
RX device packets:1136926 bytes:88046862 errors:0
RX queue packets:1136926 errors:0
RX queue errors to lcore 0 0 0 0 0 0 0 0000000
RX packets:1136926 bytes:88046862 errors:0
TX packets:4133648 bytes:384767351 errors:0
Drops:0
TX queue packets:4133648 errors:0
TX device packets:4133648 bytes:384767351 errors:0

vifo/2 Socket: unix
Type:Agent HWaddr:00:00:5e:00:01:00 IPaddr:0.0.0.0
Vrf:65535 Mcast Vrf:65535 Flags:L3Er QO0S:-1 Ref:3
RX port packets:406221 errors:0
RX queue errors to lcore 0 0 0 0 0 00 0000000
RX packets:406221 bytes:42026022 errors:0
TX packets:65953 bytes:6995184 errors:0
Drops:0

vife/3 PMD: vhostnet1-0fba9461-e5e4-4701-b1 NH: 17
Type:Virtual HWaddr:aa:bb:cc:dd:ee:51 IPaddr:10.1.51.2
IP6addr:2001:db8::10:1:51:2
Vrf:2 Mcast Vrf:2 Flags:PL3DEr Q0S:-1 Ref:16
RX queue errors to lcore 0 0 0 0 0 000000000
RX packets:0 bytes:0 errors:0
TX packets:0 bytes:@ errors:0
Drops:0

The vRouter agent now knows about four interfaces because the pod created the vife/3 interface.
You can see in the preceding output that the vife/3 interface shows IPv4 and IPvé6 addresses

103

"Back to high-level steps" on page 94

	Table of Contents
	Juniper Cloud-Native Router (JCNR)
	Juniper Cloud-Native Router - Overview
	Juniper Cloud-Native Router Controller (cRPD)
	JCNR-vRouter
	JCNR-CNI

	Juniper Cloud-Native Router – Features
	Cloud-Native Router Common Features
	Juniper Cloud-Native Router Interface Types
	Logging and Notifications
	Juniper Cloud-Native Router Licensing
	Useful CLI Commands

	Cloud-Native Router L2 Features
	Juniper Cloud-Native Router Deployment Modes
	Juniper Cloud-Native Router L2 Interface Types
	L2 Metrics and Telemetry
	L2 ACLs (Firewall Filters)
	MAC Learning and Aging
	BUM Rate Limiting
	L2 API to Force Bond Link Switchover
	L2 Quality of Service (QoS)

	Cloud-Native Router L3 Features
	Juniper Cloud-Native Router Deployment Modes
	Juniper Cloud-Native Router Security Groups
	Juniper Cloud-Native Router Interface Types
	Security Groups
	L2 API to Force Bond Link Switchover
	MPLS Support in Juniper Cloud-Native Router

	Juniper Cloud-Native Router (JCNR) - Examples
	L2 - Add User Pod with Kernel Access to a Cloud-Native Router Instance
	Overview
	Before You Begin
	Detailed Steps

	L2 - Add User Pod with virtio Trunk Ports to a Cloud-Native Router Instance
	Overview
	Before You Begin
	Detailed Steps

	L3 - Add User Pod to a Cloud-Native Router Instance
	Overview
	Before You Begin
	Detailed Steps

