Molnify Security Q&A

December 2020

How does data flow between a client and Molnify?

For the SaaS based solution (and not on-prem), there are two general data flows -
one when the application is created/updated on the platform, and one when the
user interacts with the application. See Exhibit 1 for a simplified overview of the
architecture.

e Application creation/upload

o The client develops an Excel model with potentially sensitive data
and this model is saved in a file that is residing somewhere on client
network (e.g., on a file server or on a client machine)

o Thefile is uploaded to Molnify over an encrypted channel (HTTPS)
The file is processed within Molnify’s datacenter (hosted on GCP),
from which two components are built - one user interface
component, and one backend component. The former contains the
look and feel of application with named inputs, outputs etc. but no
calculation logic. The latter contains the actual calculation logic

o The two components, and the file, is stored and processed by
Molnify until either the client terminates the agreement or choses
to delete/update the application (that can be done by an admin
from the client)

® Application interaction

o A user signs in to Molnify using one of the supported methods (see
authentication policy above)

o Molnify validates that the user has access to view and use the
application (and which role the user has). In every case where an
application is not open for anybody to access, encrypted channels
are enforced (i.e., everything is served over HTTPS)

o When the user interacts with the application, changes to the
application is transferred bidirectionally over HTTPS

What policy is used for electronic logging?

Molnify consists of a number of different components, in most cases deployed as
separate Docker containers on a Kubernetes cluster. The components utilize a
central logging system, from which we can both create logging metrics, review
historical usage as well as stream logs live. See Exhibit 1 for an example of one of
the views we are using. See also Exhibit 2 for an overview of the different technical
components and how data flows between them. Standard log retention policy is 30
days, but can easily be changed

@ molnify

What process is followed for Change Control?

While there is no formal change control policy, primarily driven by our small size and

dependency on key people, it works like the following in practice

Bugs, feature enhancements and other proposed changes are typically
tracked through an issue tracker. See Exhibit 3 for an example of
documentation and data from the issue tracker
All source code is without exception in a source code repository where we
can track changes from the first rows of code written
o Branches are typically used for new development
o We view configuration as code, and hence configurations are also
included in the source code repository
Features typically have both unit tests and feature tests. See Exhibit 4 for a
simple example. In exceptional cases, we also have tests for non-functional
requirements. Test coverage is tracked with automatic tools and tests
automatically run in each build/deploy
Deployment to production for all components follow the following steps
o Testsarerun
o Source code is committed
o Deployment to a staging environment is done, which itself is
versioned, but the software is not yet deployed in the sense it is
running
o Configuration is updated so that the staging environment uses the
new version
o Often, manual tests are performed so that features work as
intended

As both code, configuration and deployments are versioned, this most notably

means that software can easily be rolled back to know working configuration.

Rollback generally takes less than a minute, regardless of component

What vulnerability management is in place?

See “Software dependency management” in the Information Security Policy. In

addition to this we have

Vulnerability scanning enabled and automatic software updates on all
managed software (e.g., OS for Docker images)

Vulnerability scanning enabled for all components of the software that
scans running production code. Latest run on December 8th, see Exhibit 5
for additional information

Static code analysis, to help detect weaknesses in the software that we
develop ourselves. We use SpotBugs, which checks for 400+ typical bug
patterns

Test code analysis, to help detect untested software components that we
develop ourselves. This analysis includes detailed analysis of which actual

rows of code that is tested and which branches that are run in tests to help
identify areas to improve testing in

e Awareness of OWASP with active efforts to mitigate the top 10
vulnerabilities as they apply to different components in our platform

What authentication policy is used for user accounts?

We have 6 ways of authenticating users, with somewhat different policies
1) User & password
2) Google account (SSO)
3) Microsoft account (SSO)
4) Custom SSO, e.g., SAML-based from client system
5) Government based identification (BankID, with either chip and reader or
biometrics which is granted based on human validation of a users identity)
6) Token based authentication

For 1-3, we use the default settings on Firebase, which is a service acquired and now
run by Google. To the best of our knowledge, Firebase does not fully lock out the
user ID after five invalid attempts but may require additional proof - e.g., email
validation, two-factor authentication, captchas and/or put limitations on number of
allowed incorrect attempts during a certain time period. For 4, it is up to the client’s
internal login policies. For 5, it is a central policy that handles limits in incorrect login
attempts as well as allowed concurrency. For 6, we log exceptional instances and
contact the client (our customer) that uses this to discuss potential actions.

Molnify uses login method 2 for all internal accounts on Molnify. Accounts are
provisioned by checking photo ID. Additionally two-factor authentication is enforced
on the domain, unexpected account behaviour monitored, strong passwords are
enforced and password reuse is not possible

What encryption policy is used?

All data on all client devices are encrypted
All communication between client devices and the datacenter is encrypted,
using Google standards - such as two factor authentication that opens up a
VPN connection over which data flows

e All data between a logged in user’s client and the platform is encrypted
using industry standards

e Sensitive configuration of the platform is often, but not always, using
Kubernetes secrets for additional security, as opposed to clear text
configuration in source code

What background checks are done for employees?

e Education confirmation (no time limit)
e Former employment confirmation (most recent employments)

Criminal background check-up through the police (maximum time possible)

How does Molnify handle incidents?

General incidents shall be handled adhering Atlassian’s handbook for incident
management. Incidents are classified as Critical, High, Medium or Low. Up to today’s
date, no incidents have been classified as Critical and the platform has never had
downtime affecting a significant amount of users.

Security incidents, where information may be compromised and particularly where
personal data may be at risk, shall additionally adhere to the following guidelines:

Systems not deemed to be safe or potentially compromised shall be shut
down for external access

Data Controllers shall be notified as soon as possible and potentially
additional requirements should be adhered to

The board shall be notified as soon as possible

An incident report shall be sent, if deemed necessary, to the Swedish
Authority on Data Protection (“Datainspektionen”), at the latest 72 hours
after the incident as first discovered

Depending on the incident and DPA, individual data subjects may be
notified, depending on who is the controller of data

Root cause analysis shall always be done and shall include immediate
response as well as mitigating actions to prevent a similar incident from
arising again

Query previ
resource.type="container" resource.labels.container_name="compute" [Save | Stream logs <

Log fields X Histogram
400,
= Search fields and values :
T I
NAvE
compute 1,260 a - - ~ ~ -t ..M

w00 soom To00 A Dec 6, 10:26 A)

A CLUSTER NAME

cluster-moln 1,260
Query results © 7 Jump to Now Actions v Configure
A CONTAINER NAME e
@ compute — SEVERITY | TIMESTAMP GMT = SRy
> W coco-izuo oitviivel Ml bec w0, 20w iuiiviry Am Com.r St wwa
A INSTANCEID > @ 2020-12-06 10:19:19.981 GMT INFO: LOADING: || 1 with date [
3020811111745514402 1212 > @ 2626-12-06 10:19:19.982 GHT Dec 6, 2020 18:19:19 AM con.rapidcomputeengine. servlet.APIServiet doPost
1563803375666260207 48 > @ 2020-12-86 10:19:19.982 GMT INFO: TOTAL REQUEST (update) TIME: 141 ms
> @ 2020-12-86 10:19:20.053 GMT Dec 86, 2028 10:19:28 AM com.rapidcomputeengine.logic.x1lsx.WorkbookLoader$1 load
A NAMESPACE 1D
> @ 2020-12-06 10:19:20.053 GNT INFO: Application fetched, with 92227 bytes
default 1,260
> @ 2620-12-06 10:19:20.416 GNT Dec 06, 2020 10:19:20 AM com.rapi 1ne. Togio. x1sx.XlsxEngine update a
-~
Lol > @ 2620-12-06 10:19:20.416 GHT INFO: Parsing sheet [0] molnifyColorCodedCellsFoundvet [false] parseAllSheets [false]
compute-prod-764bd986dd-dprve 1140 @ 2020-12-06 18:19:20.448 GHT Dec 66, 2020 10:19:20 AM com.rapidcomputeengine.logic.x1sx.XlsxEngine update
compute-staging-6dc95f8744-412mk 72 > @ 2020-12-06 10:19:20.448 GNT WARNING: State is EMPTY or ERROR. Will remove appid from cache: bsta2vhoSoiaqampsivansdsTt
compirtetest-TceabesTaS jmm 48 > @ 20201206 16:19:20.448 GHT Dec 66, 2020 10:19:26 AW com. ine.1 Tex.NorkbookLoader remove
> @ 2020-12-06 10:19:20.448 GNT INFO: Invalidate: [i i] with date [
A PROJECTD
> @ 2020-12-06 19:19:20.448 GNT Dec @6, 2020 10:19:28 AM con.rapidcomputeengine . logic.xlsx.WorkbookLoader$2 onRemoval
rapidcomputeengine 1,260
> @ 2620-12-86 10:19:20.448 GMT INFO: Removed workbook from cache: com.rapidcomputeengine.datamodel.model.CacheKey with id bsta2vh95oiaqqmps...
~
ZONE > @ 2020-12-06 10:19:20.477 GMT Dec 86, 2026 10:19:28 AM con.rapidcomputeengine.api.MolnifyAPTInp1S2 run
europe-westl-d 1260 @ 2620-12-06 16:19:20.477 GHT INFO: Id has NOT been changed. Saving [bsta2vh95oiaqqmpsivqmsdsit]

Exhibit 1 One of the views available on the platform to view, search and audit logs

Login request

“ Firebase

Page request
Query
e Erontand Object storage
Google + CDN —
oogle + Google
Query
Web client = % File storage
HTMLS5 (all OSes) — Google + CDN
API request p —

- . Google

Note: Simplified. Only key interactions shown

molnify &

Exhibit 2 Simplified view of technical architecture

(3]

[

Access level Admin (revoke) Open PRs Watchers
16 0
Branches Forks

Edit README

README

This README is a breif outline of key things to know in order to get up to speed with development of Molnify

How do | get set up?

1. Clone the repo + molnify-common and ensure they are in the same folder and go to /app
2. Install maven (for the overall build process) https://maven.apache.org/download.cgi
3. Install other helpful binaries (see the script if you'd like to cherry-pick)

/src/dev/install.sh
4. Start the devserver (see option C in the section below on environments)

mvn appengine:devserver

What is the overall technical architecture?

There are five different components of the system that have different version/environments (see section below for
environments)

Front and middleware (the project molnify-web), running on Google App Engine

Datastore for persistent object storage (e.g., MolnifyApplication)

Filestorage for persistent file storage (e.g., for Excel files)

OAuth Authentication system, running on Firebase

Compute nodes in the backend, running on Google Compute Engine in a Kubernetes cluster

L ol S

Pushed to musslanochdoktohn/molnify-web

efo6015 attempt to fix safari issue

Metin Mehmed - 2 days ago

Action buttons to perform more than on...
Issue #202 updated in musslanochdoktohny...
Richard Petersson - 2 days ago

#web Add tooltips to buttons (reset, inf...
Issue #97 updated in musslanochdoktohn/m...

Richard Petersson - 2 days ago

ISSUE-88 profile frontend
Pull request #51 created in musslanochdokto...
Metin Mehmed - 2 days ago

1 commit
Pushed to musslanochdoktohn/molnify-web
ba5baf1 Merge remote-tracking branch 'o...

Metin Mehmed - 2 days ago
#web Large apps with text fields are slu...

Issue #201 commented on in musslanochdok...
Markus Kirsten - 3 days ago

#web Large apps with text fields are slu...
Issue #201 commented on in musslanochdok.,,
Metin Mehmed - 3 days ago

#web Create an "all scenarios" page
Issue #190 updated in musslanochdoktohn/...

Exhibit 3 Example of documentation, including integration with issue tracking system

() al
tableApp = get("internal-table-with

tableData = tableApp.getOutputs().get(@).getValue();
assertTrue(tableData.length() > 10);
assertFalse(tableData.index0f("Major rodent") >
assertTrue(tableData. index0f("Beaver") > 0);
tableData = 5

ChangeList();

changes.addChange (InputOutputItemShort("Blad1!B3", "5"));

Engine impl = .getImplementation(tableApp);
result = impl.calculate(tableApp, changes);

assertEquals(1, result.getChanges().size());

changes =

updatedTableData = result.getChanges().get(0).getValue();
assertTrue(updatedTableData.index0f("Major rodent") > 0)
assertTrue(updatedTableData.index0f(

Exhibit 4 Example unit test

= Molnify Production Q Search products and resources v

< Cloud Web Security Scanner © RUN /' EDIT W DELETE

Frontend (app.) and backend (prod.compute.)

2020-12-08T13:34:20.496Z -
Scan date URLS tested Duration Vulnerabilities found
8 Dec, 14:34 11214 3 hr 46 min 2
RESULTS URLS CRAWLED DETAILS

~ Mixed content (2)

A page that was served over HTTPS also loaded resources (such as SCRIPT, IMAGE or OBJECT) over HTTP. A man-in-the-middle attacker (such as Someone on the same wireless network) could tamper with the KTTP resource ar
or to monitor the actions taken by the user.

Learn more (&

To fix this vulnerability, stop including the nitte' protocol when loading resources embedded in the page. Most of these resources are also available over HTTPS. consider using a protocolelative URL of nitps.// instead

https://app.molnify.com/app/traktamenteutomlands

https://app.molnify.com/app/qr-dummy_bim

Exhibit 5 Summary of a vulnerability scan run on December 8th 2020. Out of 11214
URLs tested with Google’s standard attack vectors, two vulnerabilities were found -
both relating to individual applications running on the platform that is that selected
image content is served over HTTP while the application and all other resources are
served over HTTPS. These two (customer) applications do not affect any other
applications of the rest of the platform.

