W MOZARK

User Guide
App Functional

Version O1

Contents

1. What is APP FUNCEIONAIT? ...ttt s 2
2. GEILING STArT@A......eoe ettt ettt et be bbb earebeereeanas 2
2.1SIgN iN O the CONSOI@ ...t e 2
2.2 CONFIGUIE PrOJECES ...ttt ettt et be e be e s bae s tae et e ebeestaesaaesaneens 4
2.3 CONFIGUIE BUIIAS ...ttt et st s eaas 5
2.4 CONTIGUIE SCIIPES ..ottt te e be e ba e s ba e s taeeabeebeestaesaaesaneens 8
2.5 SeleCt TESESUITES ...t 11
A S = LT G TS o B I=T T o g1 o) A e o (R 12
2.7 SEIECT DOVICES ...ttt ettt sttt sttt 13
2.8 RUN T@ST ...ttt sttt nesnen 24
3. ReVIEWING TESE RESUILS ...ttt e re s 26
3.1 ChECK STATUS ...ttt 27
31T ONGOING TESE..o ettt et st e et e e be e ba e sabeeabeenbeenraas 27
3.2 TESE RUN HISTOIY oottt ettt st ettt s aae e abe et s 28
3.1.3 MANAGE SCREAUIES ...ttt e 32

3.2 SEE RESUILS ...ttt 34
Yol g1 o) d1aTe I CTUITe L= T TSSO 35
4.1 RODOT-APPIUM ..ottt ettt ettt ea e et et esbeebaesbeebeesseebeetsesseesaensesbeeneens 35
4.2 RODOT-UIAULOMALON ... 38
4.3 ApPIiuM JaVva TESING ...ttt et eeaee e s bee e 40
5L LIMIES bbbt 45
(ST Do Yol 010 a1=] o Lol i 111 (0] o 2R 46
7. RESOUICES ...ttt bbb s 46

LS TS U1 o 0 Yo o R 46

1. What is App Functional?

App Functional is an app testing service that you can use to test mobile apps and
mobile websites on real, physical phones that are hosted by App Functional. App
Functional facilitates automated testing of apps using a variety of testing
frameworks such as Appium, Calabash, Robot-Appium, Robot-UlAutomator,
UlAutomator, etc with different languages such as Java, Node.JS, Python, Ruby.

App Functional allows you to upload your own tests in the form of scripts.
Because testing is performed in parallel, tests on multiple devices begin in
minutes. As tests are completed, test results that contain high-level report, low-
level logs, live logs, screenshots, recordings, and performance data are updated.

To use App Functional, the first step is to sign up.

If you do not have the App Functional Sign Up account, please complete the
following steps:

1. Open http://demo-appfunctional.mozark.ai/

2. Follow the online instructions to ensure a successful sign up on App
Functional.

2. Getting Started

This walkthrough shows you how to use App Functional to test a native Android
or iOS app or mobile website. You use the App Functional console to create a
project, upload a build in the form of an .apk or an .ipa or choose a default one,
select devices, run a suite of standard tests, and then view the results.

2.1 Sign in to the Console

You can use the App Functional console to create a project, upload a build, select
devices, run test suites, check results. You can learn about projects, builds,
devices, test suites, results later in this walkthrough.

Step O1: Sign in to App Functional Console at http://demo-
appfunctional.mozark.ai/

You will see a page as shown in Figure O1. Provide your user id, password and
click on login to sign in to App Functional Console successfully.

http://demo-appfunctional.mozark.ai/AppFunctional/#/pages/automateTestSummery/21
http://demo-appfunctional.mozark.ai/AppFunctional/#/pages/automateTestSummery/21
http://demo-appfunctional.mozark.ai/AppFunctional/#/pages/automateTestSummery/21

WM MOZARK e ﬂ.
-

Sign in to App Functional

'™

a *

Forgot Password ?

[

—_—

Figure O1: Sign in to App Functional Console

Step 02: Signed in App Functional Console

After you successfully sign in to App Functional Console, you will see the page
given in Figure O2.

Configure ~

u See Results Start Tests Che

Start Test

Select App Project Select Devices Run Test

Select App Project

ToDo 10S v OR Create New App Project

Select Build

Default v OR Upload New Build

Select Script

Select Script v OR Upload New Script

Select Testsuite

ALL v

Enter Test Description

Figure 02: Signed in App Functional Console

Once you are signed in to the App Functional Console, you can create or select
existing projects, upload or select default or existing builds, upload or select
scripts, select test suites, choose devices, run or schedule tests, check status of
test runs, view results, configure your App Functional Console.

2.2 Configure Projects

To test a mobile app or a mobile website, you must create or select an app
project.

(a) Create App Project

If you are using App Functional for the first time, you will have to create a
project by clicking on Create New App Project in Figure 03 or by going to
Configure in Figure 04.

Start Test

®

Select App Project Select Devices Run Test

Select App Project

ToDo I10S ~ OR

Select Build

Default . OR Upload New Build

Select Script v Upload New Script

ALL v

Enter Test Description

Figure 03: Click on Create New App Project or Go to Configure

1. In the Create New App Project, enter a name for your project (for
example, MyDemoProject) and description in Figure 04. Both Name App
Project and Description are mandatory fields.

2. Click Create App Project to create a project with the given project name
and description in Figure 04.

Create App Project

Name App Project *

Description *

s

Create App Project

Figure 04: Create New App Project

3. Select App Project and you will see your newly created app project in
the dropdown as shown in Figure 0O5.

(b)Select App Project

If there are projects associated with your account, then select App Project
as shown in Figure O5.

u See Results Start Tests Check Status Configure =

Automation Automation

Start Test

Select App Project Select Devices Run Test

Select App Project
ToDo 10S - OR Create New App Project

Select Project
SampleApp
ToDo 105
Aquamark_Android OR Upload New Build
Aguamark
Demo Project
Demo Name
Sample test
yyu OR Upload New Script
SAMPLE 1

Sample 123

4 Demo Android Test

ALL ~

Enter Test Description

CONTINUE

Figure 05: Select App Project
2.3 Configure Builds

Now that you have an app project, the next step is to upload a new build or select
a default build or an existing build.

(a) Upload New Build

If you are using App Functional for the first time, you will have to upload a
build by clicking on Upload New Build or by going to Configure in Figure

See Results Start Tests Check Status Configure ~
Automation Automation
Start Test

Select App Project Select Devices Run Test

Select App Project

ToDo I0S ~ OR Create New App Project

Select Build
Default v OR Upload New Build

Select Seript

Select Script v OR Upload New Script

Select Testsuite

ALL v

Enter Test Description

Figure 06: Upload New Build or Configure

1. In Upload New Build, select an app project from the dropdown (for
example, MyDemoProject) and attachment(.apk or .ipa) from your system
in Figure O7. Both Select App Project and Attachment are mandatory

fields.

2. Click Upload Build to upload new build for an app project in Figure 07.

Upload Build
Select App Project *

Select App Project

Attachment *

Choose File | No file chosen

Upload Build

Figure 07: Upload Build

(b)Select a Build

If the builds are already available in the test devices, then select a Build.

The pre-requisite to select a default build as shown in Figure 08 is to
ensure that the builds are available in the test devices. Otherwise, it will
result into an error.

Start Test

Select App Project Select Devices Run Test

Select App Project

Demo Project ~ OR Create New App Project
Select Build
Default ~ OR Upload New Build

Hiver_base.apk
SampleApp_l.apk

Select Script v OR Upload New Script

Select Testsuite

ALL v

Enter Test Description

Figure 08: Select Build - Default

(c) Select a Build

If there are builds associated with your projects, then select Build as shown
in Figure 09.

Start Test

Select App Project

Select App Project

Demo Project

Select Build

se.apk

pp_l.apk

Enter Test Description

Figure 09:

2.4 Configure Scripts

Select Devices

Run Test

Create New App Project

Upload New Build

Upload New Script

Select Build

Now that you have select a build, the next step is to upload a script or select a an
existing script that can automate the user journey you want to test your mobile

app or mobile website for.

(a) Upload New Script

If you are using App Functional for the first time, you will have to upload a
script by clicking on Upload New Script or by going to Configure in Figure

10.

a pridiey :l

Start Test

[]

Select App Project Select Devices Run Test
Select App Project
ToDo 105 v OR Create New App Project

Select Build

Default - e Upload New Build

Select Script ~ OR Upload New Script

ALL v

Enter Test Description

Figure 10: Upload New Script or Configure

1. In Upload Journey Script, enter a name for journey script, description,
features tested, select framework, language, OS, project from the
dropdown (for example, MyDemoProject) and attachment from your
system in Figure 11. All the fields except selecting an OS are mandatory
fields.

2. Click Upload Journey Script to upload new script for an app project in
Figure 11.

Upload Journey Script

Ente=r Jourmesy Soript Mame

Select Framesork

Select framework

Select Languasge

Select language

Select O5

Select 05

Select Project

Select Project

Mo file selected.

Upload Jourmey
Script

Figure 11: Upload Journey Script

(b) Select a Script

If there are scripts associated with your projects, then select a script as
shown in Figure 12.

Start Test

Select App Project Select Devices Run Test

Select App Project

Demo Project ~ OR Create New App Project
Select Build
Default - OR Upload New Build

Select Script

Select Script ~ OR Upload New Script

Select Script

ALL v

Enter Test Description

Figure 12: Select Script
2.5 Select TestSuites
If there are test suites associated with your projects, then select a test suite or

ALL test suites for running them on test devices as shown in Figure 13. TestSuites
are not available for Appium with Java TestNG scripts.

Start Test

Select App Project Run Test

Select Devices

Select App Project
Create New App Project

SPNI v OR
Select Build
Default ~ OR Upload New Build

Select Script

demo_test ~ OR Upload New Script

Select Testsuite

SonyLiv_NonSignedin
SonyLiv_NonSignedin.zip

CONTINUE

Figure 13: Select Testsuite
2.6 Enter Test Description

If you want to provide a name for this test run, then write a test description as
shown in Figure 14. It is not a mandatory field.

Start Test

Select App Project Select Devices Run Test

Select App Project

03_DEC v OR Create New App Project

Select Build

Default v OR Upload New Build

Select Script

Prod_Script ~ OR Upload New Script

Select Testsuite

ALL ~

Enter Test Description

CONTINUE

Figure 14: Enter Test Description

2.7 Select Devices

Now that you have selected project, build, script, test suite, test description, the
next step is to choose devices to test your mobile app or mobile website.

Click on Continue as given in Figure 15.

Start Test

®

Select App Project Select Devices Run Test

Select App Project

03_DEC ~ OR Create New App Project
Select Build

Default v OR Upload New Build
Select Script

Prod_Script ~ OR Upload New Script

Select Testsuite

ALL v

Enter Test Description

CONTINUE

Figure 15: Click on Continue

By clicking on Continue, you will see Select Devices page as shown in Figure 16.
You can select devices in two ways -

(a) Select device group
(b) Select devices

Start Test

@ L
Select App Project Select Devices Run Test
Select from existing device group
Select Device Group ~
Search for device: Filter by EE

L] Xiaomi Note 7 Pro ANDRIOD -9 WIFI 1080 X 2340 Mumbai
e Xiaomi Redmi Note 5 ANDRIOD - 9 WIFI 1080x1920 Mumbai
[] Huawei Honor 7C ANDRIOD - 8 Wi-Fi 720 X 1440 Ghaziabad
e Neokia 61 Plus ANDRIOD -10 Wi-Fi 1080 X 2280 Ghaziabad
L] One Plus 7 ANDRIOD -9 Wi-Fi 1080 X 2340 Ghaziabad
L] Realme 5 Pro ANDRIOD -9 Wi-Fi 1080 X 2340 Ghaziabad
L Redmi & ANDRIOD - 81 Wi-Fi 720 X 1440 Ghaziabad
a Samsung AT ANDRIOD - 7 Wi-Fi 1080 X 1920 Ghaziabad
L Vivo 1812 ANDRIOD - 81 Wi-Fi 720 X 1520 Ghaziabad
[] Xiaomi K20 Pro/ Mi 9T Pro ANDRIOD -9 Wi-Fi 1080 X 2340 Ghaziabad

Figure 16: Select Devices

(a) Select from existing device group

Select a device group of choice by clicking on the dropdown as shown in

Figure 17.

Start Test

Select App Project Select Devices Run Test
Select from existing device group
Select Device Group ~
Select Device Group
demo@mozark.ai_571
demo@mozark.ai_572 =
T Filter b —
demo@mozark.ai_ 681 v E E—
demo@mozark.ai_685
demo@mozark.ai_688
demo@maozark.ai_689
demo@maozark.ai_690
demo@maozark.ai_691
demo@mozark.ai 692 7 Plus 105 -10.2 WIFI = 1080 X 1920 on-cloud
demo@maozark.ai_693
demo@mozark.ai_696 eliPad 7th Gen (2019) 105 -13.3 WIFI - 1620 X 2160 on-cloud
demo@mozark.ai_ 699
demo@mozark.ai_700 |Afir 2 105 -10.0.2 WIFI - 1536 X 2048 on-cloud
demo@mozark.ai 701
demo@mozark.ai_832 6 105 -10.31 WIFI - 750 X 1334 on-cloud
demo@mozark.ai_ 833
demo@mozark.ai_834 7 Plus 105 -1033 WIFI - 1080 X 1920 on-cloud
demo@maozark.ai_835
demo@mozarkai 838 e X 105 -120 WIFI - 1125 X 2436 on-cloud
[] Apple iPhone 5s 105 -10.0.2 WIFI - 640 X N36 on-cloud
[] Apple iPhone 5s 10S - 11 WIFI - 640 X N36 on-cloud
[] Apple iPhone 5s 10S - 101 WIFI - 640 X N36 on-cloud
[] Apple iPhone 8 Plus 10S -121 WIFI - 1080 X 1920 on-cloud

Figure 17: Select Device Group

(b) Select devices

You can also select devices by viewing each device in either List or Grid
view, by going to different pages, by putting filters.

a. View
i. List

e Clickon
18.

to enable the List view as given in Figure

Start Test

® @

Select App Project Select Devices Bun Test

Select from existing device group

Search for devices Filter by EE
[] Apple iPhone 7 Plus 105 -10.2 WIFI - 1080 X 1920 on-cloud
[] Apple Apple iPad 7th Gen (2019) 105-13.3 WIFI - 1620 X 2160 on-cloud
[] Apple iPad Air 2 105 -10.0.2 WIFI - 1536 X 2048 on-cloud
[] Apple iPhone 6 10S -10.3.1 WIFI - 750 X 1334 on-cloud
[] Apple iPhone 7 Plus 105 -10.3.3 WIFI - 1080 X 1920 on-cloud
[] Apple iPhone X 10S -12.0 WIFI - 125 X 2436 on-cloud
[] Apple iPhone 5s 10S -10.0.2 WIFI - 640 X 1136 on-cloud
[] Apple iPhone 5s 10S - 11 WIFI - 640 X 136 on-cloud
[] Apple iPhone 5s 105 - 101 WIFI - 640 X 1136 on-cloud
[] Apple iPhone 8 Plus 105 -121 WIFI - 1080 X 1920 on-cloud

Figure 18: Select Devices in List View

Select by clicking on the check box in the list view
as given in Figure 18

ii. Grid

e Click on EEE to enable the Grid view as given in Figure
19.

e By hovering over the card, you will be able to see the
device details as given in Figure 20

e Select by clicking on the check box in the grid view
as given in Figure 21

Select App Project Select Devices Run Test

Select from existing device group

Select Device Group v
Search for devices Filter by
iPhone 7 Plus | 8 Apple iPad 7th Gen (2019) iPad Air 2 | 10S iPhone 6 | 10S
| 10S

| RA e

Figure 19: Select Devices in Grid View

Search for devices Filter by

Apple Device

Status AVAILABLE

Make Apple

Model iPhone 7 Plus

os 108

Network WIFI *
Carrier

City on-cloud -

Resolution1080 X 1920

Apple iPad 7th Gen (2019) iPad Air 2 | 10S iPhone 6 | 10S

| 10S

— =

iPhone 7 Plus | 10S iPhone X | 10S iPhone 5s | 10S iPhone 5s | 10S

Figure 20: Hover over the device card

Search for devices Filter by ass

[~ _m

iPhone 7 Plus | 10S Apple iPad 7th Gen (2019) iPad Air 2 | 10S iPhone 6 | 10S

BN

iPhone 7 Plus | 10S iPhone X | 10S iPhone 5s | 10S iPhone 5s | 10S

Figure 21: Select Devices in Grid View

b. Pagination

You can browse and select devices by going to different pages by
clicking < and > as given in Figures 22 and 23.

Start Test

L @
Select App Project Select Devices
Select from existing device group
Select Device Group ~
Search for dev
[] Apple iPhone 7 Plus 10S -10.2
[] Apple Apple iPad 7th Gen (2019) 105 -13.3
[] Apple iPad Air 2 10S -10.0.2
[] Apple iPhone 6 105 -10.31
[] Apple iPhone 7 Plus 105 -10.3.3
[] Apple iPhone X 10S -12.0
[] Apple iPhone 5s 10S -10.0.2
[] Apple iPhone 5s 10S -111
[] Apple iPhone 5s 10S -10.1
[] Apple iPhone 8 Plus 105 -121

‘WIFI

WIFI

‘WIFI

‘WIFI

WIFI

WIFI

‘WIFI

WIFI

WIFI

‘WIFI

Figure 22: Pagination

Run Test

Filter by

1080 X 1920

1620 X 2160

1536 X 2048

750 X 1334

1080 X 1920

25 X 2436

640 X N36

640 X 136

640 X N36

1080 X 1920

on-cloud

on-cloud

on-cloud

on-cloud

on-cloud

on-cloud

on-cloud

on-cloud

on-cloud

on-cloud

Start Test

Select App Project
Select from existing device group

Select Device Group ~

[] Apple iPhone 6s

[] Apple iPhone 7

[] Apple iPad Air

[] Apple Apple iPhone 11
[] Apple iPhone 7

[] Apple iPad Air 2

[] Apple iPhone 5s

[] Apple iPhone XR

[] Apple iPad Air

[] Apple iPhone 8

c. Filter by

Select Devices

10S -10.2

10S =101

105 -10.3.3

10S -13.31

10S - 1.4

10s =11

105 -10.3.1

105 -12.0

105 -10.3.1

105 -12.0

WIFI

WIFI

WIFI

WIFI

WIFI

WIFI

WIFI

WIFI

WIFI

WIFI

N
NS

Figure 23: Pagination

Run Test

Filter by

750 X 1334

750 X 1334

1536 X 2048

828 X 1792

750 X 1334

1536 X 2048

640 X 1136

828 X 1792

1536 X 2048

750 X 1334

on-cloud

on-cloud

on-cloud

on-cloud

on-cloud

on-cloud

on-cloud

on-cloud

on-cloud

on-cloud

You can select devices further based on filters such as OS, Make,
Model, Network, Resolution, Location as shown in Figures 24.

Start Test

Select App Project Select Devices Run Test

Select from existing device group

Select Device Group N
Search for devices Filter by —
Select OS5 Select Make Select Model Select Hetworlk
~ ~ ~ ~
Select Carrier Select Resolution Select Location
w ~ w
Rikisd
] Asus Max Pro M1 ANDROID - 81 WiFi = 1080 X 2160 Mumbai
[] Samsung A2ls ANDROID - 10 WiFi - 720 X 1600 Mumbai
[] Samsung AS51 ANDROID - 10 WiFi - 1020 X 2400 Chicago
] Samsung A9 ANDROID - 10 WiFi - 1080 X 2220 ‘Ghaziabad
] Samsung M20 ANDROID -9 WiFi = 1020 X 2340 Mumbai
] Vivo 1820 ANDROID - 81 WiFi - 720 X 1520 ‘Ghaziabad

Figure 24: Filter By

d. Remove a selected device

By clicking on X, one can remove a selected device before beginning
any test run as given in Figure 25.

Start Test

Select App Project Select Devices Run Test

ToDo I0S Appium Java ToDo.ipa ToDo_New

Apple iPad 7th Gen AVAILAB — . AVAILABLE

(2019)
Apple

Apple iPad 7th Gen (2019)
10S

WIFI

on-cloud

1620 X 2160

D Start Now
D Schedule Test

Figure 25: Remove a selected a device

2.8 Run Test

After selecting a project, build, script, devices, you can now run tests. There are
two options to run tests. One is Start Now, where you can execute the test now
and other one is Schedule Test where you can run continuous tests as shown in
Figure 26.

Start Test

Select App Project Select Devices Run Test

ToDo 10S Appium Java ToDo.ipa ToDo_New

Apple iPad 7th Gen AVAILABLE x Stat " AVAILABLE
(2019)

Apple

Apple iPad 7th Gen (2019)

10S

WIFI

on-cloud

1620 X 2160

O Start Now
O Schedule Test

Figure 26: Run Tests - Start Now, Schedule Test

(a) Start Now

When ‘Start Now’ is selected, then the test starts instantaneously.

Start Test
Select App Project Select Devices Run Test
ToDo 10S Appium Java ToDo.ipa ToDo_New
Apple iPad 7th Gen AVAILABLE x Status - AVAILABLE
(2019)

lake = Apple

Apple iPad 7th Gen (2019)
10s

WIFI

on-cloud

olutior - 1620 X 2160

@ Start Now
= Run Test
O Schedule Test

Figure 27: Start Now

(b) Schedule Test

When ‘Schedule Test’ is selected, then the following fields are required to be
populated as shown in Figure 28:

(i) Start Date and Time
(ii) End Date and Time

(iii) Time interval (in minutes)
Put a sufficient interval between two test runs based on test execution time.

Start Test
Select App Project Select Devices Run Test
SGmark_Android_Robot_Uiautomator Appium Java app-gosiSgmark_lapk
scriptl
A9
Samsung
A9
WiFi
Ghaziabad
O Start Now
Schedule Test
Start Date & Time *: 22 /01 /2021 o230 B
End Date & Time " : 2670172021 oa0ol
Time Interval *: 20 4 in minutes

Run Schedule
Test

Figure 28: Schedule Test

3. Reviewing Test Results

In this section, we will see on how to check the test results for different set of
devices. One can navigate to ‘Check Status’ and ‘See Results’ sections to know
more about the test results.

3.1 Check Status

3.1.1 Ongoing Test

Ongoing test displays test details such as the status, date & time, device, app
project, build, script of the tests as given in Figure 29.
Check Status

Ongoing Test Test Run History Manage Schedules

Q, Search for device Filter by

Select App Project Select Build Select Journey Script Select Test Case

w ~

Select Status Select Date and Time
| | Cancel
| Sl | I 1]

® Queued 22 Jan 2021 A20s 5S5Gmark_Android_Robot_Uiautomator 4.4.2-debug scriptl

01:00

Figure 29: Ongoing Tests

In ‘Ongoing Test’, you can check for tests by searching for devices, by applying
filters such as ‘app project’, ‘build’, ‘journey script’, ‘test case’, ‘status’, ‘date & time
as given in Figure 30. A ‘Filter By’ field can be selected by clicking on the
dropdown, selecting the required value and clicking ‘Apply’.

3

Check Status

Ongoing Test Test Run History Manage Schedules
Q, Search for device Filter by
Select App Project Select Build Select Journey Script Select Test Case

w ~

Select Status Select Date and Time
- “eeY

® Queued 22 Jan 2021 A20s SGmark_Android_Robot_Uiautomator 4.4.2-debug scriptl

01:00

Figure 30: Ongoing Test: ‘Search for device’ and ‘Filter By’

‘Select Status’ ‘Filter’ option has following status options:

e Queued - tests that are queued to execute on test devices
e Running - tests that are running on the test devices

¢ Completed - tests that are executed

e Interrupted - tests that did not complete but were aborted

Ongoing Test also facilitates the cancellation of any previous test runs based on
their status by giving an option to Abort the test as given in Figure 31.

Q. Search for device Filter by

Select App Project Select Build Select Journey Script Select Test Case

v v ~ v

Select Status Select Date and Time)
Apply ‘ Cancel

® Queued 14 Dec 2020 01:54 Galaxy Note 10 Demo Project v1.7.0 Demo Android
Script

Figure 31: Abort

3.1.2 Test Run History

‘Test Run History’ displays test details such as date & time, device, app project,
build, script and status as shown in Figure 32.

Check Status

Ongoing Test Test Run History Manage Schedules
Q for device Filter by

| Lo fworome] [oe] [som] [se]

06 Jan 2021 03:07 Alls Android_S5Gmark 4.4.2-debug SGmark_script_android Completed

Test Run Details

06 Jan 2021 03:04 A20s Android_SGmark 4.4 2-debug SGmark_script_android Completed .
Test Run Details
05 Jan 2021 11:02 AD Android_SGmark 4.4.2-debug SGmark_script_android Completed »
Test Run Details
05 Jan 2021 10:39 A2ls Android_SGmark 4.4 2-debug SGmark_script_android Completed
Test Run Details

Figure 32: Test Run History

In ‘Test Run History’, you can check for tests by searching for devices, by applying
filters such as ‘date & time’, ‘device’, ‘app project’, ‘build’, ‘script’, ‘status’ as given
in Figure 33.

Check Status

Ongoing Test Test Run History ~ Manage Schedules

Q Search for device Filter by

Select App Project Select Build Select Journey Script Select Date and Time

~
Select Test Case Select Status
i - Apply Cancel

06 Jan 2021 03:07 A2ls Android_5Gmark 4.4.2-debug 5Gmark_script_android Completed

Test Run Details
06 Jan 2021 03:04 A20s Android_5Gmark 4.4.2-debug 5Gmark_script_android Completed

Test Run Details
05 Jan 2021 11:02 A9 Android_5Gmark 4.4.2-debug 5Gmark_script_android Completed

Test Run Details
05 Jan 2021 10:39 A2ls Android_5Gmark 4.4.2-debug 5Gmark_script_android Completed

Test Run Details

Figure 33: Search for device and Filter By

A ‘Filter By’ field can be selected by clicking on the dropdown, selecting the
required value, and clicking ‘Apply’ as given in Figure 33.

‘Test Run History’ also facilitates the deletion of any test run history by selecting
the check box and clicking on ‘Delete’ as given in Figure 34.

Check Status

Ongoing Test Test Run History ~ Manage Schedules

Q Search for device Filter by

06 Jan 2021 03:07 A2ls Android_5Gmark 4.4.2-debug 5Gmark_script_android Completed
Test Run Details
06 Jan 2021 03:04 A20s Android_5Gmark 4.4.2-debug 5Gmark_script_android Completed
Test Run Details
05 Jan 2021 11:02 A9 Android_5Gmark 4.4.2-debug 5Gmark_script_android Completed
Test Run Details
05 Jan 2021 10:39 A2ls Android_5Gmark 4.4.2-debug 5Gmark_script_android Completed
Test Run Details

Figure 34: Test Run History - Delete

‘Status’ column in ‘Test Run History’ displays the following messages if the tests
fail:

e BUILD NOT FOUND ON DEVICE - When the user chooses ‘default’ as
the option for specifying build, but no build present in the device.

¢ DEVICE NOT AVAILABLE - When the device chosen by a user is not
available for tests.

e DEVICE GETS DISCONNECTED WHILE TEST IS RUNNING - When the
device gets disconnected while the script is executing.

e PLAN IS EXPIRED FOR THAT USER - When the plan purchased by the
user is expired.

¢ MAX RERUN LIMIT REACHED - When the maximum test rerun limit is
reached by the user.

By clicking on ‘Test Run Details’, you can get detailed test run information in the
form of video recordings, screenshot recordings, test results, test logs, live logs as
given in Figure 35.

Test Run Details

05-01-2021 10:39 10:43 Completed Mumbai Android_SGmark
4.4.2-debug S5Gmark_script_android ANDROID 10 A2ls WiFi
Recordings Test Results | | Test Logs | | Screenshots | | Live Logs

| Screenshots Recording

|Vidco Recording

Verify the Home screen of the PASSED
application

Verify user exits from search FAILED
bar.

Verify Main & Hamburger Menu FAILED
For Anonymuous User

Verify Terms of use and privacy FAILED
link is open in webview.

Figure 35: Test Run Details

You can view ‘Screenshot Recording’ by dragging the cursor or clicking on left
and right arrows as given in Figure 36. The cursor shows the time stamp of a test
run.

Recordings Test Results Test Logs Screenshots

Video Recording Screenshots Recording
>
¥ Indoor Full Test FAILED

n
2021-01-05--10-39-09

‘Test Run Details’ show the following results:

Figure 36: Screenshot Recording

e Test Run Details - These are the details about the test runs.
e Video Recording - Video of the tests taken as instructed by the script.

e Screenshot Recording - You can check the screenshot recording by
clicking on the arrows given in Figure 36.

e Test Results - The test results such as passed or failed are displayed
testcase wise.

e Test Logs - Various logs such as ‘Download Logs’, ‘Download Memory
Info Logs’, ‘Download CPU Info Logs’ are generated.

e Screenshots - Snaps of the tests taken as instructed by the script.

Live Logs - Logs are generated when tests are running.

Please note:

e To record video and capture screenshot, appropriate code should be
added to the test script before uploading the script to App Functional. Get
in touch with the team for further assistance by sending an email to
enquiry@mozark.ai

e For Appium with Java TestNG scripts, you have to import the package
org.testng.Assert and call method Assert.assertTrue(true) and
Assert.assertTrue(false) to print pass and fail in the test results.

By clicking on ‘Rerun Test’, you can run the failed testcases as given in Figure 37.

mailto:enquiry@mozark.ai

Rerun Test Start New Test

Completed Mumbai Android_5Gmark
A2ls WiFi

Test Results Test Logs Screenshots
Indoor Full Test FAILED

Figure 37: Rerun Test

3.1.3 Manage Schedules

In ‘Manage Schedules’, you can ‘View Tray’, ‘Edit Schedule’, ‘Delete’ continuous
tests scheduled by you as given in Figure 38.

Check Status

Ongoing Test Test Run History Manage Schedules
sony3 14 Dec 2020 12:00 15 Dec 2020 12200 30 minutes View Tray o Delete
Schedule

Figure 38: Manage Schedules

(i) View Tray

Click “View Tray’ in Figure 38 to view the devices in that tray as given in
Figure 39.

Tray - sumit@mozark.ai_1018

Tray Description
Device -1
G5 Status

Make - Motorola
Model - G5
0os
Netwark - WIFI
Carrier
City - Buxar
Resolution

Figure 39: View Tray
(ii) Update Schedule Test

Click ‘Update Schedule Test’ in Figure 38 to update ‘start date & time, ‘end date &
time’, ‘time interval’ for your continuous tests as given in Figure 40.

Tray - sumit@mozark.ai_8
Update Schedule

Sarsbote Sk 22/01/2021 o 01:00 E|

ErlETRE e 22 /01/ 2021] 01:20 E|

Time Interval *: 10 2] in minutes
Update
Schedule Test

Figure 40: Update Schedule Test

(iii) Delete

Click ‘Delete’ in Figure 38 to delete a test schedule as given in Figure 41.

Are you sure want to delete this test Schedule? ®

Figure 41: Delete

3.2 See Results

In ‘See Results’, you can get insights from the test runs by using ‘Set Filters’,
‘Choose X-Axis’, ‘Choose Chart Type’, and ‘Advanced Dashboard’ as given in

Figure 42.

Success % for Automation Tests

Select App

Android .

Select Build

2 items selected v

Select Journey Script
Select Script 4

Select Test Cases

2 items selected v
Select 05

ANDROID v
Select Make

2 items selected v

Go to Advanced Dashboard €

Choase Chart Type Choose X-Axis

Bar = Build v Start Mew Test

Figure 42: See Results

Set Filters such as ‘Select App’, ‘Select Build’, ‘Select Journey Script’, ‘Select Test
Cases’ to customize the insights from the test runs. In Figure 43, different test
cases are selected by clicking the check boxes to see results for the selected test

cases.

Insights

Success % for Automation Tests

Select App

Aguamark w
Select Build

Select Build v

Select Journey Script

Select Script v

Select Test Cases
4 jtems selectad v
M Test Action
M Results Action
PCap Action
M Connect Action
M Change Action

Figure 43: Set Filters

Click the dropdown given for ‘Choose X-Axis’ to select ‘Build’, ‘Script’, ‘Testcase”,
‘0OS’, ‘Make’ to customize the insights from the test runs. For example, a testcase is
selected by clicking the dropdown to see results for the given testcases.

Click the dropdown given for ‘Choose Chart Type’ to select ‘Bar’, ‘Line’ to
customize the insights from the test runs.

Click ‘Advanced Dashboard’ in Figure 44 to view test run details. In Figure 44, you
can apply filters to check the test run details for filtered test runs.

Advanced Dashboard
BACK

Test History
Filterby

Select App Project Select Journey Script Select OS

Android v Select Script v Select OS

Select Build Select Test Cases. Select Make

Select Build -~ Select Test Case

Select Start Date Select Outcome Select Model

“ ‘
Max Pro M1 Demo-Script 658 04 Jan 202112:22 m
AS1 Demo-Script 4.4.2-debug 29 Dec 2020 04:39 m

Figure 44: Advanced Dashboard

4. Scripting Guidelines

The scripting guideline is to help users write/modify their automation scripts to be
compatible with MOZARK App Functional platform. The Language-Framework
supported on the platform are:

1. Robot-Appium with Python

2. Robot-UlAutomator with Python

3. Appium with Java TestNG

4.1 Robot-Appium

This section describes how to configure, package, and upload your Robot-Appium
tests to App Functional.

Please refer to our sample build and sample scripts for Robot-Appium with
Python -

Android(Build): https://bitbucket.org/mozarkai/mozark-python-appium-robot-
tests-android-5gmark/src/master/

iOS(Build): https://bitbucket.org/mozarkai/mozark-python-appium-robot-tests-
ios-5gmark/src/master/

https://bitbucket.org/mozarkai/mozark-python-appium-robot-tests-android-5gmark/src/master/
https://bitbucket.org/mozarkai/mozark-python-appium-robot-tests-android-5gmark/src/master/
https://bitbucket.org/mozarkai/mozark-python-appium-robot-tests-android-5gmark/src/master/
https://bitbucket.org/mozarkai/mozark-python-appium-robot-tests-ios-5gmark/src/master/
https://bitbucket.org/mozarkai/mozark-python-appium-robot-tests-ios-5gmark/src/master/
https://bitbucket.org/mozarkai/mozark-python-appium-robot-tests-ios-5gmark/src/master/

Android(Mobile Website): https://bitbucket.org/mozarkai/mozark-python-
appium-robot-tests-android-mweb-5gmark/src/master/

iOS(Mobile Website): https://bitbucket.org/mozarkai/mozark-python-appium-
robot-tests-ios-mweb-5gmark/src/master

Use the below instructions to get started with Robot-Appium scripting on App
Functional.

1. Ensure that the Test Package conforms to below folder structure
You will have to create a particular folder structure for your test package. Refer to

our sample folder given in Figure 45. This folder structure will ensure that all the
dependencies and packages are available.

=

MyScriptTestDirectory

Requirements.txt Resources VariableFiles TestSuites
Installs the right i i l
versions of the — TestSuiteOl.robot

packages to
support scripts

* |=| Testsuiteo2.robot
Resources.robot Config.py
>

Defines keywords Initializes desired = TestSuiteN.robot

capabilities, ——

environment

variables and Mentions user journeys using

element locators keywords and variables

Figure 45: Folder Structure

Please note:

e To ensure the appropriate setup for your Robot-Appium scripts while
uploading your test package on App Functional, generate requirements.txt
and bundle it inside your test directory/package as given in Figure 45. You
can run the below command to generate requirements.txt:

pip freeze > requirements.txt

The following code snippet is a glimpse of requirements.txt:

robotframework-appiumlibrary==1.5.0.7

- Appium-Python-Client [required: >=0.28, installed: 1.0.2]

https://bitbucket.org/mozarkai/mozark-python-appium-robot-tests-android-mweb-5gmark/src/master/
https://bitbucket.org/mozarkai/mozark-python-appium-robot-tests-android-mweb-5gmark/src/master/
https://bitbucket.org/mozarkai/mozark-python-appium-robot-tests-ios-mweb-5gmark/src/master/
https://bitbucket.org/mozarkai/mozark-python-appium-robot-tests-ios-mweb-5gmark/src/master/

- selenium [required: >=3.14.1,<4, installed: 3.141.0]
- urllib3 [required: Any, installed: 1.26.2]
- decorator [required: >=3.3.2, installed: 4.4.2]
- docutils [required: >=0.8.1, installed: 0.16]
- kitchen [required: >=1.2.4, installed: 1.2.6]

- robotframework [required: >=2.6.0, installed: 3.2.2]
- selenium [required: >=2.47.1, installed: 3.141.0]
- urllib3 [required: Any, installed: 1.26.2]
- six [required: >=1.10.0, installed: 1.15.0]
setuptools==49.2.1

2. Configure your test package

Replace all hard-coded variables in the config.py file, such as Device UDID,
Appium Server IP etc with environment variables, to ensure compatibility.
Environment variables represent values that are used by your automated tests.
App Functional dynamically populates environment variables at runtime by giving
the values to the required environment variables.

e Go to MyScriptTestDirectory/VariableFiles/Config.py

e Add code snippet-
e Update the below capabilities with the mentioned environment variables

Capabilities Description Values

udid Unigue device identifier for the os.environ['DEVICE_SERIAL_ID’]
device under test

platformVersion Mobile OS version for the device os.environ['DEVICE_OS_VERSION’]
under test

appiumServer Appium server IP address os.environ['APPIUM_SERVER’]

chromedriverPort Port number assigned to chrome os.environ[CHROME_PORT’]
browser application. This is only
required for tests on the default
browsers for mobile websites.

systemPort To connect with Appium server. os.environ['SYSTEM_PORT’]
This is only required for tests on
the default browsers for mobile
websites.

e Add supported environment variables or desired capabilities(Supported
variables are a set of desired capabilities that can be used while writing
testcases.)

Capabilities Description Values

deviceName Model name of the device os.environ['DEVICE_NAME’]

phoneNumber Phone number of the device. os.environ['DEVICE_PHONE_NUMBER’]
This may be used to verify
OTP flows.

mjpegPort To take screenshots with the os.environ['MJPEG_PORT’]
script.

Please note:

e Put username and password for GMAIL login, Facebook login as part of the
script if there is any testcase that requires such credentials.

e Rectify all the build errors and missing dependencies before bundling and
uploading your test package to App Functional.

3. Upload the test package(scripts) to App Functional

¢ Signin to App Functional console: http://demo-appfunctional.mozark.ai

e Create or select a project. Follow the instructions on how to create or
select a project.

e Upload or select a build. Follow the instructions on how to create or select
a project.

e Bundle your test package

e Upload the test package. Follow the instructions on how to upload a test
script.

Please refer to our sample build and sample scripts for Robot-Appium with
Python -

Android(Build): https://bitbucket.org/mozarkai/mozark-python-appium-robot-
tests-android-5gmark/src/master/

iOS(Build): https://bitbucket.org/mozarkai/mozark-python-appium-robot-tests-
ios-5gmark/src/master/

Android(Mobile Website): https://bitbucket.org/mozarkai/mozark-python-
appium-robot-tests-android-mweb-5gmark/src/master/

iOS(Mobile Website): https://bitbucket.org/mozarkai/mozark-python-appium-
robot-tests-ios-mweb-5gmark/src/master

4.2 Robot-UlAutomator

This section describes how to configure, package, and upload your Robot-
UlAutomator tests to App Functional. The UlAutomator testing framework
provides a set of APIs to build user interface tests that perform interactions on
user and system apps for Android.

Please refer to our sample build and sample scripts for Robot-UlAutomator with
Python for Android(Build): https://bitbucket.org/mozarkai/mozark-python-
uiautomator-robot-tests-android-5gmark/src/master/

Use the below instructions to get started with Robot-UlAutomator scripting on
App Functional.

1. Ensure that the Test Package conforms to below folder structure

You will have to create a particular folder structure for your test package. Refer to
our sample folder given in Figure 46. This folder structure will ensure that all the
dependencies and packages are being taken care of.

http://demo-appfunctional.mozark.ai/AppFunctional/#/pages/automateTestSummery/21
https://bitbucket.org/mozarkai/mozark-python-appium-robot-tests-android-5gmark/src/master/
https://bitbucket.org/mozarkai/mozark-python-appium-robot-tests-android-5gmark/src/master/
https://bitbucket.org/mozarkai/mozark-python-appium-robot-tests-android-5gmark/src/master/
https://bitbucket.org/mozarkai/mozark-python-appium-robot-tests-ios-5gmark/src/master/
https://bitbucket.org/mozarkai/mozark-python-appium-robot-tests-ios-5gmark/src/master/
https://bitbucket.org/mozarkai/mozark-python-appium-robot-tests-ios-5gmark/src/master/
https://bitbucket.org/mozarkai/mozark-python-appium-robot-tests-android-mweb-5gmark/src/master/
https://bitbucket.org/mozarkai/mozark-python-appium-robot-tests-android-mweb-5gmark/src/master/
https://bitbucket.org/mozarkai/mozark-python-appium-robot-tests-ios-mweb-5gmark/src/master/
https://bitbucket.org/mozarkai/mozark-python-appium-robot-tests-ios-mweb-5gmark/src/master/
https://bitbucket.org/mozarkai/mozark-python-uiautomator-robot-tests-android-5gmark/src/master/
https://bitbucket.org/mozarkai/mozark-python-uiautomator-robot-tests-android-5gmark/src/master/

=

MyScriptTestDirectory

Requirements.txt Resources VariableFiles TestSuites
Installs the right L i l [N
versions of the I— TestSuiteOl.robot
packages to - -
support scripts — —

— — N

’ TestSuite02.robot
Resources.robot Config.py

L A
Defines keywords Initializes desired TestSuiteN.robot
capabilities,

environment
variables and Mentions user journeys using
element locators keywords and variables

Figure 46: Folder Structure

Please note:

e To ensure the appropriate setup for your Robot-Appium scripts while
uploading your test package on App Functional, generate requirements.txt
and bundle it inside your test directory/package as given in Figure 46. You
can run the below command:

pip freeze > requirements.txt

The following code snippet is a sample of requirements.txt:

robotframework-uiautomatorlibrary==0.4
- uiautomator [required: >=0.1.30, installed: 1.0.2]

- urllib3 [required: >=1.7.1, installed: 1.26.2]
setuptools==49.2.1

2. Configure your test package

Replace all hard-coded variables in the config.py file, such as Device UDID,
Appium Server IP etc with environment variables, to ensure compatibility.
Environment variables represent values that are used by your automated tests.
App Functional dynamically populates environment variables at runtime by giving
the values to the required environment variables.

e Go to MyScriptTestDirectory/VariableFiles/Config.py

e Add code snippet-
e Update the below capabilities with the mentioned environment variables

Capabilities | Description | Values

udid

device under test

Unigue device identifier for the os.environ['DEVICE_SERIAL_ID’]

platformVersion

under test

Mobile OS version for the device os.environ['DEVICE_OS_VERSION’]

e Add supported environment variables or desired capabilities(Supported
variables are a set of desired capabilities that can be used while writing
testcases.)

Capabilities

Description

Values

deviceName

Model name of the device

os.environ['DEVICE_NAME’]

phoneNumber Phone number of the device. os.environ['DEVICE_PHONE_NUMBER’]
This may be used to verify
OTP flows.

mjpegPort To take screenshots with the os.environ['MJPEG_PORT’]

script.

Please note:

e Put username and password for GMAIL login, Facebook login as part of the
script if there is any testcase that requires such credentials.

e Rectify all the build errors and missing dependencies before bundling and
uploading your test package to App Functional.

3. Upload the test package(scripts) to App Functional

e Sign in to App Functional console: http://demo-appfunctional.mozark.ai/

e Create or select a project. Follow the instructions on how to create or
select a project.

e Upload or select a build. Follow the instructions on how to create or select
a project.

e Bundle your test package

e Upload the test package. Follow the instructions on how to upload a test

script.

Please refer to our sample build and sample scripts for Robot-UlAutomator with
Python for Android(Build): https://bitbucket.org/mozarkai/mozark-python-
uiautomator-robot-tests-android-5gmark/src/master/

4.3 Appium Java TestNG

This section describes how to configure, package, and upload your Appium tests
to App Functional. Appium is an open-source tool for automating native and
mobile web applications. For more information, see Introduction to Appium on
the Appium website.

Please refer to our sample build and sample scripts for Appium with Java TestNG

http://demo-appfunctional.mozark.ai/AppFunctional/#/pages/automateTestSummery/21
https://bitbucket.org/mozarkai/mozark-python-uiautomator-robot-tests-android-5gmark/src/master/
https://bitbucket.org/mozarkai/mozark-python-uiautomator-robot-tests-android-5gmark/src/master/
http://appium.io/docs/en/about-appium/intro/

Android(Build): https://bitbucket.org/mozarkai/mozark-java-appium-testng-
tests-android-5gmark/src/master/

iOS(Build): https://bitbucket.org/mozarkai/mozark-java-appium-testng-tests-ios-
Sgmark/src/master/

1. Ensure that the Test Package conforms to below folder structure

You will have to create a particular folder structure for your test package. Refer to
our sample folder given in Figure 47. This folder structure will ensure that all the
dependencies and packages are available.

=

! |
é src
pom.xml, installs l
the dependencies i l

v
N
v
N
v

assembly java resources java resources
A -'“- P BaseClass.java
. Mentions user journeys using
N keywords and variables
Zip.xml, required to Tests \‘ Fulltest.java
successfully bundle the test package
package

Figure 47: Folder Structure for Appium with Java TestNG Scripts

Please note:

¢ Add Maven dependencies and builds to pom.xml as given in the folder
structure in Figure 47.

<dependencies>

<I-- https://mvnrepository.com/artifact/io.appium/java-client -->
<dependency>

<groupld>io.appium</groupld>

<artifactld>java-client</artifactld>

<version>7.4.1</version>
</dependency>

https://bitbucket.org/mozarkai/mozark-java-appium-testng-tests-android-5gmark/src/master/
https://bitbucket.org/mozarkai/mozark-java-appium-testng-tests-android-5gmark/src/master/
https://bitbucket.org/mozarkai/mozark-java-appium-testng-tests-ios-5gmark/src/master/
https://bitbucket.org/mozarkai/mozark-java-appium-testng-tests-ios-5gmark/src/master/

<!-- https://mvnrepository.com/artifact/org.seleniumhg.selenium/selenium-java
-->
<dependency>
<groupld>org.seleniumhg.selenium</groupld>
<artifactld>selenium-java</artifactld>
<version>3.141.59</version>
</dependency>

<!-- https://mvnrepository.com/artifact/org.testng/testng -->
<dependency>
<groupld>org.testng</groupld>
<artifactld>testng</artifactld>
<version>7.3.0</version>
<scope>test</scope>
</dependency>

<!-- https://mvnrepository.com/artifact/com.googlecode.json-simple/json-
simple -->
<dependency>
<groupld> com.googlecode.json-simple</groupld>
<artifactld>json-simple</artifactld>
<version>1.1.1</version>
</dependency>

</dependencies>
<build>
<plugins>
<plugin>
<groupld>org.apache.maven.plugins</groupld>
<artifactld>maven-jar-plugin</artifactid>
<version>2.6</version>
<executions>
<execution>
<goals>
<goal>test-jar</goal>
</goals>
</execution>
</executions>
</plugin>
<plugin>
<groupld>org.apache.maven.plugins</groupld>
<artifactld>maven-dependency-plugin</artifactld>
<executions>
<execution>
<id>copy-dependencies</id>
<phase>package</phase>
<goals>
<goal>copy-dependencies</goal>
</goals>
<configuration>
<outputDirectory>${project.build.directory}/dependency-
jars/</outputDirectory>
</configuration>
</execution>
</executions>

</plugin>
<plugin>
<artifactld>maven-assembly-plugin</artifactld>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
<configuration>
<finalName>Aquamark</finalName>
<appendAssemblyld>false</appendAssemblyld>
<descriptors>
<descriptor>src/main/assembly/zip.xml</descriptor>
</descriptors>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>

e Add dependencies to zip.xml as given in the folder structure in Figure 47.

<assembly
xmlns="http://maven.apache.or lugins/maven-assembly-
plugin/assembly/1.1.0”
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance”
xsi:schemalLocation="http://maven.apache.org/plugins/maven-assembly-
plugin/assembly/1.1.0”
“http://maven.apache.org/xsd/assembly-1.1.0.xsd">
<id>zip</id>
<formats>
<format>zip</format>
</formats>
<includeBaseDirectory>false</includeBaseDirectory>
<fileSets>
<fileSet>
<directory>${project.build.directory}</directory>
<outputDirectory>./</outputDirectory>
<includes>
<include>*jar</include>
</includes>
</fileSet>
<fileSet>
<directory>${project.build.directory}</directory>
<outputDirectory>./</outputDirectory>
<includes>
<include>/dependency-jars/</include>
</includes>
</fileSet>
</fileSets>
</assembly>

2. Configure your test package

http://maven.apache.org/plugins/maven-assembly-plugin/assembly/1.1.0
http://maven.apache.org/plugins/maven-assembly-plugin/assembly/1.1.0
http://www.w3.org/2001/XMLSchema-instance

Step O1: Write the environment variables or desired capabilities to MyTest.json

Environment variables represent values that are used by your automated tests.
You can use these environment variables in your MyTest.json and test code. App
Functional dynamically populates environment variables at runtime by giving the
values to the required environment variables.

Capabilities Description Values

platformName Mobile OS Eg: iOS, Android, or FirefoxOS
platform to use

platformVersion | Mobile OS Eg:7.1,4.4

version to use

deviceName

Kind of mobile
device to use

Eg: Galaxy S4, iPhone 11
For Android devices, run cleleNel\lel=X
For iOS devices, run [[f4g8sal=lal e [SIVITl=1S

appPackage NEVER o E I Gl X Mo db shell dumpsys window | grep -E 'mCurrentFocus]
the app you Output is of the format appPackage/appActivity and fetch
want to run. appPackage s the value. Open the app on a real device
connected via USB(with USB debugging on) before
running adb shell command.
appActivity Activity name | Run
for the Android | Output is of the format appPackage/appActivity and fetch
activity you appActivity as the value. Open the app on a real device
want to launch connected via USB(with USB debugging on) before
from your running adb shell command.
package.
appiumURL Appium server Eg: http://127.0.0.1:4723/wd/hub

IP address

Step 02: Add the filepath of MyTest.json to an environment variable

1. Open terminal(MacOS/Linux) or command line(Windows)

2. Initialize “DESIRED_CAPABILITIES_FILE_PATH” with the filepath of MyTest.json
by executing the below command:

For terminal(MacOS/Linux):

export DESIRED_CAPABILITIES_FILE_PATH=<filepath of MyTest.json>

For command line(Windows):

set DESIRED_CAPABILITIES_FILE_PATH=<filepath of MyTest.json>

3. Open Eclipse app from terminal(MacOS/Linux) or command line(Windows)

4. Use the below method to BaseClass.java to read the filepath of MyTest.json file
from an environment variable in the folder structure:

System.getenv("DESIRED_CAPABILITIES_FILE_PATH");

Step 03: Create a zipped test package file

http://127.0.0.1:4723/wd/hub

mvn clean package -DskipTests=true

The target directory file path will be:
java_testng_appium_android/target/java_testng_appium_android.zip

and the sample file name of .zip file will be(in the case of 5GMark):
java_testng_appium_android.zip

The file with .zip extension will be created as a result. This is your test package.

Please note:

e Put username and password for GMAIL login, Facebook login as part of the
script if there is any testcase that requires such credentials.

e Rectify all the build errors and missing dependencies before bundling your
test package.

Step 04: Bundle to create your zipped test package file for App Functional

Now, create a test bundle for App Functional by zipping MyTest.json and .zip file
created in previous two steps as MyTestPackage.zip to upload your tests to App
Functional.

3. Upload the test package(scripts) to App Functional

e Sign in to App Functional console: http://demo-appfunctional.mozark.ai

e Create or select a project. Follow the instructions on how to create or
select a project.

e Upload or select a build. Follow the instructions on how to create or select
a project.

¢ Upload the MyTestPackage.zip as test script. Follow the instructions on
how to upload a test script.

Please refer to our sample build and sample scripts for Appium with Java TestNG:

Android(Build): https://bitbucket.org/mozarkai/mozark-java-appium-testng-
tests-android-5gmark/src/master/

iOS(Build): https://bitbucket.org/mozarkai/mozark-java-appium-testng-tests-ios-
S5gmark/src/master/

5. Limits

The following list describes current App Functional limits:

¢ The maximum file size of an app that you can upload is 4MB.

¢ The maximum file size of a test bundle that you can upload is 4MB.

e There is no limit to the number of projects that you can upload to test.
e There is no limit to the number of apps that you can upload to test.

http://demo-appfunctional.mozark.ai/AppFunctional/#/pages/automateTestSummery/21
https://bitbucket.org/mozarkai/mozark-java-appium-testng-tests-android-5gmark/src/master/
https://bitbucket.org/mozarkai/mozark-java-appium-testng-tests-android-5gmark/src/master/
https://bitbucket.org/mozarkai/mozark-java-appium-testng-tests-ios-5gmark/src/master/
https://bitbucket.org/mozarkai/mozark-java-appium-testng-tests-ios-5gmark/src/master/

e There is no limit to the number of test bundles that you can upload to test.
e There is no limit to the number of devices that you can include in a test run.
e There is no limit to the number of runs that you can schedule.

e There is no limit to the duration of an automated test run.

e You can retain the test results for one month.

e You can retain test logs for one month.

e You can retain screenshots and videos for one month.

6. Document History

S.No | Date Version Number
1. Dec 8, 2020 1.0

7. Resources

This section contains links to product video tutorials that can help you in getting
started with App Functional.

Product Videos
(https://www.youtube.com/channel/UCdcRIhyX-ZzYWRCvrSillHg):

1. How to run an automated test?
https://www.youtube.com/watch?v=fEkpNzDK5ic

2. How to write scripts and add log results?
https://www.youtube.com/watch?v=0cgqCPcllvw

8. Support

For further assistance, you can reach out to enquiry@mozark.ai.

https://www.youtube.com/channel/UCdcRIhyX-ZzYWRCvrSiIlHg
https://www.youtube.com/watch?v=fEkpNzDK5ic
https://www.youtube.com/watch?v=OcgqCPc1Ivw

