
45%Human-centric

25%

Your Innovation Partner and Catalyst for

Your Intelligent 
Digital 
Transformation 
Journey

Desired

15%Feasible

15%Viable



Azure Infrastructure as 
Code (IaC)

2



Introduction
Azure IaC

One of the challenges we encounter when 
transitioning applications to production is the 
presence of slight configuration difference 

between production environment and the 
environments used for testing.

In Azure IaC approach, modifications to an environment are carried out 
using version-controlled scripts and templates, with minimal human 
intervention. This ensures that environments deviate from each 

other only when essential, such as when they require distinct 
database connection strings.

Azure Infrastructure as Code

3



Azure Infrastructure as Code (IaC) is a methodology that enables you to manage and provision your cloud resources in Microsoft Azure using code.
Infrastructure as code (IaC) employs DevOps practices and versioning to define and deploy infrastructure, ensuring that the same environment is consistently
generated every time it's deployed, just as the same source code consistently generates the same binary.

Introduction
Azure IaC

4



Instead of manually configuring resources through the Azure portal or using PowerShell or Azure CLI scripts, IaC allows you to define your infrastructure in a
declarative or imperative way using a programming language.

Introduction
Azure IaC

5



Version Control

IaC code can be stored in version control 
systems like Git, providing a history of 
changes and enabling collaboration 
among team members.

Scalability

IaC allows you to easily scale your 
infrastructure up or down by modifying 
the code, making it well-suited for dynamic 
workloads.

Reusability

Templates and configurations can be 
reused across multiple environments 
(development, staging, production), 
promoting best practices and reducing 
duplication of effort.

Auditability

IaC provides a clear audit trail of all 
changes made to your infrastructure, 
enhancing security and compliance.

Automation

Infrastructure deployment can be 
automated, enabling continuous 
integration and continuous deployment 
(CI/CD) pipelines.

Consistency

IaC ensures that your infrastructure is 
always provisioned in a consistent and 
repeatable manner, reducing the risk of 
human errors and misconfigurations.

Benefits
Azure IaC 6



Azure Resource Manager (ARM) 
Templates:

ARM templates are JSON files that define the 
desired state of your Azure resources and 
their relationships.

Each resource is described using a set of 
properties, such as name, type, location, and 
configuration settings.

ARM templates support parameters and 
variables to make your deployments dynamic 
and reusable across different environments.

They provide a way to define dependencies 
between resources, ensuring proper 
provisioning and sequencing.

ARM templates can be used directly via the 
Azure portal, Azure PowerShell, Azure CLI, 
Azure DevOps, or any other supported 
deployment method.

Terraform:

Terraform is an open-source IaC tool that 
supports multiple cloud providers, including 
Azure.

It uses a declarative configuration language 
(HCL - HashiCorp Configuration Language) to 
define your infrastructure.

Terraform configurations consist of 
resources, data sources, variables, and 
providers.

Providers in Terraform allow you to interact 
with different cloud platforms, and Azure is 
supported through the "azurerm" provider.

Terraform maintains a state file that keeps 
track of the resources created, making it 
easier to manage updates and changes to 
your infrastructure.

Tools
Azure IaC

7



Azure Infrastructure as Code (IaC)
Azure Solutions 8



Tools
Azure IaC

9



Visualisation
Azure IaC 10



Azure Infrastructure as Code (IaC)
Azure Solutions

11



Deployment Timeline
Azure IaC

Choose an 
IaC Tool 

Set Up Version 
Control 

Create the IaC 
Project Structure 

Define Project 
Scope & 

Objectives 

Write 
Infrastructure 

Code 

Implement 
CI/CD Pipeline 

Test and 
Validate 

Documentation 
and Training 

Security and 
Compliance 

Scaling and 
Maintenance 

1-2 Days

1-2 Days

1-2 Days

1-2 Days

Varies

2-3 Days

Varies

1-2 Days

Ongoing

Ongoing

Setting up an Azure Infrastructure as Code (IaC) project involves several steps, and the duration can vary depending on the complexity of your infrastructure, your 
familiarity with IaC tools, and the specific requirements of your project. 

Here's a general guideline for setting up an IaC project and a rough estimate of the time required:

12



Netways Cloud Migration
Methodology

Assessment and Planning:

1.Understand the existing IT landscape, 
applications, and dependencies.

2. Identify the business objectives and 
requirements for the migration.

3. Assess the current infrastructure and 
workloads to determine their suitability for 
migration to Azure.

4. Categorize applications based on their 
complexity, criticality, and interdependencies.

Data Migration Strategy:

1. Plan the migration of databases and data to 
Azure.
2. Choose the appropriate data migration 
tools and methods.
3. Consider data security and privacy during 
the migration.

Pilot Migration:

1. Select a representative workload or application 
for a pilot migration.
2. Execute the pilot migration to identify potential 
issues and learn from the process.
3. Use the pilot migration as a basis for adjusting 
the migration strategy if needed.

Testing and Validation:

1. Perform testing to ensure that applications 
function correctly in the Azure environment.
2. Validate the performance and scalability of 
the migrated workloads.
3. Conduct security and compliance checks.

Full-Scale Migration:

1. Execute the migration of all identified 
workloads and applications to Azure.
2. Monitor and manage the migration process 
to address any issues that arise.

Optimization and Cost Management:

1. Continuously optimize the Azure 
environment for performance and cost 
efficiency.
2. Implement governance policies to control 
costs and resource usage.

Post-Migration Support:

1. Provide support to end-users and address 
any post-migration issues.
2. Train the IT team on managing and 
operating the Azure environment effectively.

Cloud Readiness Assessment:

1. Evaluate the readiness of the existing 
applications and workloads for the cloud.
2. Identify any modifications or refactoring 
needed to make applications cloud-ready.
3. Consider regulatory and compliance 
requirements.

Design and Architecture:

1. Create a target architecture for Azure 
deployment.
2. Define the appropriate Azure services to 
be used for each workload.
3. Address security and compliance 
concerns in the architecture.

13



Thank 
you

Netways Presales Team

sales@netways.com

www.netways.com

www.linkedin.com/company/netways

14

Netways Presales Team

sales@netways.com

http://www.netways.com/
http://www.linkedin.com/company/netways
http://www.linkedin.com/company/netways

