
Software updates for loT
and the Hidden Costs of
Homegrown Updaters

A MENDER WHITE PAPER

mender.io 1

How hard can software updates for loT be?

The industry clearly needs a better approach with something so critical to the security of the

growing connectivity of devices. Rather than having individual embedded teams each develop

their own software update mechanism, there should be an end-to-end open source project with a

permissive license the entire embedded community can get behind. Developers of various

connected device products and solutions can draw upon this open source project and it will

support the growing needs of the market. For example, it should support popular boards such as

the Raspberry Pi, which has grown from a hobbyist board initially dismissed as a prototyping board

to one disrupting the traditional embedded world with its low cost and easy availability at scale.

Another benefit of a community-backed project is it will have many more eyes on the code which

will increase the security and the quality of the code. And while a reliable OTA mechanism is a

requirement for connected devices, spending time building an updater will distract already limited

time and resources from focusing on the actual features of your product that will provide direct

value to customers and differentiation from competitors. An update mechanism requires attention

to many security nuances and is crucial to a product’s viability given the potential repercussions of

a compromised device, whether it has been bricked in the field or malware has compromised it.

As detailed in Figure 1, the costs are largely in the lower layers where there are many open source

options available that are community-driven and freely available. Building your own OTA updater

should no longer be an option. We will cover the specific requirements under four broad categories

often overlooked in a homegrown OTA solution.

The embedded systems industry is struggling to properly bring devices online due to the security

implications of connecting devices at mass scale. The Internet of Things is not new -- it was

previously referred to as cyber-physical systems or machine-to-machine (M2M): bringing devices

online is not a novel development. But due to the scale of connecting devices and the numerous

hacks that has already affected health-sensitive target devices as in the case of medical devices

and connected cars, it is rightfully receiving renewed scrutiny.

One specific area receiving attention is the ability to update and patch vulnerable IoT devices.

Unfortunately, the software update mechanism is typically a rudimentary homemade endeavor for

many embedded development teams. A common thread from these homegrown updaters was it

largely lacked the many capabilities to ensure security and robustness.

Many client-only
solutions exist but an
update mechanism
should have the ability
to manage the entire
fleet of devices.

There were two primary causes for this:

1. Building a software update mechanism for network- connected embedded systems was outside

 the core competency of most embedded developers

2. The update mechanism was often an afterthought and with time-to-market pressure and

 product release deadlines, the OTA mechanism was hastily assembled and did not consider

 many of the requirements to ensure a robust and secure update process

Fleet management

Manual one-by-one updating of devices should be a remnant of the past even with smaller fleets

of just 10 devices. Many client-only solutions exist but an update mechanism should have the

ability to manage the entire fleet of devices. Fleet management requirements can be extensive

and have many different requirements depending on the specific scenario and environment. To be

concise, we have limited the list of requirements for fleet management to six key capabilities.

Figure 1: Embedded Stack

PRODUCT DIFFERENTIATION

10%

COST

30%

60%

HMI

Applications

Middleware

OTA updater

Operating System

Board Support Pack

Hardware

WHITE PAPER

Software updates for loT and the Hidden Costs

of Homegrown Updaters

mender.io 2

¹ Lomas, Natasha (2017, August 14) Update bricks

smart locks preferred by Airbnb. Retrieved from

https://techcrunch.com/2017/08/14 wifi-

disabled/

Software compatibility

It is also required to understand what device types are compatible with what available updates. A

recent example of this having catastrophic results is a smart lock company widely used by Airbnb¹.

There were many reasons - which will be covered - that lead to the smart locks being bricked by a

software update in August 2017. A key reason was that a software update was deployed to the

incorrect devices -- a previous version of the smart lock. And it rendered those devices unable to

receive another OTA update to fix the issue. Unfortunately, automatic rollback was not a capability

built into the devices which lead to a PR disaster that required a public apology from their CEO.

Overview of running software versions

The ability to see the current software version installed on each device is also important in

planning which updates you will be rolling out. This is required to understand which devices are

vulnerable to known vulnerabilities and CVEs and won’t be left outdated and insecure. This will also

make it possible to know if the installed software is compatible with the desired update.

Basic inventory list of every device

Another key capability in the management server is the ability to list all the devices with key

inventory information such as network addresses, product version, model, and when it last

connected to the management server. The inability to see this information can easily lead to

security breaches of forgotten devices as there is no visibility to ensure all devices are actively

maintained and patched if a vulnerability is discovered.

The need for a management server

One of the more complicated aspects of an OTA solution is the fleet management capabilities of

the management server. During our initial investigation interviewing embedded device owners who

built their own updater, many lacked the capability for fleet-wide rollouts of updates properly.

There was no way to do rollouts with certain groups or locations of the device population or do the

rollouts in phases to mitigate risks of widely deployed bad updates. Many homegrown updaters

were also restricted to updating devices one-by-one, which easily becomes unmanageable as the

device population grows. The increase of manual tasks will increase the probability of mistakes,

which becomes highly risky given the sensitive nature of the update process. One mistake can lead

to unusable devices in the field, an expensive and potentially unrecoverable situation.

The increase of manual
tasks will increase the
probability of mistakes,
which becomes highly
risky given the sensitive
nature of the update
process.

Log management

Other capabilities needed from the management server are deployment logs to properly diagnose

any issues arising from a failed deployment. Deployment status reports are required for visibility

into the overall status of an update, such as how many devices succeeded and failed, and

specifying which devices failed. Many servers lack this capability and thus bricked devices go

unnoticed.

Building a management server is costly

In conversations with several embedded consultants who have built a management server with all

of these capabilities, the lines of code range from 40,000 to 80,000 just for the backend. This will

typically take up the time of two developers for over a year -- an expensive endeavor. And while

the management server is a critical part of an OTA mechanism, this does not include the client-

side component that exists on the embedded system, which can range from 10,000 to 20,000

lines of code.

WHITE PAPER

Software updates for loT and the Hidden Costs

of Homegrown Updaters

mender.io 3

The resiliency and
reliability of the update
process should be a
central concern given
the potential
consequences.

The risk of package management

While package-based updates are common in traditional Linux software (e.g. apt or yum), it is

typically avoided in embedded Linux due to many issues. It is difficult to guarantee a consistent

set of packages installed across a fleet of devices. Additionally, the number of combinations of

installed packages can make for a QA nightmare. Package systems are fragile and if a post-

trigger/script fails the package install itself fails. And it will likely not be a clean fail, where the

partially installed package can block the install of a new package designed to fix the fail. The

attention required to tend to individual packages easily becomes unmanageable and the need to

test all combinations of installed packages for each release can become a very large task --

affecting how timely you can even deploy updates.

Robust

Power or network loss

A common scenario causing devices to brick is when a loss of power or network occurs during the

update. It is common for embedded systems to experience this when they are remotely deployed,

thus it is necessary to have atomic installations where an update is fully installed or not at all.

Partial installations create inconsistency in remotely deployed devices and can quickly veer into

chaos when the production devices do not match the test environment. It is generally a best

practice in embedded systems to avoid non-atomic updates due to the lack of integrity it can

produce.

One of the most important characteristics of an OTA solution is to ensure the update process is

robust. This has many elements to ensure the resiliency of the embedded systems. One of the

worst possible scenarios is to have devices remotely deployed and then due to an interruption

during an update become unusable and bricked. The resiliency and reliability of the update

process should be a central concern given the potential consequences.

The need for atomic updates with built-in rollback

It is very common for the output of an embedded Linux CI build to be a complete root filesystem,

thus having a dual rootfs approach is one of the simplest and most reliable ways to ensure the

embedded device is robust with automatic rollback to the other rootfs partition. A common

approach is to have the update written to the inactive rootfs partition while the bootloader is

configured to boot from it when the embedded system reboots. Once the updater comes up it will

report the success of the deployment to the management server. If this fails, it will automatically

rollback to ensure the device will remain updateable. This was the challenge with the smart locks

previously mentioned - it was not able to communicate to the server after receiving the wrong

update and did not automatically rollback, thus it became bricked. The dual rootfs approach also

simplifies the build system by building all the packets in a reliable and predictable way. The

deployments will be reproducible as all the devices will get the same version of all the

subcomponents.

Integrity checks

Other capabilities to ensure a robust update mechanism is the ability to have integrity checks in

order to avoid corruption of the update artifact. There should not be any corruptions end-to-end,

from build system to device due to any transfer or hardware issues. Random modifications of the

update could lead to applications malfunctioning, applications not starting properly, or even the

device bricking.

WHITE PAPER

Software updates for loT and the Hidden Costs

of Homegrown Updaters

mender.io 4

² Rayome, Alison DeNisco (2017, November 20)

DDoS attacks increased 91% in 2017 thanks to

IoT. Retrieved from https://

www.techrepublic.com/article/ddos-attacks-

increased-91-in-2017-thanks-to-iot/

³ Greenberg, Andy (2016, September 27) Tesla

responds to Chinese hack with a major security

upgrade. Retrieved from https://

www.wired.com/2016/09/tesla-

responds-chinese-hack-major- security-

upgrade/

⁴ Greenberg, Andy (2015, September 10) GM took

5 years to fix a full-takeover hack in millions of

Onstar cars. Retrieved from https://

www.wired.com/2015/09/gm-took-5-years-fix-

full-takeover-hack-millions-onstar-cars/

⁵ Greenberg, Andy (2015, July 21) Hackers

remotely kill a Jeep on the highway - with me in

it. Retrieved from https://www.wired.com/

2015/07/hackers-remotely-kill-jeep-highway/

Security

The increase of connected devices being compromised had a direct result in the 91% growth of

DDoS attacks in 2017², which was attributed to poor IoT security. The trend is profoundly

disturbing and requires security to no longer take a backseat to time-to-market pressures for

product development teams.

Code signing

A key security feature is code signing (cryptographic validation) of an update to ensure tight

control over who can reprogram sensitive components. Researchers at a Chinese firm, Tencent,

revealed they could remotely activate a moving vehicle’s brakes by exploiting security

vulnerabilities such as the lack of code signing of the Tesla Model S in 2016, which has since been

rectified by Tesla: “Cryptographic validation of firmware updates is something we’ve wanted to do

for a while to make things even more robust, “said Tesla’s Chief Technical Officer JB Straubel³.

Both the Chevy Impala that researchers hacked via OnStar in 2010⁴ and the 2014 Jeep Cherokee

that hackers hijacked on the highway in 2015 lacked code signing⁵, demonstrating that even large

automotive manufacturers lack basic security to ensure the authenticity of their firmware updates.

Encrypted communication only

Another key security requirement is secure communications between the management server and

the client running on the device. There should be bi-directionally authenticated communication

between the client/server to avoid the risk of the update being modified while in transit and

allowing an attacker to inject malicious code and take over the device. This type of attack is

particularly susceptible over wireless networks as they can imitate the update server and force a

malicious update to be installed.

Integration into existing environments

While there are times embedded teams are deploying a greenfield project without the burden of

an existing fleet of devices remotely deployed, that is usually not the case. In many situations

where you have existing devices in the field and are deploying a new product version, you will need

Compatibility checks

Compatibility checks are another requirement and will verify that software updates can run on the

target device. For example, the CPU architecture of the devices needs to match and be supported

by the software update - and a compatibility check will ensure this. Risks of not having this include

embedded applications not being able to start or the device even being bricked due to the

software being built for the wrong device type.

Update success validations

The ability to deploy another update is required by making sure the deployment server can be

reached after every update - otherwise a rollback should be performed. If an update effectively

makes a device lose network connectivity and unable to communicate with the deployment server,

it is effectively bricked and will require a field technician to repair the device, driving up costs.

Custom sanity checks should also be in place, as the embedded applications will need to pass a

series of checks to ensure all the applications are properly functioning.

WHITE PAPER

Software updates for loT and the Hidden Costs

of Homegrown Updaters

A complete update
mechanism built from
scratch can be a
minimum of $750,000
with no sacrifices to
security and
robustness.

⁶ Koopman, Phil (2010, October 2nd) Better

Embedded System SW. Retrieved from

https://betterembsw.blogspot.com/2010/10/

embedded-software-costs-15-40-per-line.html

⁷ Lambert, Fred (2016, October 26) Tesla now

offers almost $20,000 in software-upgradeable

options when buying a new vehicle. Retrieved

from https://electrek.co/2016/10/26/tesla-

now-offers-almost-20000-in-software-

upgradable-options-when-buying-a-vehicle/

mender.io 5

to consider how it integrates into your existing environment and will not rip-and-replace your

established infrastructure and require reworking of your existing processes.

Integration into existing development tools

Your existing development, build, and continuous integration system is key, and the software

update mechanism should integrate into your existing operating and build systems. The risk is the

pushback from the development team if an update mechanism would dictate the tools they need

to use or a solution that requires you to adopt a specific embedded OS, language, or how updates

are packaged.

Support for offline devices

Another consideration is that while a device fleet is ideally all connected, in many circumstances

that is simply not possible and standalone deployments would also need to be supported. Many

situations will not allow for certain portions of your fleet to be connected all the time and a

standalone update with a USB or SD Card may be required. Devices that cannot be updated both

ways will have an increased security risk and be vulnerable to attacks if they cannot be updated

flexibly.

Support for embedded storage types

Lastly, embedded systems use a variety of storage and you want an update mechanism to be able

to support a variety of them, including raw NAND flash, eMMC, and SPI-NOR. The updater also

must not make unnecessary writes to the storage as this will quickly wear out the flash.

WHITE PAPER

Software updates for loT and the Hidden Costs

of Homegrown Updaters

Conclusions

The list of requirements needed to have a secure and robust OTA solution is substantial. A

complete end-to-end software updater with all the capabilities described in this White Paper,

including both the deployment server and the client can range from 50,000-100,000 lines of

code. While the cost estimates can be broad, it has been cited that embedded systems software

typically range from $15 to $40 per line of code⁶. On the low end, you can expect the cost of a

complete update mechanism built from scratch to be a minimum of $750,000 with no sacrifices

made to security and robustness.

Many have ventured into creating a homegrown solution and have discovered the hard way that

their updater is lacking many baseline capabilities that leaves their devices at risk of being hacked

or bricked. Otherwise, building a feature complete update mechanism with no compromises

around security and robustness takes a considerable amount of resources. That translates to high

costs to create something that has been done before which does not directly lead to product

differentiation.

Yet, having a dependable OTA solution is clearly a necessity with very real ramifications. Car

manufacturers have millions in losses due to the inability to update their vehicles remotely and

needing to manually bring in vehicle recalls into the dealership that could have been fixed with an

OTA software update. Forward-thinking manufacturers such as Tesla have shaken the automotive

industry in no small part due to the ability to deploy OTA updates and remove inefficient manual

recalls that could be remotely fixed by software. Tesla is also able to generate after-market

revenue with almost $20,000 in software-upgradeable options⁷.

⁸ Jeffrey, Cal (2017, August 15) LockState

accidentally bricks hundreds of locks through a

failed firmware update. Retrieved from https://

www.techspot.com/news/70588-lockstate-

accidentally-bricks-hundreds-locks-through-

failed-firmware.html

⁹ 2016 Dyn cyberattack. (n.d.) In Wikipedia.

Retrieved November 29, 2017, from https://

en.wikipedia.org/wiki/2016_Dyn_cyberattack

The smart locks used by Airbnb demonstrate the kind of fallout that can occur from the lack of a

secure and robust OTA mechanism, with the CEO publicly apologizing for the bricked door locks

with potential sales losses following their PR disaster⁸.

DDoS attacks are on the rise, with one of the largest ever attacks causing major Internet outages

in October 2016. The Dyn cyberattack took down large swaths of the Internet including sites such

as GitHub, Netflix, Amazon, and Verizon Communications⁹. The root cause for this botnet attack

were insecure IoT devices. The lessons of 2016 have yet to be learned, as there has been a 91%

increase in DDoS attacks in 2017 due to insecure IoT devices². The future is bleak unless the

industry takes concrete action in planning and executing a strong security posture. And one of the

first major steps is to ensure every connected device is upgradeable and patchable through a

secure and robust OTA software updater.

WHITE PAPER

Software updates for loT and the Hidden Costs

of Homegrown Updaters

mender.io 6

CONTACT

+1 650 670-8600

contact@mender.io

mender.io

Mender.io is a leading provider of a secure and robust end-to-end over-the-air (OTA) software

update manager for IoT devices. Mender makes it easy to deploy updates to a large number of

devices by providing efficient and risk tolerant OTA deployments. Mender enables its customers

to stay competitive in a fast-moving market by helping them deliver high-value services on an

increasing number of connected devices with growing software complexity. With an active open

source community supporting a large number of different hardware and operating systems and

growing every day, Mender has quickly become the trusted choice by some of the world’s most

respected brands.

Mender documentation

https://docs.mender.io/get-started

Mender Hub community:

https://hub.mender.io

Mender on Github:

https://github.com/mendersoftware/

About Mender.io

	01 -- Mender - White Paper - title
	01 -- Mender - White Paper - 1
	01 -- Mender - White Paper - 2
	01 -- Mender - White Paper - 3
	01 -- Mender - White Paper - 4
	01 -- Mender - White Paper - 5
	01 -- Mender - White Paper - 6
	01 -- Mender - White Paper - About

