
Security considerations for 
remote management of 
software in IoT devices

A MENDER WHITE PAPER



mender.io 1

IoT security threats are different from traditional IT security

environments such as servers, laptops, desktop computers and mobile

devices. Particularly in server IT, security is mainly focused on protecting

data stored in large server infrastructures that are in close proximity and

can be reachable at relatively low cost. However, in IoT while data

protection concerns still exist they mainly extend further into the

physical world and most often at large scale with heavy reliance on

battery and wireless connectivity where interruption in operations can

cause millions of dollars of damage within a short period of time.

Therefore, it inherently becomes harder to secure IoT devices as

compared to other environments.

The security challenge has drawn the attention of users, developers,

device manufacturers and government agencies around the world. The

hacking of a wide spectrum of smart devices such as smart fridges, and

baby monitors to the infotainment system in your car are indicative of a

security trauma being caused by the nature of these devices being

online and vulnerable to attacks.

For the most part, the lack of security concerns in IoT has to do with the

industry being in its ‘gold rush’ phase where in every marketplace

vendors are rapidly pursuing to develop and distribute the next ‘big

thing’ before competitors do, and customers not caring or

understanding the security aspect. Under such a competitive business

environment, functionality becomes the main focus and security takes a

back seat.

This paper is written for technical leaders addressing security threats

when designing connected products and how software updated

remotely if implemented poorly can provide additional attack vectors to

already existing device vulnerabilities. The paper discusses the need for

a secure software update process and dive into specific use cases and

how Mender over-the-air (OTA) software updates can securely manage

devices remotely.

IoT security threats are 
different from traditional 
IT security environments.

WHITE PAPER

Security considerations for remote 
management of software in IoT devices



A device security breach 
incident can interrupt 
operations, damage 
systems and negatively 
impact both virtual and 
physical processes.

mender.io 2

1 Reference: 
https://www.fireeye.com/blog/threat-
research/2017/12/attackers-deploy-
new-ics-attack-framework-triton.html

A secure software update process must be at the core of 
product design

A device security breach incident can interrupt operations, damage systems
and negatively impact both virtual and physical processes. This translates into

unhappy customers and lost business. Attackers can steal data, compromise
them and hold it ransom.

Consider the TRITON1 attack case in the recent year, where a number of
publicly identified malicious software families targeted industrial control
systems. The malware contained executable code that caused total disruption
of the operation. The malicious actor exploited a remote terminal access to an
engineering workstation to deploy the TRITON framework to reprogram the
system controllers. Though it is difficult to know exactly how they gained access

and if the workstations had too many privileges in terms of accessibility, it is
possible that Role Based Access Control would have helped to significantly
reduce the risk of unauthorized software deployments. If the attack was that
the engineering workstation had an open session to the over-the-air (OTA)
server which it used to deploy malicious software in a group then RBAC could
have limited the impact of the damage by only allowing the attacker to deploy
to a small group of control systems, or potentially none at all (if the engineering
workstation did not have deployment rights).

Additional layer for preventing security threats could be with audit logs, with
which in the case of the TRITON attack if implemented one could see which
user created a remote terminal session to which device and when. Audit logs
can be an important basis for increasing security, policy compliance and
accountability by logging events that can later be analyzed in case of
operational incidents. Audit logs can be a great tool to do post mortem analysis
in order to prevent similar malware attacks in the future. In the TRITON case
where the engineering workstations were dismantled, the audit log can be used
to check the software deployments that were made against them and who
created the deployment and when.

In the above case, security breaches could have been prevented entirely or at
least significantly contained if security measures were installed in a timely
manner using a secure, efficient and risk tolerant software deployment process.

If priority is given on securing software that keeps the OS, system and
applications working on connected devices, then vendors must have a security-
by-design philosophy at the center of the software updating solution to prevent
malicious attackers infiltrate devices and maintain the health of their devices in
the field.

Prevent and contain security threats

WHITE PAPER

Security considerations for remote 
management of software in IoT devices



2 Reference: European Standard, Cyber 
Security for Consumer Internet of Things, 
Baseline
Requirements (2020). Retrieved from:
www.etsi.org/deliver/etsi_en/
303600_303699/303645/02.01.01_60
/en_303645v020101p.pdf

3 Reference:
https://www.ssa.gov/legislation/legis_b
ulletin_092220.html

4 Reference: NIST, Security and Privacy 
Controls for Federal Information 
Systems and Organizations, SP 800-53 
(April 2013)

mender.io 3

Government bodies around the world have started to mandate the
implementation of security protection measures in all internet connected
devices. In June of 2020 the European Union2 (EU) introduced a new
cybersecurity standard for all consumer IoT products. It hopes the new standard
will lead to better security practices and more vendors adopting a security-by-

design principle when developing new consumer IoT products. Similarly in the
U.S., a cybersecurity legislation3 was passed through US Congress which
facilitates the tightening of controls around IoT products the Federal
Government can procure. The legislation is based on adherence to a set of
security standards which guard against the threats of software vulnerabilities,
credentials snooping and malicious takeovers. This legislation will now be taken
by standards body NIST4 and federal procurers and put into practice. This
landmark legislation will drive IoT hardware and software vendors to raise the
security standards in their offerings to align with the requirements of the

Federal Government.

Over-the-air (OTA) software update capability in IoT devices will be a
regulatory requirement in all the industries in the coming years which could
potentially mean fees and serious business consequences if not adhered to,
therefore devices built today need to be mindful of this.

Comply with government regulatories

WHITE PAPER

Security considerations for remote 
management of software in IoT devices

A secure software update process can be defined as: a) the authorized device
has the latest available authorized software, b) it has the correct software files
downloaded and installed, and c) no adverse effect on expected device
operation and functionality results from checking, downloading and installing
software files. Implementing a secure software update process requires
preventive strategies against a number of potential attack vectors.

Table 1 provides a list of known potential security threats related to software
update systems along with the weaknesses that make them possible.

Attack vectors in the software update process



mender.io 4

Table 1: Potential security threats posed by insecure software update process.

Attack vector Role in an attack

Installation of 
malicious software

Malicious actors can infiltrate and provide arbitrary 
software files in response to requests and install 
anything they want on the client (device) with no one 
detecting the illicit use.

Unverified 
software 
deployment

An obsolete or altered version of a software is 
knowingly installed on a device that may contain 
vulnerabilities which is exploited by attackers.

Compromised build 
systems

System firmware such as the bootloader is the first 
code to run on a device on startup and can undermine 
the operating system by changing bootcode, and 
patching the OS kernel. This can also be used to deliver 
malicious firmware to other components such as the 
root file system and application-level code.

Physical attacks File downloaded with an endless stream of data causing 
harm to devices such as memory exhaustion 
interrupting device operations.

Device-server 
communication

Attacker updates software in transit; A device will send 
its backup out to the cloud and will suffer a short 
downtime during reboot. If the connection is 
unencrypted and the update files are unprotected, a 
hacker could steal or alter sensitive information.

Convoluted 
updates

Attackers send clients with files that did not initially 
exist and this can result in outdated versions of 
dependencies being installed, and complications in 
device operations may occur.

Unnecessary 
software 
dependencies

Malicious actor forces the client (device) to install the 
desired software by first allowing it to install an 
unrelated code. This code may have known 
vulnerabilities that will exploit the device.

Indefinite seize Attacker continues to present files to a software 
update manager with files that the client has already 
installed. As a result, the client is kept unaware of new 
files.

Implementing a secure 
software update process 
requires preventive 
strategies against a 
number of potential 
attack vectors.

WHITE PAPER

Security considerations for remote 
management of software in IoT devices



To ensure systems are 
secure against attack 
vectors, the remote 
management of software 
should adhere to three 
pillars of trust: People, 
device and software.

mender.io 5

To ensure systems are secure against attack vectors the remote management
of software should adhere to three pillars of trust that look to protect people,
devices and software (figure 1). This security-by-design principle focuses on
delivering updates securely, maintaining the identity of the client-server
communication endpoints, ensuring device authentication, user authorization

together with hardware security integration to defend against any potential
attacks during the update process. The goal for Mender is to provide a robust,
secure and efficient update process. An important part of this is to give the
Mender client running on the device the ability to verify that updates come
from a trusted source. More on this in the sections that follow.

Triangle of Trust™: Mender security-by-design principle

Figure 1: Mender’s three pillars of trust in managing connected devices.

WHITE PAPER

Security considerations for remote 
management of software in IoT devices



The goal for Mender is to 
provide a robust, secure 
and efficient update 
process. An important 
part of this is to give the 
Mender client the ability 
to verify that updates 
come from a trusted 
source.

mender.io 6

Mender's defensive strategies

The Mender client runs on devices, meaning it is integrated as part of the
operating system image at build time, and communicates with the Mender
server in order to authorize and get updates. Communication between the

client and server happens via a REST API over a TLS-encrypted channel. The
Mender client relies on the operating system’s root Certificate Authorities
(CAs) to verify the server's identity by default. You can also configure the client
to use a specific certificate for chain validation, for example when using self-
signed certificates. This ensures that the Mender client will only connect to a
verified server, and no man-in-the-middle attack is possible.

Man in the middle

Mender leverages public key cryptography for protecting updates to devices
from unauthorized use. Each device in a Mender managed fleet has a unique
public key and private RSA key with a default length of 3072 bits. You can
generate this offline and provision it with the device storage, otherwise the
Mender client will automatically generate a key pair when it launches for the
first time. Once generated, private keys cannot be changed or retrieved by
means of API calls. If you decide to re- generate the keys on the device, it will
require going through the authorization process again.

This process can enable customers to integrate with their existing Public Key
Infrastructure (PKI) for simplicity, pre-authorize to automatically approve
devices which can help in a factory level setting, and avoid manual acceptance
of devices which could prevent scalability.

Mender further provides additional hardware security later for authentication.
Hardware Security Modules (TSMs) and Trusted Platform Modules (TPMs)
securely store keys inside hardware, making them tamper proof and harder to
steal. Device applications like Mender only operate on these keys, such as
requesting signing and decryption, rather than reading the keys and operating
with them directly. This ensures that the OTA update process with Mender is
secured in the same way as other applications leveraging cryptography
operations on the device.

Unauthorized device

WHITE PAPER

Security considerations for remote 
management of software in IoT devices



6 Reference:
https://www.wired.com/2016/09/
tesla-responds-chinese-hack-major-
security-upgrade/

mender.io 7

Major internet-wide IoT botnets like Mirai, Hajime and BrickerBot all relied on
reconnaissance for open ports as a starting point to attack devices. The Mender
client initiates all communication by connecting to the server, so no open ports
on each device are required on the device in order to use Mender. This helps
protect against vulnerabilities caused by some devices in the update process

where manufacturers do not require authentication to connect to a router using
protocols such as TR-069 or TR-064. When there are no open ports, there is no
way from the outside world to get inside the device without intercepting
established connections. As long as the Mender client can connect to the server
over HTTPS, updates can be scheduled. An example of this could be seen in the
Mirai botnet5 case where attackers accessed DSL telecom routers with open
ports and launched attacks against some 900,000 Deutsche telecom
customers. The port was used by network operators for remote management of
routers and setup boxes which also lacked client-server authentication.

Device network intrusion

Mender supports a digitally signed OTA software update process. A Mender
artifact signature verification allows the client to have access to the public part
of the keypair used for signing the Artifacts. The Mender client can validate the
artifact payload (i.e. code to update) independent of the communication
channel verification. This provides an additional layer of protection. If the
signature verification check passes, the client considers the update to come
from a trusted source and continues. Otherwise, the client refuses to proceed
with the update and raises an error message. A management server being
compromised, might allow malicious software to be downloaded, but it will not
be installed as the signature verification will fail. An example of this was seen in
the Tesla S6 attack case where the hackers used vulnerability in Tesla’s Linux
operating system to gain full privilege on the car’s infotainment system. They
simply overwrote the gateway’s firmware with their own without code signing.
“Cryptographic validation of firmware updates is something we’ve wanted to do
for a while to make things even more robust”, said Tesla’s CTO JB Straubel.

Unauthorized software

WHITE PAPER

Security considerations for remote 
management of software in IoT devices

5 Reference:
https://www.bankinfosecurity.com/
mirai-botnet-knocks-out-deutsche-
telekom-routers-a-9565



"Cryptographic validation 
of firmware updates is 
something we've wanted 
to do for a while to make 
things even more robust", 
said Tesla's CTO JB 
Straubel.

mender.io 8

Figure 2: Signature management flow with Mender.

Being able to provide signed images greatly enhances the security of the
system. Maintaining the private keys separately from the code base and server
infrastructure allows decoupling of these components. This means that even if
the server is breached, for example, then attackers will not be able to install new
images onto client devices as they will not have the appropriate signing keys. It
is crucial that the application of the signatures be a separate step from the rest
of the build and deploy mechanism to best protect this resource. Figure 2,

illustrates the high level flow of this process and the components shown are
essential for the Artifact signing and verification process.

Mender offers strong measures to avoid unauthorized access. Users interact
with devices either via API calls relayed by the Mender server, or via the web UI.
In both cases, the connection is HTTPS encrypted with TLS. Mender offers two
Factor authentication. Further, as an additional feature layer of security,
Mender comes with Role Based Access Control which access privileges based
on the responsibility of the user and required tasks (note the TRITON attach
case above).

Unauthorized user

WHITE PAPER

Security considerations for remote 
management of software in IoT devices

Device
provisioning Build system Signing system

(QA, security)
Mender
server

Device update
verification

Server cannot
alter signed artifact

Verification

Installation

Signed artifact
checksum

/etc/mender/mender.conf
ArtifactVerifyKey: /etc/mender/artifact-verify-key.pem

Private
signing key

Unsigned artifacts 
are rejected if set

Public
verification key

The only entity that can sign
(after inspecting artifact)

Separate process & environment for
increased security (not build system).

Update artifact

Corresponding keypair



mender.io 9

7 Reference:
https://www.extremetech.com/
computing/254177-internet-things-
smart-locks-bricked-bad-firmware-
update

Mender ensures that the intended software is downloaded and installed on the
intended device. In order to ensure this, Mender has additional metadata
alongside the raw bits of the updated Artifact payload (i.e. software code to
update). Depending on the version of this software used, the metadata might
be different, but must contain the name of the build, version of the software,

device type(s) the software is compatible with, and checksum of the software
so that it is not corrupted during transit or storage. An example could be seen in
the Airbnb ‘smart locks’7 case bricked by a bad software update where
Lockstate, the manufacturer of the door lock, had pushed a firmware update to
locks that should not have been updated with that software version. Though it is
difficult to know exactly how the update process handled this, it could have
been prevented by an update process that ensures the validity of the software
to be downloaded and the compatibility of the device. Mender supports
software versioning for both system and application updates with each having

their own name and version tuples. Figure 3, shows version reporting by the
Mender client as inventory data in the Mender web UI.

Figure 3: Software version reporting.

Software versioning and device compatibility

WHITE PAPER

Security considerations for remote 
management of software in IoT devices

Mender Server

Device

Report

Root partition

Data partition

arootfs-image.version=1.0.0

data-partition.myapp.version=v2019.04



Mender adheres to a 
security-by-design 
principle governed by 
Triangle of Trust™ to 
ensure secure end-to-
end software updates.

mender.io 10

WHITE PAPER

Security considerations for remote 
management of software in IoT devices

Mender is a fast growing open source and commercial remote software
manager. To design a secure software update process, a variety of attack
vectors need to be taken into account. Mender adheres to a security-by-design
principle governed by the Triangle of Trust™ to ensure secure end-to-end
software updates.

A secure and robust software update process should be the foundation built
into the product development strategy. The software update framework must
be designed to minimize hackers’ ability to breach the update process and harm
devices by modifying and installing malicious software on them. To ensure this,
the underlying criterion lies precisely in a framework that must consider the
three pillars of the triangle of trust: people, device and software. This is critical
for delivering the capabilities and functionalities needed by developers, device
manufacturer's and end users. Only by planning ahead with the right mindset

and design philosophy can you ensure a secure remote software update
strategy.

Conclusion



CONTACT

+1 650 670-8600

contact@mender.io

mender.io

Mender.io is a leading provider of a secure and robust end-to-end over-the-air 
(OTA) software update manager for IoT devices. Mender makes it easy to 
deploy updates to a large number of devices by providing efficient and risk 
tolerant OTA deployments. Mender enables its customers to stay competitive 
in a fast-moving market by helping them deliver high-value services on an 

increasing number of connected devices with growing software complexity. 
With an active open source community supporting a large number of different 
hardware and operating systems and growing every day, Mender has quickly 
become the trusted choice by some of the world’s most respected brands.

Mender documentation

Mender Hub community:

Mender on Github:

About Mender.io


