
Octopus Deploy Pty. Ltd.
Level 4, 199 Grey St
South Brisbane, QLD 4101, Australia

� Email: sales@octopus.com

� Phone: +1 512-823-0256.

Measuring Continuous
Delivery and DevOps

Introduction� 3

Metric design� 4

Start purposefully� 4

Types of measurement� 5

Leading versus lagging indicators� 6

Instrumented versus perceptual data� 6

System versus survey data� 7

Levels of measurement� 8

Avoiding unintended consequences� 9

Availability� 10

Aggregation� 10

Calculation� 10

Combination� 11

Other measurement considerations� 12

Metric design summary� 12

Statements of Continuous Delivery� 14

Always deployable� 14

Prioritize blockers� 15

Fast, automated feedback� 15

On-demand deployments� 15

Continuous Delivery statements
summary� 16

DORA metrics for DevOps delivery� 17

Lead time for changes� 17

Deployment frequency� 18

Change failure rate� 18

Mean time to recovery� 18

DORA metric performance levels� 19

Operational performance� 20

DORA metric summary� 20

The SPACE framework� 22

Satisfaction and wellbeing� 22

Performance� 23

Activity� 23

Communication and collaboration� 24

Efficiency and flow� 24

SPACE framework summary� 24

Measuring Continuous Delivery
summary� 26

Where to start� 27

Continuous improvement� 27

Build habits� 28

Follow the constraint� 28

Further reading� 29

Contents

Measuring Continuous Delivery and DevOps3

Introduction
You might be introducing new practices and capabilities as part of Continuous Delivery
and DevOps adoption, or making changes as part of continuous improvement. In either
case, you need a way to tell if changes are improving your ability to deliver software and,
ideally, if they help your organization achieve its goals.

In this white paper, you find several approaches for measuring your progress. There are
statement-based assessments and metric-driven measurements. You can use them at
different times or combine them to create a custom view of your organization.

Your deployment pipeline should generate 2 kinds of feedback:

•	 Fast feedback that tells us quickly if something is wrong

•	Real feedback from customers and users, which you can only get by putting software
into production

If we take feedback seriously, we want lots of it. - Dave Farley

When designing measurements for your deployment pipeline, software delivery, and
organizational performance, you must find a balance between feedback that:

•	You can get fast and often

•	May not be as readily available but reflects actual outcomes

You can use several approaches to measure your DevOps and Continuous Delivery
performance. You can also combine different methods to suit your needs.

•	Continuous Delivery statements prompt you to re-focus on the key goals of your
deployment pipeline

•	DORA (DevOps Research and Assessment) metrics are a simple way to measure your
software delivery and operational performance

•	The SPACE framework extends measurement to business outcomes

Before introducing these frameworks, here's an overview of metric design to give you a
healthy set of options for measuring software delivery.

Measuring Continuous Delivery and DevOps4

Metric design
The frameworks for measurement provide a starting point designed to avoid common
metric problems. A poorly designed measure can cause people and teams to work against
the organization's goals. Getting your metrics right is crucial to a successful outcome.

As you eventually want to branch out from the canned frameworks, this section has tips for
designing robust metrics with minimal unintended side effects.

Start purposefully
When anyone introduces a measurement, they usually intend to cause a positive change.
Despite good intentions, it's common to get a different shift than expected. You can
increase your chance of success by being open about the purpose of the measurement.

Before you start collecting data, ask yourself these 2 questions:

1.	 How will I respond to this measurement?

2.	 How might other people behave differently?

For example, here are sample answers for measuring build times:

How will I respond to this measurement?

If builds take more than 5 minutes, I will look at ways to make builds quicker because fast
feedback for every change is essential.

If builds take less than 5 minutes, it might hint we're missing an opportunity to detect
faults early in the process.

How might other people behave differently?

People might remove important items from the build to make it faster, reducing the
feedback's value. Managers might track build times per developer to use as a performance
measurement. They might make people spend unreasonable amounts of time working on
builds and infrastructure.

Measuring Continuous Delivery and DevOps5

You should publish the answer to the first question. By being up-front about the metric's
purpose, people will understand what you hope to achieve. Often, they will help you
achieve the goal, even when the metrics are imperfect.

Your answers will also give you ideas for
collecting and displaying data to avoid
undesirable behaviors. For the build
times example, you could communicate
why you want them to remain around
the 5-minute mark. When you visualize
build times, you can add fixed guides to
charts to show the desired range and
set up any automated alerts to align
with your goals.

The most common unintended consequence of measurement is local optimization. This is
where an individual or team increases their output at the cost of the broader value stream.
For example, if you measure individual output, people may be less willing to pause work to
help out a blocked team member. There will also be less motivation to coach other people.

Sometimes, the side effects will make you think twice about collecting the data. There are
some techniques later in this white paper to help you avoid trouble. In some rare cases,
you might decide to avoid the metric altogether.

You may also want to consider demand characteristics, like the Hawthorne Effect1, which
found short-lived improvements can happen due to introducing measurement.

Types of measurement
There are many different ways to collect measurements. As software professionals,
we tend to prefer instrumented system data, which is concrete and easy to get. Those
responsible for running production systems will prefer early system indicators that help
avoid system outages.

There are many cases where going outside your comfort zone will offer insights that
machine-generated data can't. Let's look at:

•	The different ways to categorize data

•	Alternative mechanisms for measuring data outside your systems

1  https://en.wikipedia.org/wiki/Hawthorne_effect

Chart with min and max guidelines

https://en.wikipedia.org/wiki/Hawthorne_effect

Measuring Continuous Delivery and DevOps6

Leading versus lagging indicators

Leading indicators help you predict future performance. You can use their early signals to
predict changes in performance and take action to adjust the future outcome.

Lagging indicators tell you what happened in the past, but rather than being predictive,
they're typically factual.

When you monitor a software system, leading indicators help you take action before a
system becomes unavailable. For example, tracking CPU usage allows us to see when a
feature uses too many resources and puts other features at risk. This allows you to scale
your resources or disable the feature before the problem affects users.

If you waited for a lagging indicator, like screen loading times, your users would notice
the problem before you do. That doesn't mean you shouldn't measure lagging indicators,
as these show the real performance of the system. Leading indicators can alert you to a
potential problem earlier, but they may change for other reasons than you expect.

Hopefully, this explains the importance of using both leading and lagging indicators to
measure software delivery capability. The leading indicators help you react earlier, but the
lagging indicators tell you the actual state of the whole value stream.

The most important measurements to your organization are likely to be lagging indicators.
For example, your organization cares about revenue. This measurement tells you about
money that has (or hasn't) come into the business. A predictive indicator, like net promoter
score (NPS), can help you spot problems that might affect future revenue, but the money
that turns up is a cold hard fact.

Leading indicators are often imperfect. We accept this because of the value of being able
to take action sooner.

You should combine leading and lagging indicators to measure Continuous Delivery,
DevOps, and software delivery performance.

Instrumented versus perceptual data

Instrumented data is a measurement you can collect automatically, like temperature.
Perceptual data covers the human experience, like if the temperature is comfortable for
you.

Instrumented data is popular because it's easy to get. However, perceptual data can
capture complex relationships across many factors.

Measuring Continuous Delivery and DevOps7

When you ask someone if a room temperature is comfortable, their answer goes beyond
measurable temperature. The answer could include factors like:

•	Humidity

•	Outdoor conditions

•	Their activity

•	Clothing

•	Personal preference

If you ask employees if they feel energized or burned out, you find they report feeling
burned out before their productivity drops.

Most organizations are good at collecting instrumented data. You should become just as
good at collecting perceptual data as it often provides uniquely nuanced insights.

System versus survey data

System data is information represented in your existing systems and databases. You can
use system data to maintain a nearly real-time view of metrics.

Survey data needs a periodic collection of responses to questions, so the data is not as
readily available.

When people use system data, there is a tendency to trust the numbers. You must be
careful to ensure data is complete, comprehensive, and correct.

For example, if a team uses an internal tracking tool for features and a customer-facing
tool to capture bugs, you must collect data from both systems. If you only collect metrics
from the internal tracking system, this work will get prioritized and optimized at the cost of
customer-reported issues.

You must also ensure that teams use tools as expected. In factories with time clocks, it
was common for the first worker to clock their colleagues in to stop them from getting in
trouble. According to the clock, worked hours would be far more than the actual hours, and
any decisions based on this data were likely to be wrong.

In modern work tracking systems, users can mark work as complete before deploying it to
production. This means inaccurate lead times.

Survey data needs more effort, but it can capture information not stored in a system. You
can collect perceptual data from surveys and instrumented data that you can't get from a
system. For example, if you haven't installed tools to support deployment automation, you
could use a survey to ask how often a team deploys to production.

Measuring Continuous Delivery and DevOps8

When designing your surveys, you should consider the frequency and effort needed to
respond. It would help if you coordinated your efforts to avoid flooding people with surveys
from different parts of the organization.

You may need some statistical skills to account for bias and help establish significant
relationships in the data.

For both system and survey data, if the organization isn't a safe space for honest feedback,
the data will be what people believe to be the 'correct answer'.

People can manipulate system data as easily as survey data. Marking work as complete
before it becomes overdue and then tracking the work outside the system to finish it, for
example.

You can't measure a complex system (like the software delivery process) on system data
alone. You should use both system and survey data in your measurement approach. Use
the natural conflicts to discover and fix weaknesses in your measurement approach.

Levels of measurement
There are four general levels of measurement, which can help you understand how a
measure relates to the broader system. The different levels of measurement are in the
table below, with an example based on measuring an electric heater.

Measurement level Software example Heating example
Activity Lines of code Power consumption
Outputs Features per week Heating element

temperature
System output Lead time Room temperature
Outcomes User value People are comfortable

When an organization depends on activity metrics to measure productivity, the result is
often a lot of motion without much progress. The number of lines of code in your software
doesn't relate to your software delivery capability or your organization's performance.

Activity metrics can be helpful as a part of your efforts to reduce the activity without
negatively impacting the outcome. In our heating example, it would be desirable to reduce
power consumption if you can do so without people being uncomfortable.

Output metrics are often available within the tools you already use to deliver software.
Work tracking tools can tell you how many tickets a team closes each day, and version
control can tell you how many commits or pull requests the team completes. There is a
high risk of local optimization with these metrics if you use them in isolation.

Measuring Continuous Delivery and DevOps9

Let's return to the heating example. If you select heaters based on the highest heating
element temperature, manufacturers could get higher scores by removing the vent. While
heating element temperatures would increase, rooms would be colder, and people less
comfortable.

System output metrics aim to prevent local optimization by finding ways to assess the
whole value stream continuously. DevOps focuses on system-level metrics that drive
software delivery performance, like our thermostat in measuring room temperature.

Outcome metrics provide the most realistic measure of how successful we are. You
should find ways to measure the whole system outcome to get a true reflection of
software delivery and organizational performance. This type of feedback arrives later,
which is why you need to use early indicators to improve your software delivery capability.

Early measurements allow you to respond faster, but outcome-based measurements are the truth

There is usually a trade-off between early availability and accuracy. You should balance
your measurement strategy by including:

•	 Early indicators that let you react faster

•	 Later, outcome-based numbers that tell you whether you got the expected result

Avoiding unintended consequences
Whatever you decide to measure, you need to watch out for unintended consequences of
the measurement.

Tell me how you will measure me, and then I will tell you how I will behave.
If you measure me in an illogical way, don't complain about illogical
behavior. - Eli Goldratt (Critical Chain. 1997.)

Goldratt's suggestion isn't a bad place to start. If you tell people how you plan to measure
them, they can understand the reasoning and help you achieve the goal, even if the metrics
seem flawed. When you share your plan, teams can tell you what negative responses you
may get, which can help you improve the design of your metrics.

Measuring Continuous Delivery and DevOps10

There are 4 techniques that can help you refine your measurement strategy:

•	Availability

•	Aggregation

•	Calculation

•	Combination

You can use these to reduce the chance of local optimization or unfavorable impacts.

Availability

In some cases, keeping data private can prevent unintended alternate uses. This doesn't
mean secretly tracking measurements, as this lacks transparency and will erode trust.
Instead, you should allow teams to track their own data, giving them autonomy to act on it
without publishing it to a broader audience.

The velocity metric in Scrum serves this purpose, allowing a team to plan without
becoming a productivity measure. If you publish velocity too widely, someone might use it
to compare performance across different teams or individuals.

When you decide to make data more available, you should also share the purpose of the
measurement. This is the answer you gave to the question: 'How will I respond to this
measurement?' You may need to adjust the description for your intended audience.

Aggregation

You can encourage the virtuous use of data with aggregation. With aggregation, you
reduce attribution fidelity to prevent misuse.

For example, work tracking tools usually track items assigned to specific people. If you
report on the work items per person, you make it difficult for an individual to pause their
work to help someone else. An individual's performance may increase at the cost of the
team and organization's performance.

As data moves up through your organization, you can limit this misuse by aggregating data
at the appropriate level. This also increases the signal-to-noise ratio as information rises
through the organization, as you manage fewer lines of data.

Calculation

Like aggregation, calculation removes some of the granularity in the data. Instead of
supplying several raw metrics, you can combine them into a score.

Measuring Continuous Delivery and DevOps11

Imagine your organization monitors the number of lines of code under maintenance in
each team and the team size. By converting these into a calculated maintenance load, you
avoid leaking the lines of code metric, which could get misused.

The maintenance load below converts the data into a metric you can use across teams.
You must ensure you don't lose sight of any weaknesses inherent in the original data when
you use them in a calculation. Lines of code might not be a good proxy for maintenance
load, and team size doesn't necessarily provide a linear reduction in this load. This is
where a perceptual survey can help determine whether the measurement is a reasonable
reflection of reality.

Lines of code Developers Lines per developer Maintenance load
(÷ 10,000)

1,000,000 6 166,667 1.67
1,000,000 8 125,000 1.25
1,000,000 10 100,000 1.00
1,000,000 12 83,333 0.83
1,000,000 14 71,429 0.71

A more robust example of calculated metrics
is Cyclomatic Complexity, created by Thomas
McCabe in 1976. It creates a graph of code
statements, calculates the number of paths
through the code, and provides a score
per function, file, or system to indicate its
complexity. This same technique predicts the
minimum test number needed to exercise all
lines of code.

Combination

You can publish several metrics together in
combination to create a balancing effect.
Imagine a market trader who wakes up early
each morning and buys fresh strawberries
to sell. You might track the daily spending
on strawberries, but you must balance this
by measuring sales. The more expensive
strawberries might be more popular or sell
with a higher margin. If you only tracked
the cost, it would result in purchasing the
cheapest strawberries, which would damage
your business.Two if-statements create 3 paths through a function,

so the cyclomatic complexity is 3

Measuring Continuous Delivery and DevOps12

By plotting metrics in combination, you can discover if there's a relationship between them
and avoid focusing on a single metric to the exclusion of all others.

The DORA metrics and SPACE framework balance competing software delivery demands
using metric combination.

Other measurement considerations
The scientific method emerged in the 17th century, and we haven't yet found a better way
to learn. The core element of the technique is to observe something, form a falsifiable
theory, and then test it with an experiment.

When you spot something interesting in data, it can be tempting to invent a narrative
to explain it. You must complete the process by capturing your insight as a hypothesis
and running an experiment to test it. The software industry has been moving towards
a scientific approach for several decades. We're now in an era where research-backed
insights allow our industry to make fantastic progress. See our white paper on The
importance of Continuous Delivery2 for more.

If you use the scientific method, you can find metrics that predict success for your team
and organization.

Metrics with low frequency can be dangerous, so try to increase the measurement
frequency wherever possible. Imagine driving a car with a speedometer that only updates
once every 30 minutes; you'd spend most of your time driving at the wrong speed.

Data with high variability can tempt you to smooth charts using averages or medians, but
you miss out on what the outliers tell you. When reporting on an average, you should also
use a technique to highlight distribution and outliers, as these often provide the most
interesting insights.

Avoid selecting visually pleasing charts when you create dashboards or charts to track
your progress. Sticking with reasonably boring line charts, scatter plots, and box-and-
whisker charts will provide a richer, more actionable dashboard than pie charts, gauges,
and radar charts. You can typically divide charts by geometry, and rectangles outperform
circles.

2  https://octopus.com/whitepapers/lv-the-importance-of-continuous-delivery

https://octopus.com/whitepapers/lv-the-importance-of-continuous-delivery
https://octopus.com/whitepapers/lv-the-importance-of-continuous-delivery

Measuring Continuous Delivery and DevOps13

Metric design summary
As you implement Continuous Delivery and DevOps measurements, apply metric design
techniques to ensure they promote a healthy and productive environment for software
delivery. The goal of high-performance in software delivery is to help the organization
achieve its goals, so all improvement efforts should consider the complete value stream.

If you create more metrics to drive improvement in software delivery, use the purpose
questions to assess the chance of misuse. Use the techniques for availability, aggregation,
calculation, and combination to limit unintended consequences.

When you visualize your metrics, stick to chart types that focus on the data rather than
selecting visually pleasing ones. The data should be the star of your dashboard rather than
your exciting display choices.

Measuring Continuous Delivery and DevOps14

Statements of Continuous Delivery
ThoughtWorks originally designed the statements of Continuous Delivery. The statements
help to focus efforts on the key goals of Continuous Delivery and complement the metric-
based measures described later.

You can use the statements to review your Continuous Delivery performance and find
improvement areas.

1.	 Software is always deployable

2.	You prioritize work to keep software deployable

3.	You have fast, automated feedback for every change

4.	 On-demand automated deployments for any version and environment

Always deployable
To keep your software deployable at all times, you need to detect functional bugs early
in your deployment pipeline. You must also continuously maintain the system's quality
attributes, like security and performance.

When working on a new feature,
you should use feature toggles
or keystoning techniques to allow
deployments to continue without
unfinished features being available
to users or API consumers. You
also need database refactoring
strategies to de-couple database and
application deployments.

‘Keystoning' is a technique inspired by
the wedge-shaped architectural stone
at the top of an arch. It's the last
stone put in place, allowing the arch
to bear weight.

The relationship between Continuous Delivery statements

Measuring Continuous Delivery and DevOps15

In software, keystoning involves putting a feature in place without exposing it to users.
When the feature's ready, you add the keystone (like the user-interface update) to make the
feature visible to users.

Feature toggles are an even better way to control feature visibility. Unlike keystoning, you
can change feature toggles independent of deployments. You can use feature toggles to
enable a feature for everyone, a group of users, or disable it if you detect a critical issue.

Prioritize blockers
When an issue stops software from being deployable, you should prioritize it over feature
development. New features are of little use if you can't deploy them. Plus, you can't fix
critical problems you discover in production until you can deploy the software.

Blockers may include:

•	 Bugs that would prevent a deployment

•	An unexpected dependency between components

•	A problem with your deployment pipeline

Fast, automated feedback
Each time the software changes, fast, automated feedback should be available to the
whole team. This lets you respond quickly to any issues preventing deployments. When
you discover a problem, part of the fix should be to introduce a test to detect the issue at
an earlier stage of your deployment pipeline, if possible.

If you can detect problems early, you can quickly fix the issue to unblock the deployment
pipeline. Without early detection, you must manage the impact across lots of other work,
causing a retrospective batch of interdependent changes.

On-demand deployments
You need to be able to deploy any version of the software to any environment easily. This is
often called a push-button deployment, or an on-demand deployment.

You can deploy on-demand if your deployments are fast, automated, repeatable, and
reliable. Many high-performing organizations deploy infrastructure with the same level of
automation as their application deployments.

Measuring Continuous Delivery and DevOps16

Continuous Delivery statements summary
You can assess your Continuous Delivery adoption using 4 statements. Each statement is
either true or not. Your answers will give you a strong idea of where to focus improvement
efforts.

1.	 Software is always deployable

2.	You prioritize work to keep software deployable

3.	You have fast, automated feedback for every change

4.	You can perform push-button deployments for any software version and environment

If you want a more concrete way to measure DevOps and Continuous Delivery, read on to
find out about the DORA metrics.

Measuring Continuous Delivery and DevOps17

DORA metrics for DevOps delivery
DORA (DevOps Research and Assessment) are the team behind the Accelerate State
of DevOps Report, a survey of over 32,000 professionals worldwide. Their research has
linked the technical and cultural capabilities that drive software delivery and organizational
performance.

DORA recommends an approach to measure software delivery that relies on 5 metrics:

•	Throughput (measures the health of your deployment pipeline)

1.	 Deployment frequency (DF)

2.	 Lead time for changes (LT)

•	 Stability (helps you understand your software quality)

3.	Change failure rate (CFR)

4.	 Mean time to recovery (MTTR)

•	Operational (measures operation performance)

5.	Reliability

We explain all 5 metrics below.

DevOps insights (early access) in Octopus gives you better visibility into your DevOps
performance by surfacing deployment throughput and stability metrics. These metrics
help you qualify the results of your DevOps performance, as well as gain insights into
areas for future improvement. Learn more in our Octopus DevOps Insights documentation3

3  https://octopus.com/docs/insights

https://octopus.com/docs/insights

Measuring Continuous Delivery and DevOps18

Lead time for changes
You may have seen several definitions for 'lead times' in software delivery and
manufacturing, so it's worth being specific about the DevOps' definition. Lead time for
changes refers to the time it takes for a code change to reach the live environment. We
measure this from code commit to the production deployment.

If you push build metadata into your deployment automation tool, you can calculate the
lead time for changes by finding the oldest commit in the deployment.

If you don't push metadata from the build system into the deployment automation tool, you
can use the time from package upload to deployment. You also need to keep track of the
build time separately. You shouldn't let build time be a blind spot as it's often affected by
automated test duration and increases over time if not measured.

High performers have lead times of less than one week, and elite performers have lead
times under an hour.

Deployment frequency
Deployment frequency measures how often you deploy to production or to end users. You
can measure this with your deployment automation tool, which sees the deployment rate
to the production environment.

Change failure rate
Your change failure rate is the percentage of changes that result in a fault, incident, or
rollback. To track change failure rates, you need to keep a log of all individual changes that
result in a production issue.

Your work tracking tools may have a feature to link a bug request to the original change.
Otherwise, you may be able to add a custom field to retrospectively mark a change as
"failed" to use in reporting.

Lead time for changes spans the deployment pipeline

Measuring Continuous Delivery and DevOps19

Mean time to recovery
Your mean time to recovery is the average time between a failure and full recovery, whether
due to a code change or something else. You can collect this from your work tracking tools
by marking work items as a production fix and measuring the time it takes to complete the
work.

When you need a code change to resolve a fault, your lead time will factor in the recovery
time. A short lead time can be helpful as it allows you to deploy fixes without a special
process to fast-track the change.

Traditionally, you measure operations on availability, which assumes you can prevent all
failures. In DevOps, we accept there will always be failures outside our control, so the
ability to spot an issue early and recover quickly is valuable.

DORA metric performance levels
Based on survey responses, DORA grouped organizations into performance levels.
Organizations in the elite performance group not only had better software delivery
capability but also saw greater organizational success.

Performance
level

Lead time Deployment frequency Change
failure rate

Mean time to
resolve

Elite < 1 hour Multiple times per day 0-15% < 1 hour
High 1 day - 1 week Weekly to monthly 16-30% < 1 day
Medium 1-6 months Monthly to biannually 16-30% 1 day - 1 week
Low > 6 months Fewer than once every 6

months
16-30% > 6 months

Operational performance
The DORA metrics focus on software delivery performance. However, the 2021 State of
DevOps Report found the operational capability of reliability drives benefits across many
outcomes. Reliability refers to teams prioritizing meeting or exceeding their reliability
targets.

You find the quality of internal documentation will be a key to high performance in
reliability. Teams with high-quality documentation were more than twice as likely to meet
or exceed their reliability targets. Documentation also improved performance against the
other DORA metrics. You should measure reliability against the service level objectives of
your software.

Measuring Continuous Delivery and DevOps20

When you exceed your service level objectives by too much or for too long, other systems
using your service will start to depend on the high availability you achieved. Rather than
anticipating downtime and handling it gracefully, many may assume your service will
always be available and cause problems when there's an outage.

You can use short and deliberate outages to bring availability closer to the service level
objective and test system resilience. This will help ensure other systems handle outages
better.

DORA metric summary
The DORA metrics use system-level outcomes to measure software delivery and
operational performance. How an organization performs against these measures predicts
its performance against its goals. Elite performers outpace competitors in their industry.

By removing obstacles to the fast flow of changes to production, you can:

•	Deliver value to customers

•	 Experiment with features

•	Get feedback quickly.

With the DORA software delivery and operations metrics in place, you can experiment with
changes to your deployment pipeline and answer the questions:

•	Does this make us deliver software faster or more frequently?

•	Does this make our software more stable?

Often, improvements in software delivery performance result in increased speed and
stability. This is one of the key findings of the State of DevOps report. Teams who deliver
software faster also write better quality software. The elite performers can:

•	Change their applications faster

•	Deploy them more often

•	Have fewer failures

•	 Recover quickly from faults.

Measuring Continuous Delivery and DevOps21

It's rare to find a trade-off between speed and stability, even though this is counter-intuitive.
If you find a trade-off emerging, you can use the Continuous Delivery statements and
DevOps capabilities list in DORA's structural equation model to check if you're missing a
critical practice.

Continuous Delivery helps you achieve high performance. The relationship between speed
and stability will help amplify your improvements.

The DORA structural equation model

Measuring Continuous Delivery and DevOps22

The SPACE framework
The SPACE framework4 focuses on the deep relationship between wellbeing, satisfaction,
and productivity. It uses a multi-dimensional measurement system that helps
organizations understand how people and teams work.

You can use the SPACE framework to find a balance between individual, team, and
organization optimizations. There is a natural tension captured in the framework.

For example, individual productivity reduces when someone helps the broader team. That
means optimizing for personal productivity would damage your team's productivity. Equally,
subverting individuals to the team's service would mean they get none of their work done.

You should use a mix of measures from the 5 dimensions, mixing instrumented and
perceptual measurements. Perceptual data is the only way to determine how people feel,
which is a crucial driver of productivity.

The SPACE framework includes 5 dimensions:

•	 Satisfaction and wellbeing

•	Performance

•	Activity

•	Communication and collaboration

•	 Efficiency and flow

We explain the dimensions below and some ideas for data you could capture. The
goal isn't to put in place all these metrics but to choose measurements based on your
circumstances.

Satisfaction and wellbeing
Satisfaction refers to how fulfilled people feel with their work, team, tools, and culture.
Wellbeing captures how healthy and happy they are.

This dimension often predicts future performance. People rate their satisfaction and
wellbeing lower before their productivity falls.

4 https://queue.acm.org/detail.cfm?id=3454124

https://queue.acm.org/detail.cfm?id=3454124

Measuring Continuous Delivery and DevOps23

System data

•	 Retention - how many people stay on a team and within the organization

Survey questions

•	How satisfied are you with other employees?

•	Would you recommend your team to other people?

•	Do you have the tools you need to get your job done?

•	How would you rate your energy and enthusiasm for work?

•	How satisfied are you with the software delivery system?

Performance
The performance dimension captures the outcome of a system or process.

System data

•	Quality - how many defects you have and the ongoing system health and reliability

•	 Impact - feature usage, cost reduction, and business won and kept

Survey questions

•	Customer satisfaction with a feature, the product, and your organization

Activity
Activity metrics track the work done, like how many bugs you've fixed. You should never
use activity metrics in isolation. Increased activity does not necessarily mean improved
outcomes.

System data

•	Number of work items, commits, pull requests, builds, and deployments

•	Number of incidents and issues and their severity

Measuring Continuous Delivery and DevOps24

Communication and collaboration
Team communication and collaboration often come at a cost to individual productivity. Yet,
collaboration drives higher team performance.

System data

•	 Speed of integration (for example, if the team uses pull requests, how long does it take
requests to get reviewed and merged)

•	Presence and quality of documentation

•	Onboarding speed (how long before a new developer has code in production)

Survey questions

•	How would you rate the quality of team meetings?

Efficiency and flow
Individuals need to get solid chunks of focus time to get into a flow state and stay
productive. This dimension refers to the flow of work and information.

System data

•	Number of hand-offs in a process

•	Whole value-stream cycle time

•	Amount of value-adding time in the value stream

•	Amount of wait time in the value stream

Survey questions

•	Can you regularly get uninterrupted flow time?

•	How often are you interrupted?

•	How much time do you spend on interruptions?

SPACE framework summary
The SPACE framework doesn't need every metric measured all the time. You should select
a mix of instrumented and perceptual measures across at least 3 dimensions. Over time,
you can adjust by adding and removing metrics to nudge behavior and communicate what
the organization values. You can use the metric selection principles to reduce unintended
side effects.

Measuring Continuous Delivery and DevOps25

Keep individual data private and only share aggregated values at the team and
organization levels. Don't feel tempted to ask survey questions that compromise
anonymity, as this will limit how honestly people can answer. Even asking for a job title
or department can discourage openness, especially for people in unusual roles or small
teams.

Watch for external forces that might influence your data. Activity metrics often drop when
a team or organization invests in the future by attending training and conferences or when
people take holidays.

You should also pay attention to bias in your system, which you should attempt to uncover
in the data. Look out for skewed code reviews or longer waits for pull requests for specific
team members, as these signal biases you need to tackle. You can use survey responses
to check for this, too.

Personality differences can impact survey responses. Asking individuals to compare their
feelings to a previous period can help reduce individual measurement bias. For example,
here are 2 ways to ask for the same information. The second question asks the individual
to compare to their previous experience:

1.	 How many interruptions do you get? Not many, a few, or a lot.

2.	Compared to last week, how many interruptions did you get? Fewer, about the same, or
more.

Make sure you don't discourage vital but invisible work. Focusing too much on individual
productivity or instrumented data will discourage teamwork, like showing someone
new how to make a change in a complex system. If you set individual focus on personal
productivity, like the number of commits, essential teamwork will not happen.

The SPACE framework attempts to balance the natural tension between individual, team,
and organization performance. Other productivity measurements that hide these tensions
result in sub-optimal performance.

Measuring Continuous Delivery and DevOps26

Measuring Continuous Delivery
summary
Several pre-baked measurement sets help you start a more scientific approach to your
work. There are also reminders to look beyond software and measure the performance of
the whole organization.

You need to find a place to put all your metrics and measurements. The goal should be to
have them available on a single pane of glass, so you can look at the relationships between
the numbers. A charting tool can visualize outliers, and anomalies can help avoid blind
spots.

Your chart selection should favor surfacing information and highlighting trends and
outliers. For example, a line chart showing average lead times might hide occasional long
waits. A scatter plot or box-and-whisker chart will make the outliers more obvious. The
exceptions often offer the best insights.

A line chart of average numbers hides an interesting outlier

Wherever you store the data, you should ensure it's cheap and easy to change what you
measure regularly.

Where to start
If you have a small number of systems, implementing the DORA metrics is an excellent
start. If this needs collection from many data sources, starting survey data collection as
part of the SPACE framework may be a faster way to start.

Measuring Continuous Delivery and DevOps27

While you build your data capability, you can start collecting survey data, which you replace
once systems are in place. For example, until you can get data from your deployment tools,
you could ask individuals: "How often does your team deploy to production?"

You can also use periodic surveys to detect issues with your automated data collection. If
your system lead times are shorter than people report in a survey, you may have a problem
with your system data or how people use the tools.

The DORA metrics are an easy way to measure your deployment pipeline and its impact on
software delivery performance. Once you master collecting and responding to data, look at
extending metrics to include broader organizational outcomes.

Continuous improvement
All the measurements described in this white paper can help reveal where you can make
improvements. They also provide a mechanism to design your improvements deliberately
and scientifically. If you make a change to increase deployment rates but instead deploy
less, you know the change didn't have the intended effect and can try something else.

Over time, you need to respond to weaker signals rather than believing there are no
further improvements to make. Teams and organizations who continuously improve will
outperform those that think they're done.

As you increase your expertise in software delivery, you need to use new techniques to
generate learning. For example, you may need to inject deliberate failures to see how
the whole system (not just the software) responds to the fault. This can provide new
opportunities to improve.

You should have conversations to find the reasons for improvements and declines in
performance. Both give key insights you can use to create new theories to test.

Build habits
You can use short-term measurements to build habits. For example, timing branch
lifespans helps highlight branches kept too long and encourages commits to the main line
more often.

You can demote metrics once you solve problems, leaving an automated alert to warn you
if things slip back.

Measuring Continuous Delivery and DevOps28

Follow the constraint
An assumption in most literature is that software delivery is the constraining factor for
organizations. This may be true in most cases, but if software delivery isn't the constraint,
optimizing software delivery won't make a meaningful impact on your organization.

In these rare cases, you need to find the actual constraint and elevate it, even where this
lowers the software team's performance.

In cases where software delivery is the constraint, the measurements in this white
paper can help make a meaningful difference to software delivery performance and help
organizations reach their goals.

Measuring Continuous Delivery and DevOps29

Further reading
•	Continuous Delivery. 2011. Humble, Farley.

•	Accelerate. Forsgren, Humble, Kim. 2018.

•	 Project to Product. 2018. Kersten.

•	The DevOps Handbook (Second Edition). 2021. Kim, Humble, Debois, Willis.

•	Modern Software Engineering. 2022. Farley.

Measuring Continuous Delivery and DevOps30

Octopus Deploy Pty. Ltd.
Level 4, 199 Grey St
South Brisbane, QLD 4101, Australia

� Email: sales@octopus.com

� Phone: +1 512-823-0256.

