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emphasizing the need for biomarkers to assess cancer
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Untargeted multi-dimensional NMR and MS-based machine BoR Sc_?:sixagtgmgsfg(;\z\gge?t BL for BoR Scorﬁ_,el'tcasgrrigilgio;fé)lr_Train and Kaplan-Meler curves demonstrates that from a pre-dose plasma
learning (ML) metabolomic analysis was performed on e sample the_OIar.|s® BoR score can be used tq assess prognosis.
serial plasma samples collected from 39 patients with advanced ' : LN B L Patients with high and low BoR have median overall survival
GIST at baseline (BL) and during experimental systemic ; ZH RN B L . (OS) of 22.60 months and 49.33 months respectively.
therapies including a first time-point (FT) after ~1 + 0.25 months R N L

and second time-point (ST) after ~8 £ 6 months. Results were = ;| . e o CONCLUSION
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mutation status. design optimal treatment paradigms.



