
What Organizations Need to Know to Increase Scalability,
Meet Ever-Increasing Data Requirements, and Streamline
Tech Stacks

EBOOK

Modern
Distributed
Database
Fundamentals

The Evolution of Transactional Databases	 4

What is a Distributed SQL Database?	 5

What to Expect in this eBook	 7

Introduction	 3

Handling Ever-Increasing Data Requirements	 9

Increasing Modern Application Scalability and Availability	 1 1

Streamlining the Tech Stack Jungle	 14

1. Why Distributed SQL Databases Matter	 8

Scalable by Design	 17

Versatile by Nature	 20

Reliable by Default	 22

2. Fundamentals of Distributed SQL Databases	 17

Database Modernization	 25

Tech Stack Unification	 27

Operational Data Management	 28

3. Distributed SQL Use Cases	 25

Key Factors	 30

Evaluation Criteria	 31

Best Practices	 32

4. Choosing a Distributed SQL Database	 30

Conclusion	 39

Contents

© 2024 PingCAP. All rights reserved. 2

Introducing TiDB	 34

Origins of TiDB	 35

Inside TiDB’s Distributed SQL Architecture	 35

The Advantages of TiDB	 37

5. Evolving Transactional Data with TiDB	 34

eBook | Modern Distributed Database Fundamentals

Introduction
Transactional databases have been a fundamental component of

modern computing for decades. They are designed to store and

manage large volumes of data, while ensuring that the data remains

accurate, consistent, and available. The evolution of transactional

databases can be traced back to the early days of computing, with

the emergence of the first computer systems.

3© 2024 PingCAP. All rights reserved.eBook | Modern Distributed Database Fundamentals

During the 1950s and 1960s, the first

transactional databases were developed for

mainframe computers. These early databases

were typically built on top of hierarchical and

network-based data models, which were

common at the time. These databases were

designed to handle simple transaction

processing tasks, such as banking transactions.

In the 1970s, the first relational database

management systems (RDBMS) were developed.

These databases were built on the relational data

model, which allowed data to be stored in tables

with relationships between them. This made it

easier to manage data, and allowed for more

complex queries to be executed.

During the 1980s and 1990s, relational databases

became increasingly popular, with the

emergence of commercial database

management systems, such as Oracle, IBM DB2,

and Microsoft SQL Server. These databases were

designed to handle large volumes of data and

complex queries, and were used in a wide range

of applications, including banking, retail, and

healthcare.

The Evolution of Transactional Databases

4

By the early 2000s, the emergence of web-based

applications and the increasing popularity of

e-commerce led to the development of new types

of transactional databases, such as NoSQL

databases. These databases were designed to

handle large volumes of unstructured data, and

were used in applications such as social media

and web analytics.

As organizations generate and process

ever-increasing amounts of data, the need

for scalable and efficient databases is becoming

more important. Traditional SQL databases have

long been used for managing and processing data

with strong consistency, but they have scalability

and performance limitations. NoSQL databases, on

the other hand, are masters at data scalability and

performance, but they tend to fall short when data

consistency is a requirement.

© 2024 PingCAP. All rights reserved.eBook | Modern Distributed Database Fundamentals

What if there was a solution that combined the

best of traditional SQL and NoSQL databases for

modern applications?

In recent years, distributed SQL databases have

emerged as a popular relational database

5

alternative. They offer the benefits of traditional

SQL and NoSQL databases while also allowing for

more efficient data processing of mixed

workloads and storage across multiple nodes.

Distributed SQL is a type of database

architecture that distributes data across multiple

nodes, allowing for elastic scalability, relentless

reliability, and faster query processing of mixed

workloads. Unlike traditional SQL databases that

rely on a single-node server to store and process

data, distributed SQL databases distribute data

across multiple servers, also known as nodes.

Each node operates independently, but also

communicates with other nodes to ensure that

data is consistent and available for processing.

Figure 1. A typical distributed SQL data architecture

What is a Distributed SQL Database?

© 2024 PingCAP. All rights reserved.eBook | Modern Distributed Database Fundamentals

Additionally, distributed SQL databases with mixed workload processing capabilities can combine row

and column storage in a single database. This provides a single endpoint for mixed workloads while

guaranteeing strong data consistency. Data can also be collected from multiple applications and

aggregated instantly, allowing real-time queries to be performed on online operational data.

6

Distributed SQL databases offer several benefits over traditional SQL databases, including:

Benefits of Distributed SQL

Distributed SQL databases are becoming increasingly popular as organizations look for ways to manage

and process large volumes of data efficiently. As data continues to grow at an exponential rate,

distributed SQL databases will become even more important for modern application development.

1.	 Scalability:

As data volumes grow, these databases can

easily scale up or down to handle the load,

by adding or removing nodes as needed. This

makes it possible to handle large-scale data

processing and storage without sacrificing

performance.

2.	 Fault tolerance:

These databases are designed to be

fault-tolerant, which means they can

continue to operate even if one or more

nodes fail. This is achieved by replicating

data across multiple nodes, so that if one

node fails, data can still be retrieved from

other nodes.

3.	 High availability:

These databases can provide high

availability, ensuring that data is always

accessible, even in the event of a node failure.

This is achieved through data replication,

which ensures that data is always available on

multiple nodes.

4.	 Mixed workload processing:

These databases can provide efficient

complex query processing of mixed

workloads, enabling greater developer

productivity, a simplified architecture, and

real-time data aggregations.

Distributed SQL databases work by partitioning data into smaller, more manageable subsets, known as

shards. Each shard is stored on a separate node, and queries that involve data from multiple shards are

executed across multiple nodes simultaneously. This allows for faster query processing and better

performance, as each node can process queries in parallel.

© 2024 PingCAP. All rights reserved.eBook | Modern Distributed Database Fundamentals

7

In this eBook, designed for application development, data architecture, and infrastructure leaders, we’ll

take a tour through the fundamentals of a modern distributed database. With distributed SQL databases

as our lens, we’ll uncover why these databases matter, how they’re architected, as well as how they’re

used in real-world environments. We’ll also explore what you need to know when choosing a distributed

SQL database, as the proliferation of choices can be daunting to navigate.

By the end of this eBook, you’ll have the knowledge and confidence to take the next step in your

cloud-native journey. You’ll also be able to pinpoint precisely what makes distributed SQL a unique

modern distributed database solution for transactional data.

What to Expect in this eBook

© 2024 PingCAP. All rights reserved.eBook | Modern Distributed Database Fundamentals

8

Choosing the right database to power modern

applications can be challenging. For starters, as

data volumes grow when using a traditional

relational database, performance and scalability

radically degrade. These problems can only be

remedied with additional data processing,

aggregation, and integration tools. However, such

solutions create greater technical complexity

for developers, poor real-time performance, and

higher data storage costs

Additionally, modern applications need to meet

an increasingly mixed and complex set of

requirements. When using a traditional relational

database, teams end up adopting separate

databases for transactional and

analytical workloads, adding even more technical

complexity while opening up major challenges in

data reliability and consistency.

With the explosive growth of data and the need for

scalable and efficient systems, traditional relational

and NoSQL databases have faced limitations. This

has led to the emergence of distributed SQL

databases, revolutionizing how organizations handle

their data.

1 Why Distributed
SQL Databases
Matter

© 2024 PingCAP. All rights reserved.eBook | Modern Distributed Database Fundamentals

9

Handling Ever-Increasing Database
Requirements
In today’s data-driven world, organizations are generating and collecting vast amounts of data at an

unprecedented rate. From user interactions to IoT devices, the volume, velocity, and variety of data are

continually expanding.

As a result, businesses face the significant challenge of effectively managing and processing this

ever-increasing data. Distributed SQL databases have emerged as a robust solution to address these

escalating data requirements.

Figure 2. The acceleration of new customer experiences into digital channels is driving the creation of modern software

applications as digital services

© 2024 PingCAP. All rights reserved.eBook | Modern Distributed Database Fundamentals

10

Elastic Computing Power

In addition to scaling storage, distributed SQL

databases also offer elastic computing power.

As data requirements increase, the demand for

processing power grows. Traditional relational

databases may experience performance

bottlenecks when attempting to handle large

volumes of concurrent queries and complex

analytical workloads.Distributed SQL

databases, on the other hand, leverage the

distributed nature of their architecture to

distribute query execution across multiple nodes.

This parallel processing capability enables

organizations to leverage the combined

computing power of the cluster, resulting in

faster query response times and improved

overall system performance.

Data Partitioning and Sharding

To efficiently handle ever-increasing data

requirements, distributed SQL databases

employ data partitioning and sharding

techniques. Data partitioning involves dividing

the data into smaller, more manageable subsets

called partitions. Each partition is then

distributed across different nodes in the cluster.

This approach allows organizations to distribute

the data processing workload evenly and achieve

better query performance. Furthermore,

distributed SQL databases support sharding,

which involves horizontally splitting the data

across multiple nodes based on specific

criteria such as a range of values or a hash

function. Sharding ensures that data is evenly

distributed across nodes, preventing hotspots

and enabling efficient data retrieval.

Scalable Data Storage

Traditional relational databases often struggle to

accommodate the rapidly growing data volumes.

Distributed SQL databases address this

challenge by providing scalable data storage

capabilities. Instead of relying on a single server,

these databases distribute data across multiple

nodes in a cluster. As data grows, organizations

can seamlessly add new nodes to the cluster,

allowing for horizontal scaling. This distributed

nature of storage enables organizations to handle

massive data growth while maintaining optimal

performance and ensuring data availability.

Data Compression and
Optimization

With the exponential growth of data, storage

costs and network bandwidth become critical

considerations. Distributed SQL databases

incorporate advanced data compression and

optimization techniques to minimize storage

requirements and improve data transfer

efficiency.

By compressing data, these databases reduce

the storage footprint, allowing organizations to

store more data within the same infrastructure.

© 2024 PingCAP. All rights reserved.eBook | Modern Distributed Database Fundamentals

11

Real-Time Data Processing

Ever-increasing data requirements often demand real-time or near-real-time data processing

capabilities. Distributed SQL databases excel in this aspect by offering the ability to store data in real

time when paired with distributed processing frameworks like Apache Kafka or Apache Flink. With this

combined capability, organizations can handle continuous data streams, perform real-time analytics, and

make data-driven decisions promptly.

As data requirements continue to grow, distributed SQL databases have proven their effectiveness

in handling the challenges posed by this rapid data expansion. Through scalable data storage, elastic

computing power, data partitioning and sharding, data compression and optimization, and real-time data

processing capabilities, these databases empower organizations to efficiently scale and manage

ever-increasing data volumes. By leveraging the distributed nature of their architecture, distributed SQL

databases provide the scalability, availability, and flexibility required to meet the demands of modern

data-driven applications.

Additionally, optimized data transfer protocols and algorithms ensure efficient movement of data across

the distributed cluster, reducing network latency and bandwidth consumption.

Increasing Modern Application
Scalability and Availability
Organizations strive to deliver highly-scalable and always-on applications that provide an exceptional

user experience. However, traditional database systems often struggle to keep up with the scalability and

availability demands of modern applications, which require real-time responsiveness.

© 2024 PingCAP. All rights reserved.eBook | Modern Distributed Database Fundamentals

12

Distributed SQL databases have emerged as a powerful solution to address these challenges and

significantly improve application scalability and availability.

Figure 3. An example of a traditional database system that implements sharding, adding technical complexity

Distributed Query Execution

Distributed SQL databases leverage their distributed architecture to execute queries in parallel across

multiple nodes. This parallel processing capability allows for faster query execution times, resulting in

improved application performance. By dividing the query workload across the cluster, distributed SQL

databases can harness the collective computational power of the nodes, effectively reducing the

response times for complex queries. This distributed query execution ensures that modern applications

can deliver real-time results to users, enabling them to interact seamlessly with the application.

© 2024 PingCAP. All rights reserved.eBook | Modern Distributed Database Fundamentals

13

Disaggregated Storage and Compute Architecture

To further enhance application scalability and availability, distributed SQL databases utilize a

disaggregated storage and compute architecture. This architecture separates computing from storage,

so each layer can be deployed separately and scaled independently.

In a disaggregated storage and compute architecture, different functionalities are divided and allocated

to two types of nodes: the Write Node and the Compute Node. This means you can decide the number

of Write Nodes and Compute Nodes to be deployed as needed. Additionally, you can scale out or scale

in the computing or storage capacity online as needed. The scaling process is transparent to application

operations and maintenance staff.

Intelligent Data Placement

Efficient data placement is crucial for maximizing application availability. Distributed SQL databases can

intelligently distribute and replicate data across data nodes in multiple availability zones (AZs), offering

high availability and fault tolerance. This means if a single node or less than half of the nodes fail, the

system can continue to function, a characteristic traditional monolithic databases can never achieve.

This intelligent data placement ensures that data is located closer to the nodes that require it, optimizing

application availability.

Integration with Modern Application Frameworks

Distributed SQL databases seamlessly integrate with modern application frameworks, enabling

developers to leverage their performance-enhancing features. These databases support popular

frameworks and libraries for application development, such as Spring Boot, Django, or Ruby on Rails.

By integrating with these frameworks, distributed SQL databases provide a familiar development

environment and enable developers to take advantage of performance optimizations specific to the

database. This integration ensures that modern applications can harness the full potential of distributed

SQL databases and deliver exceptional performance to end users.

© 2024 PingCAP. All rights reserved.eBook | Modern Distributed Database Fundamentals

14

Streamlining the Tech Stack Jungle
In a rapidly-evolving technological landscape, companies often find themselves navigating through a

complex jungle of technologies, frameworks, and tools. Managing multiple components and integrating

them seamlessly can be a daunting task. Distributed SQL databases offer a valuable solution by

streamlining the tech stack jungle, simplifying the architecture, and reducing the complexity associated

with data management.

Figure 4. An example of a distributed SQL architecture with scalability and reliability for modern transactional apps

coupled with real-time analytics on transactional data

© 2024 PingCAP. All rights reserved.eBook | Modern Distributed Database Fundamentals

15

Integration with Ecosystem Tools
and Frameworks

Navigating the tech stack jungle often involves

integrating various tools and frameworks to build

end-to-end solutions. Distributed SQL

databases are designed to seamlessly integrate

with popular ecosystem tools and frameworks.

They provide connectors and APIs for integration

with programming languages, frameworks, and

data processing platforms.

Whether it’s integrating with data streaming

frameworks like Apache Kafka or connecting with

analytics tools like Apache Spark, distributed SQL

databases—when designed as an open-source

product—offer robust integrations that

simplify the process of building comprehensive

data-driven solutions, which require less effort

for adoption. This integration capability

reduces complexity in the tech stack and

ensures a smoother development and

deployment experience.

Simplified Data Operations

Effective data operations are essential for

managing the tech stack jungle efficiently.

Traditional databases often require specialized

knowledge and expertise for administration,

monitoring, and scaling. These monolithic

systems may also require system downtime, as

you’re upgrading a single node. Distributed SQL

databases address these challenges by providing

built-in automation and management tools. Even

better, these databases utilize automatic rolling

upgrades since they upgrade nodes one-by-one,

minimizing impact to the running cluster. These

tools and built-in processes simplify tasks such

as database deployment, configuration,

monitoring, and scaling, allowing organizations to

streamline their data operations.

Consolidated Data Management

A significant challenge in the tech stack jungle is dealing with multiple data management systems.

Traditional architectures often involve separate databases for different purposes, such as relational

databases, NoSQL databases, caching systems, and message brokers. This fragmentation introduces

complexities in data modeling, data synchronization, and maintaining consistency across systems.

Distributed SQL databases consolidate these different data management needs into a single, unified

system. By consolidating data management, organizations can simplify their tech stack, reduce

integration challenges, and streamline their operations.

© 2024 PingCAP. All rights reserved.eBook | Modern Distributed Database Fundamentals

16

Additionally, distributed SQL databases often offer intuitive web-based interfaces or

command-line tools that provide a unified view and control over the entire distributed database

cluster. This simplification of data operations minimizes the complexity associated with

managing the tech stack jungle.

© 2024 PingCAP. All rights reserved.eBook | Modern Distributed Database Fundamentals

17

In today’s data-driven world, organizations face the daunting challenge of managing ever-growing volumes

of data, ensuring reliable access, and accommodating dynamic workloads. To overcome these challenges,

distributed SQL databases have emerged as a powerful solution, offering scalability, reliability, and

versatility. This chapter will explore the fundamental principles that underpin distributed SQL databases and

their significance in modern data management.

Scalable by Design
Scalability is a key advantage of distributed SQL databases, enabling organizations to efficiently handle

growing data volumes, user demands, and transactional workloads. In this section, we’ll explore how

distributed SQL databases are designed to be inherently scalable. We will delve into their horizontal

scalability, automatic sharding capabilities, distributed transactions, and concurrency control

mechanisms.

2 Fundamentals
of Distributed
SQL Databases

© 2024 PingCAP. All rights reserved.eBook | Modern Distributed Database Fundamentals

18

2.	 Load Balancing:

Distributed SQL databases incorporate load

balancing mechanisms that evenly distribute

data and query processing across the a

vailable nodes. Load balancing ensures that

the workload is efficiently distributed,

preventing any single node from becoming a

performance bottleneck. By evenly

distributing the data and queries, distributed

SQL databases optimize resource utilization

and maximize system throughput.

Automatic Sharding

Automatic sharding is a vital capability of distributed SQL databases that allows them to partition data

across multiple nodes transparently. Sharding ensures that data is distributed evenly and managed

efficiently in a distributed environment. Key features of automatic sharding include:

1.	 Data Partitioning:

Distributed SQL databases automatically

partition data into smaller, manageable

chunks known as shards. Each shard contains

a subset of the data and resides on different

nodes within the cluster. Data partitioning

allows for parallel processing of queries

across multiple shards, enabling

high-performance query execution.

2.	 Transparent Data Distribution:

Automatic sharding ensures that data

distribution is transparent to applications.

Applications can interact with the distributed

SQL database as if it were a single logical

database, without needing to handle the

complexity of data distribution.

Horizontal Scalability

Distributed SQL databases excel at horizontal scalability, allowing organizations to seamlessly expand

their data management capabilities as their needs evolve. Horizontal scalability refers to the ability to

add more nodes to a distributed system, thereby increasing its capacity and performance. Key features

contributing to horizontal scalability include:

1.	 Node Addition and Removal:

Distributed SQL databases allow for easy

addition and removal of nodes in the cluster.

When the workload increases, organizations

can add more nodes to distribute the data

and processing load, effectively scaling the

system. Conversely, if the workload

decreases, nodes can be removed to

optimize resource utilization. This elasticity in

node management ensures that distributed

SQL databases can scale up or down based

on demand.

© 2024 PingCAP. All rights reserved.eBook | Modern Distributed Database Fundamentals

19

2.	 Two-Phase Commit Protocol:

Distributed SQL databases employ the

two-phase commit protocol to ensure the

atomicity of distributed transactions. The

two-phase commit protocol coordinates

the commit decision across all participating

nodes, ensuring that all nodes either commit

or rollback the transaction consistently. This

protocol enables distributed SQL databases

to maintain data consistency and

transactional integrity in a distributed

environment.

Distributed SQL databases are designed to be inherently scalable, allowing organizations to handle

increasing data volumes, user demands, and transactional workloads effectively. Through horizontal

scalability, automatic sharding, distributed transactions, and concurrency control mechanisms,

distributed SQL databases empower organizations to scale their data management systems seamlessly

while ensuring consistent performance, data integrity, and transactional reliability. By leveraging these

scalability features, organizations can confidently meet the challenges of modern data-intensive

applications and achieve optimal resource utilization in distributed environments.

Distributed Transactions

Distributed SQL databases provide support for distributed transactions, allowing organizations to

maintain transactional integrity across multiple nodes. Distributed transactions ensure that a group of

database operations is treated as a single unit, guaranteeing consistency and durability. Key features of

distributed transactions include:

1.	 Atomicity and Consistency:

Distributed transactions in distributed SQL

databases adhere to ACID (Atomicity,

Consistency, Isolation, Durability) properties.

ACID properties ensure that a distributed

transaction either commits entirely or rolls

back entirely, preserving data consistency

across multiple nodes. Distributed SQL

databases employ consensus protocols to

coordinate the commit or rollback of

distributed transactions, maintaining

transactional integrity.

This transparent data distribution simplifies application development and maintenance while allowing the

database to scale seamlessly.

© 2024 PingCAP. All rights reserved.eBook | Modern Distributed Database Fundamentals

20

High-Performance Architecture

The high-performance architecture of distributed SQL databases is one of their key strengths, enabling

them to deliver exceptional performance for a variety of data processing tasks. The following aspects

contribute to their high-performance capabilities:

1.	 Distributed Query Execution:

Distributed SQL databases leverage their

distributed architecture to execute queries

in parallel across multiple nodes. This parallel

processing capability allows for faster query

execution times, enabling organizations to

obtain real-time insights from large datasets.

By dividing the query workload across the

cluster, distributed SQL databases harness

the collective computational power of the

nodes, resulting in improved application

performance and responsiveness.

2.	 Data Partitioning and Replication:

Distributed SQL databases employ intelligent

data partitioning and replicationtechniques to

ensure efficient data distribution and

availability. Data is divided into smaller,

manageable partitions that are distributed

across the nodes in the cluster. This

distribution enables the database to process

queries in parallel, as each node operates on a

subset of the data. Additionally, data

replication ensures fault tolerance and high

availability by storing copies of data across

multiple nodes. In case of node failures, the

database can seamlessly retrieve data from

other replicas, minimizing downtime and

ensuring continuous operations.

Versatile by Nature

Distributed SQL databases form the backbone of modern data management systems, offering

versatility that enables organizations to handle a wide range of data-intensive tasks. In this section, we’ll

explore the inherent versatility of distributed SQL databases, focusing on their high-performance

architecture and their ability to handle mixed workloads efficiently.

© 2024 PingCAP. All rights reserved.eBook | Modern Distributed Database Fundamentals

21

2.	 Automatic Query Optimization:

Distributed SQL databases employ advanced

query optimization techniques to efficiently

handle mixed workloads. These techniques

analyze query patterns, data distribution,

and available resources within the cluster

to generate optimized execution plans. By

automatically

optimizing queries, distributed SQL databases

ensure that analytical and transactional

workloads coexist harmoniously without

impacting each other’s performance.

Mixed Workload Processing

Another aspect of the versatility of distributed SQL databases is their ability to handle mixed workloads

efficiently. Whether it involves processing analytical queries, transactional operations, or a combination

of both, distributed SQL databases excel in accommodating diverse workloads. Here’s how they achieve

this:

1.	 Hybrid Transactional/Analytical

Processing (HTAP):

Distributed SQL databases support HTAP,

allowing organizations to perform both

transactional and analytical operations within

a single database system. This eliminates the

need for separate systems for different

workloads, simplifying the architecture and

reducing operational complexities.

Organizations can run complex analytical

queries while simultaneously serving

transactional requests, enabling real-time

decision-making and faster time-to-insights.

3.	 Workload Isolation and Prioritization:

Distributed SQL databases allow for

workload isolation and prioritization,

ensuring that critical transactional

operations are not affected by

resource-intensive analytical queries.

Workload management features enable

organizations to allocate resources based on

predefined priorities and dynamically adjust

resource allocation as per changing workload

demands. This ensures that mission-critical

transactions receive the necessary resources

and performance, even in the presence of

heavy analytical workloads.

The versatility of distributed SQL databases makes them a fundamental component of modern data

management systems. Their high-performance architecture, characterized by distributed query

execution and intelligent data partitioning, enables organizations to achieve optimal performance for a

© 2024 PingCAP. All rights reserved.eBook | Modern Distributed Database Fundamentals

22

Strong Consistency

Distributed SQL databases provide strong consistency guarantees, ensuring that data remains

consistent across all nodes in the distributed system, even in the presence of concurrent operations.

Strong consistency is essential for applications requiring accurate and reliable data access. Key features

contributing to strong consistency include:

1.	 Distributed ACID Transactions:

Distributed SQL databases support ACID (Atomicity, Consistency, Isolation, Durability) properties

across distributed transactions. ACID transactions ensure that multiple operations within a

transaction either complete successfully or fail entirely, maintaining data consistency across

distributed nodes. These transactions guarantee that the database is always in a consistent state,

regardless of concurrent modifications.

Reliable by Default

Reliability is a foundational characteristic of distributed SQL databases, ensuring consistent and

dependable data management in distributed environments. In this section, we will explore how

distributed SQL databases are designed to be reliable by default. We will delve into their strong

consistency guarantees, high availability features, fault tolerance mechanisms, and disaster recovery

capabilities.

wide range of data processing tasks. Additionally, their ability to efficiently handle mixed workloads,

including HTAP scenarios, ensures flexibility and agility in meeting diverse data processing requirements.

By harnessing the power of distributed SQL databases, organizations can unlock the potential of their data

and drive innovation in today’s data-driven world.

© 2024 PingCAP. All rights reserved.eBook | Modern Distributed Database Fundamentals

2.	 Consensus Protocols:

Distributed SQL databases employ consensus protocols, such Raft, to achieve strong consistency.

These protocols enable nodes to agree on the order of operations and reach consensus on the state

of the distributed database. Through consensus, distributed SQL databases ensure that data

modifications are applied uniformly across all nodes, guaranteeing strong consistency across the

system.

23© 2024 PingCAP. All rights reserved.eBook | Modern Distributed Database Fundamentals

Fault Tolerance

Fault tolerance is a critical capability of distributed SQL databases, enabling them to withstand hardware

failures, network issues, or other system failures. Distributed SQL databases implement fault tolerance

through the following mechanisms:

1.	 Data Replication:

Distributed SQL databases replicate data across multiple nodes, providing redundancy and safe-

guarding against data loss. If a node fails, data can be retrieved from replicas, ensuring that data

remains accessible and preserving system functionality.

High Availability

High availability is a crucial aspect of distributed SQL databases, ensuring that applications

remain accessible and responsive even in the face of node failures or network interruptions.

Distributed SQL databases achieve high availability through various features, including:

1.	 Automatic Data Replication:

Distributed SQL databases automatically

replicate data across multiple nodes in the

cluster. This replication ensures that copies

of data are readily available, even if a node

fails. By replicating data, distributed SQL

databases maintain data availability and

enable seamless failover in case of node

outages.

2.	 Failover Mechanisms:

In the event of a node failure, distributed SQL

databases employ failover mechanisms to

ensure uninterrupted service. Failover

mechanisms detect failed nodes and

automatically promote replica nodes to take

over the responsibilities of the failed nodes.

This automatic failover process ensures high

availability by quickly restoring operations and

minimizing downtime.

2.	 Self-Healing Architecture:

Distributed SQL databases employ self-healing architectures that automatically detect and recover

from failures. When a node fails, the system identifies the failure and redistributes its responsibilities

to other available nodes, ensuring fault tolerance and maintaining system integrity.

24© 2024 PingCAP. All rights reserved.eBook | Modern Distributed Database Fundamentals

2.	 Replication Across Geographical Regions:

Distributed SQL databases offer the ability to replicate data across multiple geographical regions

or data centers. By replicating data in different locations, organizations can achieve geographical

redundancy, ensuring that data remains available even if an entire region or data center is affected by

a disaster.

Disaster Recovery

Disaster recovery (DR) is a critical aspect of distributed SQL databases, ensuring data integrity and

business continuity in the face of catastrophic events. Distributed SQL databases provide robust DR

capabilities through the following mechanisms:

1.	 Backup and Restore:

Distributed SQL databases can realize high availability of clusters based on the Raft consensus

protocol and a reasonable deployment topology. That means when a few nodes in a cluster fail, the

cluster can still be available. On this basis, to further ensure data safety, a distributed SQL database

provides backup and restore as the last resort to recover data from natural disasters and operational

failures.

Backup and restore in a distributed SQL database satisfies the following requirements:

a.	 Backs up cluster data to a DR system with a Recovery Point Objective (RPO) as short as 5

minutes, reducing data loss in disaster scenarios.

b.	 Handles operational failures from applications by rolling back data to a time before the error

event.

c.	 Performs history data auditing to meet the requirements of judicial supervision.

d.	 Clones the production environment, which is convenient for troubleshooting,

performance tuning, and simulation testing.

Distributed SQL databases prioritize reliability by default, enabling organizations to have confidence in

their data management systems. Through strong consistency guarantees, high availability features, fault

tolerance mechanisms, and disaster recovery capabilities, distributed SQL databases ensure consistent

and dependable operations in distributed environments. By leveraging these inherent reliability features,

organizations can build robust and resilient applications, meeting the demands of modern data-intensive

scenarios while maintaining data integrity and availability.

25

As we’ve demonstrated so far throughout this guide, distributed SQL databases have emerged as a

transformative technology. They’re revolutionizing the way organizations manage their data

infrastructure while unlocking new levels of scalability, reliability, and versatility. In this chapter, we’ll

explore several use cases that demonstrate the practical applications and benefits of distributed SQL

databases across different domains and industries. We’ll also provide real-world examples to support

these use cases.

Database Modernization

Organizations are constantly seeking ways to modernize their data infrastructure to meet the evolving

needs of their applications and users. Database modernization has become a critical initiative, as

legacy systems often struggle to cope with the demands of scalability, performance, and agility required

by modern use cases. Distributed SQL databases have emerged as a powerful solution to drive this

database modernization journey.

3 Distributed
SQL Use Cases

© 2024 PingCAP. All rights reserved.eBook | Modern Distributed Database Fundamentals

Legacy Database Challenges

Legacy databases often present several

challenges and limitations that hinder

organizations from achieving optimal

performance and scalability. Some common

challenges include:

•	 Scalability:

Legacy databases may struggle to scale

horizontally, limiting their ability to

handle increasing data volumes and

high concurrency demands.

•	 Performance Bottlenecks:

As data sizes and query complexity

grow, legacy databases can experience

performance bottlenecks, resulting in

slow response times and degraded user

experiences.

•	 Limited Agility:

Legacy systems often have rigid data

models and schemas, making it

challenging to adapt to changing

business requirements and evolve

alongside modern applications.

•	 Data Silos:

Legacy databases may suffer from

data silos, where different applications

maintain their own isolated data stores,

leading to data duplication,

inconsistencies, and difficulties in data

sharing.

Industry Use Case:

Distributed SQL databases offer a compelling solution

for financial services organizations seeking to modernize

their data infrastructure.

A global financial services company needed a solution

with the combination of scale, simplicity, and strong

consistency. Its architecture was made up of sharded

MySQL on Vitess. This solution required major

application refactoring, complicated sharding

orchestration, and lacked strong transactional

consistency.

After extensive research and testing, the company chose

a distributed SQL database with MySQL compatibility.

Being MySQL compatible made the transition simple,

while the distributed SQL architecture eliminated manual

sharding, significantly simplifying its tech stack.

By eliminating sharding, the company enabled simple,

no downtime scale in and scale out with no application

refactoring. Its new distributed SQL architecture also

provided strong consistency through full ACID

compliance.

With a distributed SQL database, this company achieved

better performance results—with more data—and no

sharding, including:

•	 4,000 queries per second (QPS)

•	 5ms response times on 2TBs of data

26

Financial Services

© 2024 PingCAP. All rights reserved.eBook | Modern Distributed Database Fundamentals

https://www.youtube.com/watch?v=ixm3pz66of8
https://www.youtube.com/watch?v=ixm3pz66of8

Challenges of a Disparate Tech Stack

A disparate tech stack often arises as organizations adopt various technologies to meet different data

processing requirements. However, this fragmentation can create several challenges:

Tech Stack
Unification

Companies often find themselves managing a complex and disparate tech stack comprising multiple

databases, data processing frameworks, and data integration tools. This fragmented infrastructure can

lead to inefficiencies, increased maintenance costs, and challenges in data management. Distributed

SQL databases offer a compelling solution for tech stack unification, enabling organizations to streamline

their data infrastructure, simplify operations, and achieve greater efficiency.

Successfully meeting project requirements on one data

platform meant that the company could turn its

attention to the innovation needs of the business

at-large.

•	 Data Inconsistency:

Managing data across multiple systems

can result in data inconsistencies, as each

database may have its own data model and

storage format. Synchronizing and reconciling

data becomes complex and error-prone.

•	 Increased Complexity:

Maintaining and operating a diverse tech

stack requires specialized skills and resources,

leading to increased complexity and overhead

costs.

•	 Integration Complexity:

Integrating data from different systems often

requires custom solutions or ETL

processes, making data integration complex

and time-consuming.

27© 2024 PingCAP. All rights reserved.eBook | Modern Distributed Database Fundamentals

•	 Data Bottlenecks:

Moving data between different

systems can introduce latency and

performance bottlenecks, negatively

impacting the overall system

performance.

Industry Use Case:

Distributed SQL databases offer a unified solution for

SaaS providers to streamline their tech stack and

address the challenges posed by a disparate

infrastructure.

A popular Customer Success Platform (CSP) provider

used PostgreSQL to handle all the data it collected

externally. However, as its business grew and data

sources rapidly expanded, PostgreSQL wasn’t able to

keep up with its needs. Additionally, due to the increased

amount of data being stored, costs skyrocketed.

To handle these increasing demands, this company

redesigned its entire data processing and storage

system from the ground-up. A distributed SQL database

was chosen to power this new architecture’s data

serving layer for pre-processing data for real-time

customer queries.

By adopting a distributed SQL database, the

company’s CSP now provides:

•	 A better customer experience with 60x faster query

responses

•	 A more resilient system

•	 Amplified data storage and processing

•	 Real-time analytical capabilities

The company also reduced its overall storage,

operation, and maintenance costs.

28

SaaS Providers

Operational Data
Management

Efficient and effective management of

operational data is a crucial aspect of any

organization’s success. It involves handling

real-time data ingestion, processing,

storage, and retrieval to support critical

business operations and decision-making

processes. Distributed SQL databases offer a

powerful solution for operational data

management, enabling organizations to

handle large-scale data workloads, ensure

data integrity, and achieve high performance.

© 2024 PingCAP. All rights reserved.eBook | Modern Distributed Database Fundamentals

https://www.youtube.com/watch?v=0ae1wB-EWnM
https://www.youtube.com/watch?v=0ae1wB-EWnM
https://www.youtube.com/watch?v=0ae1wB-EWnM

Industry Use Case:

Distributed SQL databases excel in managing

operational data by providing robust features and

capabilities. Here’s how a distributed SQL database

enhanced operational data management for a leading

enterprise software company.

This company was using MySQL to manage its control

plane containing multiple cloud services in AWS, GCP,

and Azure. This control plane supports users, cluster

management, and web applications. However, as the

company’s Azure cloud usage grew by 3x, Azure MySQL

was unable to handle the increased load: queries

became slow or even unresponsive for large customers.

The company evaluated a distributed SQL database

against Azure MySQL and found the former

outperformed the latter in latency and QPS with

comparable hardware resources. Development teams

were also impressed by distributed SQL’s horizontal

scalability, no manual sharding, and zero downtime for

scale-in and scale-out.

With a distributed SQL database, this company has seen

better performance with no MySQL scalability issues.

Additional benefits include:

•	 Lower average P99 and p999 latencies

•	 More than 10x QPS compared to Azure MySQL

•	 Reduced hardware costs and maintenance burden

as the company can now host several control plane

services in a single cluster

29

Enterprise Software
The Importance of
Operational Data Management

Operational data serves as the lifeblood of

organizations, fueling various business

processes, applications, and analytics.

Effective operational data management is

essential for the following reasons:

•	 Real-Time Decision Making:

Operational data provides valuable

insights and supports real-time

decision-making processes, allowing

organizations to respond swiftly to

changing market conditions and

customer needs.

•	 Business Process Optimization:

Proper management of operational

data enables organizations to streamline

their business processes, identify

bottlenecks, and improve operational

efficiency.

•	 Customer Experience:

Access to accurate and up-to-date

operational data enables organizations

to provide personalized and exceptional

customer experiences.

© 2024 PingCAP. All rights reserved.eBook | Modern Distributed Database Fundamentals

https://www.youtube.com/watch?v=S__rXfs7j7I
https://www.youtube.com/watch?v=S__rXfs7j7I

30

4Choosing a
Distributed
SQL Database

As organizations embrace the benefits of distributed SQL databases, selecting the right database

becomes crucial for successful implementation. Choosing a distributed SQL database involves

considering several key factors, evaluating various criteria, and following best practices to ensure the

selected database aligns with your organization’s requirements.

In this chapter, we will explore the process of choosing a distributed SQL database, covering key factors

to consider, evaluation criteria to assess, and best practices to follow during the selection process.

Key Factors
When choosing a distributed SQL database, it is essential to consider the following key factors:

1.	 Scalability:

Evaluate the database’s scalability capabilities to ensure it can handle the anticipated growth in data

volume and user traffic. Consider factors such as horizontal scaling, automatic data partitioning, and

the ability to add or remove nodes from the cluster seamlessly.

© 2024 PingCAP. All rights reserved.eBook | Modern Distributed Database Fundamentals

2.	 Fault Tolerance and High Availability:

Consider the database’s fault tolerance and high availability features to ensure data

durability and minimize downtime. Look for features such as automatic data replication, failover

mechanisms, and efficient disaster recovery options.

3.	 Data Consistency and Integrity:

Examine the database’s data consistency and integrity mechanisms to ensure accurate and reliable

data management. Features like distributed ACID transactions, strong consistency models, and

conflict resolution strategies are crucial considerations.

4.	 Performance:

Assess the performance capabilities of the database, including query execution times, throughput,

and latency. Look for features such as distributed query processing to optimize performance.

Evaluation Criteria
To effectively evaluate distributed SQL databases, consider the following criteria:

1.	 Architecture and Design:

Assess the database’s underlying architecture, distribution model, and data partitioning strategies.

Evaluate how well the architecture aligns with your organization’s requirements, such as data

distribution, fault tolerance, and scalability.

2.	 Performance Benchmarking:

Conduct performance benchmarking tests to evaluate the database’s performance under realistic

workloads. Compare query execution times, throughput, and latency across different databases to

identify the one that meets your performance expectations.

3.	 Data Management Features:

Evaluate the database’s data management features, such as indexing capabilities, data compression,

backup and restore mechanisms, and data security features. Consider how well these features align

with your organization’s data management needs.

4.	 Ecosystem Integration:

Assess the database’s compatibility and integration with your existing tech stack and ecosystem

tools. Consider its support for programming languages, frameworks, data processing platforms, and

data streaming frameworks.

31© 2024 PingCAP. All rights reserved.eBook | Modern Distributed Database Fundamentals

32

5.	 Open-Source Community and Support:

Evaluate the strength and responsiveness of the database’s community and support channels.

Consider factors such as active user communities, available documentation, the type of licenses

available, and the responsiveness of the vendor or open-source community in addressing issues or

providing support. Databases with deep open-source roots have established trust with users, which

is critical when considering a newer database paradigm such as distributed SQL.

Best Practices
Follow these best practices when choosing a distributed SQL database:

1.	 Clearly-Defined Requirements:

Clearly define your organization’s requirements, including scalability needs, performance

expectations, data model support, and high availability requirements. This will help narrow down the

list of suitable distributed SQL databases.

2.	 Pilot Testing in Dev/Test Environment:

Conduct a pilot test phase where you can evaluate the shortlisted databases in a controlled

development or test environment. Use representative workloads and scenarios to assess the

performance, scalability, and ease of use of each database.

3.	 Consider Total Cost of Ownership (TCO):

Evaluate the TCO of each database, including licensing costs, hardware requirements, operational

overhead, and ongoing maintenance costs. Consider both the initial investment and the long-term

costs associated with the selected distributed SQL database.

4.	 Vendor or Community Support:

Consider the availability and quality of support options provided by the vendor or the open-source

community. Ensure that you have access to reliable support channels and resources to address any

issues or challenges that may arise during implementation and maintenance.

5.	 Scalability and Flexibility:

Choose a distributed SQL database that can scale with your organization’s growth and adapt to

evolving needs. Consider the flexibility to accommodate changes in data volumes, user traffic, and

future data model requirements.

© 2024 PingCAP. All rights reserved.eBook | Modern Distributed Database Fundamentals

33

Choosing the right distributed SQL database is a critical decision that significantly impacts the success

of your data management initiatives. By considering key factors, evaluating various criteria, and following

best practices, you can navigate the selection process effectively. Remember to align your requirements,

conduct thorough evaluations, and consider long-term implications to select a distributed SQL database

that meets your organization’s needs and supports its future growth and success.

© 2024 PingCAP. All rights reserved.eBook | Modern Distributed Database Fundamentals

34

5 Evolving
Transactional
Data with TiDB

As we’ve shown throughout this eBook, selecting the right database to power modern applications can

be challenging. However, there’s a better option that can evolve alongside your organization.

Introducing TiDB
TiDB, powered by PingCAP, unlocks limitless scale for

data-intensive businesses. Our advanced distributed SQL

database enables leading enterprises, SaaS, and digital

native companies to build petabyte-grade clusters while

managing millions of tables, concurrent connections,

frequent schema changes, and zero-downtime scaling.

With these advanced capabilities, growing companies

like yours can focus on the future without worrying about

complex data infrastructure management or tedious

application development cycles.

© 2024 PingCAP. All rights reserved.eBook | Modern Distributed Database Fundamentals

https://www.pingcap.com/tidb/

35

Created in 2015, TiDB was born when three talented software engineers decided to build a new database

system that was more scalable and reliable than MySQL. At the time, they had grown frustrated with how

MySQL was managed and maintained. They also wanted a true open-source solution that would maintain

MySQL compatibility, as they enjoyed the database’s rich ecosystem of tools and frameworks. What they

didn’t know then is just how popular their creation would become.

With over 37,000 GitHub stars and a growing community of contributors, TiDB is also one of the world’s

most adopted open-source distributed SQL databases. The “Ti” in TiDB represents the symbol for

Titanium from the Periodic Table of Elements. Found in nature as an oxide, Titanium is a powerful

chemical element that can produce highly elastic, versatile, and reliable Titanium metal. With TiDB, some

of the world’s largest companies across technology, financial services, travel, Web3, and gaming are

building modern applications as relentlessly powerful as Titanium.

Origins of TiDB

What makes TiDB so advanced? At its core, its distributed SQL architecture provides horizontal

scalability, high availability, ACID transactions, and MySQL compatibility, while its unique mixed workload

processing layer enables real-time analytics.

Inside TiDB’s Distributed SQL
Architecture

© 2024 PingCAP. All rights reserved.eBook | Modern Distributed Database Fundamentals

https://github.com/pingcap/tidb

36

Figure 5. A visual representation of TiDB’s architecture.

TiDB SQL Layer

The TiDB SQL Layer separates compute from

storage to make scaling simpler, delivering a true

cloud-native architecture.

This stateless MySQL-compatible layer

provides uniformity into data access without

regard for sharding, or any other underlying

technical implementation, making applications

easier to develop and easier to use.

Additionally, the TiDB SQL Layer functions as a

smart optimizer and parallel planning engine.

Placement Driver Layer

The Placement Driver (PD) Layer functions just like

a full-time DBA, monitoring millions of shards and

performing hundreds of operations per minute. It

also handles the scale-in and scale-out of clusters

to meet demand. Additionally, this layer

dynamically balances the data load in real time,

mitigates hotspots, and provides for the

implementation of customized scheduling policies.

© 2024 PingCAP. All rights reserved.eBook | Modern Distributed Database Fundamentals

37

TiDB Storage Layer

Consisting of row and column-based storage engines, the TiDB Storage Layer offers built-in high

availability and strong consistency that can auto-scale to hundreds of nodes and petabytes of data.

This layer also offers a modern replication mechanism based on the Raft consensus protocol.

TiDB can power all of your modern applications with elastic scaling, real-time analytics, and continuous

access to data. Companies using TiDB for their scale-out RDBMS and internet-scale OLTP workloads

benefit from a distributed SQL database that is:

The Advantages of TiDB

•	 MySQL compatible:

Enjoy the most MySQL compatible

distributed SQL database on the planet. TiDB

is wire compatible with MySQL 5.7, so

developers can continue to enjoy the

database’s rich ecosystem of tools and

frameworks.

•	 Horizontally scalable:

TiDB grants total transparency into data

workloads without manual sharding. The

database’s architecture separates compute

from storage to instantly scale data

workloads out or in as needed.

•	 Highly available:

TiDB guarantees auto-failover and self-

healing for continuous access to data during

system outages or network failures.

•	 Strongly consistent:

TiDB maintains ACID transactions when

distributing data globally.

•	 Mixed workload capable:

A streamlined tech stack makes it easier to

produce real-time analytics. TiDB’s Smart

Query optimizer chooses the most efficient

query execution plan, which consists of a

series of operators.

•	 Hybrid and multi-cloud enabled:

With TiDB, IT teams can deploy database

clusters anywhere in the world, in public,

private, and hybrid cloud environments on

VMs, containers, or bare metal.

•	 Open source:

Unlock business innovation with a distributed

database that’s 100% open source under an

Apache 2.0 license.

© 2024 PingCAP. All rights reserved.eBook | Modern Distributed Database Fundamentals

38

•	 Secure:

`TiDB protects data with enterprise-grade encryption both in-flight and at-rest.

Global organizations, such as those referenced in Chapter 3, are using TiDB for diverse database

solutions from large-scale transactional workloads to recommendation engines, data-intensive

applications, and more.

© 2024 PingCAP. All rights reserved.eBook | Modern Distributed Database Fundamentals

https://docs.google.com/document/d/1_YSN6fudJA-KnlKfXXRsYhrVqjbETTB3evW-cg2wBcA/edit#heading=h.muzz7o1mp2ha

39

Conclusion
We began by understanding the fundamental challenges faced by

organizations dealing with transactional data in today’s rapidly

changing landscape. The exponential growth in data volume, the need

for high-performance applications, and the complexity of modern

tech stacks necessitate a scalable, reliable, and versatile solution.

Distributed SQL databases provide precisely that.

© 2024 PingCAP. All rights reserved.eBook | Modern Distributed Database Fundamentals

40

Next, we explored the key factors that make distributed SQL databases essential for managing

transactional data in a modern context. From handling ever-increasing data requirements to improving

application performance and streamlining the tech stack, distributed SQL databases address critical

pain points faced by organizations across industries.

We then uncovered real-world use cases that demonstrate the practical applications of distributed SQL

databases across various industries. These examples showcased how organizations have successfully

leveraged distributed SQL to modernize their databases, unify their tech stacks, and efficiently manage

operational data management.

Distributed SQL databases such as TiDB provide a solid foundation for organizations who want to evolve

their transactional data management strategies. By embracing the modern distributed database

principles mentioned in this guide, organizations can unlock the full potential of their data, leverage the

scalability and reliability of distributed SQL architecture, and propel their

businesses forward in the digital economy.

If you want to learn more about TiDB, find out how it’s a more scalable alternative to MySQL in our

latest comparison guide.

© 2024 PingCAP. All rights reserved.eBook | Modern Distributed Database Fundamentals

https://www.pingcap.com/demo/

TiDB, powered by PingCAP, unlocks limitless scale for

data-intensive businesses. Our advanced distributed SQL

database enables leading enterprises, SaaS, and digital

native companies to build petabyte-grade clusters while

managing millions of tables, concurrent connections,

frequent schema changes, and zero-downtime scaling.

Large organizations who have adopted TiDB, such as

Databricks, Pinterest, and Plaid, are finally free to focus on

their future growth instead of complex data infrastructure

management. With AI-driven innovations and multi-cloud

flexibility, TiDB offers unmatched agility, resilience, and

security. For more information, please visit TiDB.io.

About

https://www.pingcap.com/

