
Challenges
in Legacy Conversion

40% of organizations have reported security breaches
linked to outdated legacy systems.

Security Vulnerabilities

Legacy systems consume up to 60% of IT budgets,
limiting resources for innovation.

Escalating Maintenance Costs

62% of IT leaders identify integration with modern
applications as a top challenge.

Integration Complexity

Over 70% of legacy codebases lack adequate
documentation, complicating maintenance efforts.

Insufficient Documentation

Organizations face performance issues with legacy
applications, leading to up to 50% degradation in efficiency.

Performance Degradation

An estimated 40% of COBOL programmers are expected
to retire in the next decade, exacerbating the talent gap.

Talent Shortage in Legacy Technologies

Go to source� Go to source� Go to source�

Features

Optimizes legacy code using
advanced generative AI

Gen AI-Driven Code Analysis

Automatically generates accurate
documentation

AI-Powered Documentation

Creates visual flow diagrams for
system processes

Flow Diagram Generation

Develops deployable test cases for
functionality validation

Automated Test Case Creation

Transforms legacy code to modern
cloud-native architecture

Cloud-Native Code Conversion

Utilizes secure, containerized Gen AI
for data protection

Secure AI Models

Simplifies the code upload and
transformation process

Intuitive User Interface

Integrates easily with existing
systems and applications

Seamless Integration

SLM 1

SLM 2

Best Model

Pre-Processor Engine

SLM 3

Technical Processer

Functional Processer

Code Analysis

Converted Cloud Native Code Refactoring Efforts

Evaluation
Engine

SLM A

System Vector
SLM B

SLM C

Promptora
DEngine

Professional
Services team

Technical
Documentation

Functional
Documentation

�����
�����

COBOL, JCL,
CICS, AIX Scripts etc

Benefits

Feature Traditional Market ToolsOur IP

Generates comprehensive documentation
automatically, ensuring accuracy and reducing
manual effort.

Automatically refactors and optimizes legacy code
using generative AI, enhancing performance and
maintainability

Adapts to diverse datasets and learns patterns for
flexibility in code generation and modernization

Automates test case generation and maintenance,
ensuring reliability with less manual intervention

Seamlessly integrates with existing systems,
facilitating smoother transitions to modern
architectures

Utilizes AI to identify vulnerabilities and suggest
secure coding practices proactivel

Reduces overall modernization costs by automating
processes and minimizing the need for extensive
developer resources

Documentation is often outdated or incomplete,
requiring significant manual input from developers

Manual refactoring is often required, leading to higher
chances of errors and inefficiencies

Rigid and rule-based, requiring frequent updates to
accommodate new requirements or technologies

Testing processes are typically manual and
time-consuming, increasing the risk of undetected
issues

Integration can be cumbersome and often requires
extensive manual coding efforts

Security measures are often reactive, addressing
issues only after they arise due to outdated
practices

Higher costs associated with manual processes and
prolonged project timelines due to inefficiencies

Documentation Generation

Code Optimization

Adaptability

Testing Automation

Integration Capabilities

Security Enhancements

Cost Efficiency

lower pricing compared to
traditional market tools, reducing
overall modernization expenses

AI-Powered Documentation

50 %

by automating code
modernization processes.

Faster go-to-market time

23 %

ensuring comprehensive and
accurate project records

Improve documentation quality and speed

61 %

