Challenges

in Legacy Conversion

() Security Vulnerabilities (O Integration Complexity

40% of organizations have reported security breaches 62% of IT leaders identify integration with modern
linked to outdated legacy systems. applications as a top challenge.

. Escalating Maintenance Costs . Insufficient Documentation

Legacy systems consume up to 60% of IT budgets, Over 70% of legacy codebases lack adequate
limiting resources for innovation. documentation, complicating maintenance efforts.
=)

opensource.com

il ackihonal mocivs o funcionsitis, Wil tha deding o Bpand o Imoecw seRing

e E 6 e T mecoarean and sddnms ot ot ook

| Compatibiliby I Tha ccbe oo ey el e Eosnoet Bee wish smccbern cevesopree i
S T S p——— How | avoid breaking functionality when

7 sk o Drcurvesstabion: | ogacy cowter nften ceeds moe n mﬂdif‘yi“g Iegacy codﬂ'

Extract methods give the biggest bang for the buck when it

comes to modifying legacy code while aveoiding the risk of
74 T e b ork o e s o o W e, e T e, e e e h btilglr
breaking the functionality.
oty koIt dec] SRS

Srvroen mdy reed Lo detofer e oot ke drebues, Sl dooerdonc e, W oo B

1 Fechnicsl Debt: luickog e modue on o of egecy code Can aocuTEete

By Abew Banardzic
July 5, B2 | 0 Comments | 7 i pead B 55 readers s thi

AT APCCERINT. 18 M, e MOCEY TR ST T AT, aateg i umer

il aibon,

T Sty Concmma: uficdhng res mosules oo 1op of WRacy cod- 0Ren - emanct Mo Hes
st ity W Ovwrotsing rom sorelch, 1D Ll L o soiosaln an okl sl sitter

@ Go to source

| @ Go to source

(O Performance Degradation

Organizations face performance issues with legacy
applications, leading to up to 50% degradation in efficiency.

. Talent Shortage in Legacy Technologies

An estimated 40% of COBOL programmers are expected
to retire in the next decade, exacerbating the talent gap.

@d{-um J . R
Ralirhging L SRSl 4 s 1eatufe OF fin A g Wathin® {AITOCICRG
Lack of Docwmantation
A poamEnog. e =
Sevelops
Thid is w

«@ Go to source

Features

' Gen Al-Driven Code Analysis

Optimizes legacy code using
advanced generative Al

Al-Powered Documentation

Automatically generates accurate
documentation

Flow Diagram Generation

Creates visual flow diagrams for
system processes

Automated Test Case Creation

Develops deployable test cases for
functionality validation

@ cloud-Native Code Conversion

Transforms legacy code to modern
cloud-native architecture

Secure Al Models

Utilizes secure, containerized Gen Al
for data protection

Intuitive User Interface

Simplifies the code upload and
transformation process

Seamless Integration

Integrates easily with existing
systems and applications

~ o o o o — - = - - - -

Promptora
DEngine

System Vector

Pre-Processor Engine

v

Layer

COBOL, JCL,
CICS, AIX Scripts etc

----» SLM1 | ---- \
| - 1
| |
:) |
e » SIM2 ----- - - - - DulliE e
\ | ! Engine
: .
l : :
~---3p» SLM3 |----- :
L |
v
{ Best Model }
{
|
I
|
UEEIITEEL B «---1 Technical Processer < --
Documentation |
I
|
Functional . |
Docu;:ﬁt;:;?, B < ---- Functional Processer < - -
:
Code Analysis <+ -7
---------------- > Refactoring Efforts

Services team

Benefits

%

Al-Powered Documentation

lower pricing compared to
traditional market tools, reducing
overall modernization expenses

23 ,,

Faster go-to-market time

by automating code
modernization processes.

61,

Improve documentation quality and speed

ensuring comprehensive and
accurate project records

Feature

Documentation Generation

Code Optimization

Adaptability

Testing Automation

Integration Capabilities

Security Enhancements

Cost Efficiency

OurlP

Generates comprehensive documentation
automatically, ensuring accuracy and reducing
manual effort.

Automatically refactors and optimizes legacy code
using generative Al, enhancing performance and
maintainability

Adapts to diverse datasets and learns patterns for
flexibility in code generation and modernization

Automates test case generation and maintenance,
ensuring reliability with less manual intervention

Seamlessly integrates with existing systems,
facilitating smoother transitions to modern
architectures

Utilizes Al to identify vulnerabilities and suggest
secure coding practices proactivel

Reduces overall modernization costs by automating
processes and minimizing the need for extensive
developer resources

Traditional Market Tools

Documentation is often outdated or incomplete,
requiring significant manual input from developers

Manual refactoring is often required, leading to higher
chances of errors and inefficiencies

Rigid and rule-based, requiring frequent updates to
accommodate new requirements or technologies

Testing processes are typically manual and
time-consuming, increasing the risk of undetected
issues

Integration can be cumbersome and often requires
extensive manual coding efforts

Security measures are often reactive, addressing
issues only after they arise due to outdated
practices

Higher costs associated with manual processes and
prolonged project timelines due to inefficiencies

