
From Chaos
to Clarity:
Mastering
Atomic
Requirements
in Engineering

At QRA, we champion precision in requirement writing through methods to streamline
and enhance the requirements process. We are proponents of writing according to a
template, a system outlined in our comprehensive EARS (The Easy Approach to
Requirements Syntax) Series - see EARS Templates Parts 1, 2, and 3. We also advocate
for writing atomic requirements, a concept outlined in our blog, Atomic Requirements 101:
A Comprehensive Guide with Examples.

An atomic requirement is “a natural language statement that completely describes a
single system function, feature, need or capability including all information, details, and
characteristics.”

Simply put, atomic requirements are singular statements that have all the relevant
information you need in one sentence.

Incorporating atomic writing aligns with widely endorsed requirement best practices,
including the INCOSE (International Council on Systems Engineering) Guide to Writing
Requirements. This approach ensures that each requirement stands alone and is clear,
precise, and singular. Atomic requirements translate into increased measurability,
enhanced testing procedures, improved naming conventions, effortless traceability,
streamlined verification processes, and potential for reusability.

If atomic requirements are so widely accepted as a standard in requirement writing
- why isn’t this practice consistently used across requirement engineering industries,
and why are we here at QRA talking about it so much?

We frequently engage in discussions with requirement writers and teams who express
reservations about the necessity of writing atomic requirements. It’s not uncommon for
organizations to be comfortable with their existing processes and view the transition to
singular writing as a potential challenge to avoid or have the capacity to tackle. We
understand these concerns, and as highlighted in our blog, it’s true that crafting atomic
requirements does take more effort to write. However, the investment is justified when
you recognize the advantages, such as risk reduction and enhanced clarity, comprehension,
analysis, and implementation.

Let’s just be honest with each other. It’s not fun to completely revamp the way you have
been doing things as an individual, a team, an organization, or an industry.

In this use case, we will investigate how to write atomically, the issues with non-atomic
requirements, and dive into some examples of atomic and non-atomic requirements.

Introduction.

2 3qracorp.com qracorp.com

https://qracorp.com/datasheets/ears-templates-part-1/
https://qracorp.com/datasheets/ears-templates-part-2/
https://qracorp.com/datasheets/ears-templates-part-3/
https://qracorp.com/atomic-requirements-101-a-comprehensive-guide-with-examples/
https://qracorp.com/atomic-requirements-101-a-comprehensive-guide-with-examples/
https://dl.acm.org/doi/abs/10.1145/2967307.2967315#:~:text=Atomic%20requirements%20provide%20a%20good,definition%20to%20the%20expected%20functionality.
https://dl.acm.org/doi/abs/10.1145/2967307.2967315#:~:text=Atomic%20requirements%20provide%20a%20good,definition%20to%20the%20expected%20functionality.
https://dl.acm.org/doi/abs/10.1145/2967307.2967315#:~:text=Atomic%20requirements%20provide%20a%20good,definition%20to%20the%20expected%20functionality.
https://qracorp.com/
http://qracorp.com
https://qracorp.com/
http://qracorp.com
https://www.linkedin.com/company/qracorp/mycompany/
https://www.linkedin.com/company/qracorp/mycompany/
https://twitter.com/qracorp?lang=en
https://twitter.com/qracorp?lang=en

4 5qracorp.com qracorp.com

How to Write Atomically.

First things first, writing atomic requirements is an essential aspect of developing clear,
precise, and manageable requirements, that turn into clear, precise, and manageable
projects. For a deeper understanding of why adopting atomic writing is imperative, please
refer to our blog, Atomic Requirements 101: A Comprehensive Guide with Examples. In the
blog, we go into detail about the benefits you can expect in your projects from writing
atomically. Our primary focus in this Use Case is to equip you with the know-how to write
atomically, so you can easily implement these changes into your work.

By following these steps in (Table 1: Steps for Writing Atomic Requirements), you can be on
your way to writing consistent atomic requirements from the outset. Now let’s examine the
problem with non-atomic requirements and why authors and teams frequently resort
to using a paragraph, bullet point, or grouped requirements.

Step

Table 1: Steps for Writing Atomic Requirements

Identify the Function,

Action, or Idea

Use Consistent and

Precise Natural

Language

Make It Measurable

Add Necessary

Context

Focus On ‘What’

Rather Than

the ‘How’

Use QVscribe,

Review, and Validate

Use a Requirement

Management (RM)

Tool: Traceability,

Prioritization and

Organization

Use a Template or

Start With an Action

One Idea

Action

You need to understand what you will be describing in your requirement.

Confirm the specific functionality, action, or idea that you want to define

in an atomic requirement.

Write your requirement using clear natural language. Avoid ambiguous, vague

terms, jargon, or overly technical language which may lead to misunderstandings

or confusion.

Provide specific details about what the system shall do or how it shall behave.

Use measurable criteria and avoid vague language when defining success

or completion of the requirement.

Define the scope and context in which the functionality shall occur. This could

involve describing the user, system state, triggering event, or precondition that

initiates the action.

Avoid going into technical details of implementation. Requirements should

describe the desired outcome, not the specific technical approach to

achieving it.

Use QVscribe to analyze your requirements to ensure they are clear, concise,

and free of risk. Next, have your QVscribe approved atomic requirements

reviewed by all stakeholders. This ensures that the requirements are

comprehensive, accurate, relevant, and aligned with expectations.

We recommend using an RM tool to help maintain a traceable record of

requirements. An RM tool will also help logically organize your requirements

and prioritize them based on their importance and dependencies. This aids

in project planning and development scheduling.

Use a requirement template, such as EARS templates to help structure your

requirement. Make sure your requirement has a strong action verb that

describes the desired behavior. This makes the requirement actionable and

highlights the expected action or outcome.

Be sure that each requirement covers only one idea or concept. Avoid combining

multiple ideas or functionalities into a single requirement. If you notice a

requirement becoming complex or involving multiple ideas or actions, consider

splitting them into separate requirements.

https://qracorp.com/
http://qracorp.com
https://qracorp.com/
http://qracorp.com
https://qracorp.com/atomic-requirements-101-a-comprehensive-guide-with-examples/
https://www.linkedin.com/company/qracorp/mycompany/
https://www.linkedin.com/company/qracorp/mycompany/
https://twitter.com/qracorp?lang=en
https://twitter.com/qracorp?lang=en

6qracorp.com 7qracorp.com

Why are Non-Atomic Requirements
so Prevalent?

For the sake of convenience, it’s only natural for us to gravitate towards grouping ideas,
details, and information. When authoring requirements this same instinct is not the most
effective approach.

In a different situation, we might find ourselves without all the necessary information to
adequately write the requirements. This can occur for various reasons, such as lack
of clarity, miscommunications, or incomplete information and knowledge of the project.

These two scenarios are the most frequent explanations requirements authors and teams
give to why they struggle with writing atomically.

Let’s dig further into the reasons behind the creation of non-atomic requirements.

•	 Pressured or Short Timelines: In fast-paced projects and environments, there is often
pressure to complete your work quickly. This can force requirement authors to rush
through the requirement writing process, leading to shortcuts and the inclusion
of multiple ideas or actions in a single requirement.

•	 Assumptions: Requirement authors may assume that certain functionalities naturally
go together, leading to the inclusion of multiple ideas or actions in a single requirement
without considering the need for granularity.

•	 Vague Requests: Details or information given to the requirement authors might be
vague or imprecise. The requirement author might inadvertently combine multiple
ideas or actions in an attempt to clearly capture the information they were provided.

•	 Implementation Focused: Requirement authors may write non-atomic requirements
if the focus shifts from the ‘what’ to the ‘how’. The focus of the requirement should
always describe what they want the requirement to achieve, not how they want it
to achieve it.

•	 Complexity: Some functionalities inherently involve many steps, preconditions, or
interactions. Requirement authors may perceive all steps, preconditions, or interactions
as one idea, leading to non-atomic requirements.

•	 Incomplete Analysis: If the requirement-gathering process is rushed or incomplete,
requirement authors may not fully understand the need for breaking down functionalities
into atomic requirements. As a result, they might combine multiple ideas or actions into
a single requirement.

•	 Ease or Simplicity: Requirement teams and authors often prefer to express information
and therefore requirements with as few words or repetitions as possible. They believe
that combining functionalities into one statement is simpler. However, this can lead
to the grouping of requirements and eventually to ambiguity and complexity during
implementation.

•	 Inexperience: Inexperienced requirement authors may struggle with breaking down
complex functionalities, leading to the inclusion of multiple ideas or actions in a single
requirement.

•	 Lack of Awareness: Requirement teams, organizations, or industries may not be aware
of the benefits of writing atomic requirements or understand the consequences of not
doing so.

•	 Poor Communication: When communication between requirements authors, teams,
and stakeholders is not clear or effective, misunderstandings can result in non-atomic
requirements.

•	 Status Quo: In the past, requirement teams used Word documents exclusively for
authoring and shared work as hard copies or PDF files. It was best practice and widely
accepted to write in paragraph form. As project and product complexity increases,
organizations have adopted new technology to advance their requirement process,
yet old authoring habits remain. It is hard to implement new authoring techniques
when older methods have been the standard for completing projects.

If you’re involved in writing requirements, at least one of the issues mentioned may impact
your projects’ requirements. It’s crucial to raise awareness among yourself, your team,
and stakeholders about the advantages of adopting atomic requirements. By conducting
a comprehensive analysis, transparent communication, and implementing a consistent
review process, you can mitigate and even avoid these problems. Consider running workshops,
collaborating among all stakeholders, training on requirement templates, implementing an
RM tool, and running all your documents through QVscribe to help create more accurate
and atomic requirement statements.

https://qracorp.com/
http://qracorp.com
https://qracorp.com/
http://qracorp.com
https://www.linkedin.com/company/qracorp/mycompany/
https://www.linkedin.com/company/qracorp/mycompany/
https://twitter.com/qracorp?lang=en
https://twitter.com/qracorp?lang=en

9qracorp.com8qracorp.com

What Issues can Arise from Writing
Non-Atomic Requirements?

Like most change management, altering the legacy mentality within an organization
presents its challenge. We like to call it ‘This is the way we do it.’ Teams understand the
benefits and the supporting information around the impacts of writing atomic requirements
but aren’t always ready to implement the changes needed. Change can be hard, especially
when it comes to perceived extra effort, and the need for a team or organization to adjust
or re-vamp their working style.

We get it, but as a requirement-focused company, we consider it a responsibility
of ours that all requirement industries understand the negative impact of non-atomic
requirements on their projects.

Writing non-atomic requirements can lead to many issues with project clarity,
communication, testing, implementation, and the overall success of the projects.

Here are some examples of issues that impact projects that do not write atomically:

•	 High Risk of Errors: Complex, non-atomic requirements can increase the likelihood
of errors in development, testing, and deployment, which may require more time,
resources and cost to rectify.

•	 Difficulty in Testing: Testing becomes complex when multiple ideas or actions are
intertwined in a single requirement. Test cases may become convoluted, making it
harder to ensure comprehensive coverage.

•	 Scope Creep: Non-atomic requirements can expand in scope as stakeholders add more
details or functionalities within a single requirement. This can lead to project scope
creep and missed deadlines.

•	 Inaccurate Timelines and Planning: Without singular and precise requirements, esti-
mating the effort required to implement requirements becomes challenging. This can
lead to inaccurate project planning and scheduling.

•	 Vagueness and Ambiguity: Non-atomic requirements may be vague or unclear, leading
to misunderstandings among stakeholders. This can result in misaligned expectations
and incorrect implementations.

•	 Incomplete Implementations: When a requirement combines multiple ideas or actions,
developers might focus on one aspect and overlook others. This can lead to incomplete
or partial implementations that don’t meet the intended scope.

•	 Poor Traceability: Non-atomic requirements make it difficult to track individual
functionalities and their associated changes. This impacts traceability and the ability
to manage requirement modifications.

•	 Impacts on Maintenance and Reusability: Non-atomic requirements can lead
to many interdependencies among systems and/or software, making maintenance,
future enhancements, or reusability of projects and requirements more complex
and error-prone.

•	 Poor Communication: Non-atomic requirements can result in miscommunication
between stakeholders, leading to a lack of shared understanding of desired outcomes.

•	 Risk to Allocation or Change Implementation: When functionalities are combined,
different parts of the system or software may not be allocated properly or accurately.
This can impact implementation and can limit the flexibility to implement changes
incrementally or swap out individual components.

To avoid these impactful issues, it’s vital that teams learn to write atomically and practice
doing so. Teams and authors can do this by breaking down ideas or actions into singular,
specific requirement statements.

https://qracorp.com/
http://qracorp.com
https://qracorp.com/
http://qracorp.com
https://www.linkedin.com/company/qracorp/mycompany/
https://www.linkedin.com/company/qracorp/mycompany/
https://twitter.com/qracorp?lang=en
https://twitter.com/qracorp?lang=en

11qracorp.com10qracorp.com

Examples.

Let’s take a look at some examples so you can better understand how you can author
atomically, or modify your non-atomic requirements. For these examples, we will reference
the requirements for a Smart Doorbell.

Example: Atomic Requirement

Let’s look at an example of a clear and simple atomic requirement. In this example,
we want the Smart Doorbell light to dim and adjust at dusk.

Examples: Common Non-Atomic Requirements

Here are some common examples of non-atomic requirements that we see often
among our customers.

Example 1:

These requirements demonstrate how authors often group together ideas and actions for
ease and simplicity but actually end up creating requirements that are complex, hard to
understand, and difficult to implement or test.

Here is how we would recommend re-writing the two examples we provided.

Example 1:

This requirement has a fairly simple resolution. We often see authors put two or more
requirements together if they are often thought of together and grouped together. This
is how we naturally speak and write in day-to-day contexts, so it would make sense we
would bring this to our requirement authoring as well.

These requirements should be separated into their own singular statements. If you are
concerned with the requirements being separated or you want them grouped closely
together, you can still achieve ease and simplicity by giving them linked requirement
ID numbers.

Example 2:
In this example, we have clearly described one action/idea in a singular requirement
statement.

Example: Non-Atomic to Atomic Requirement

Here is an example of a non-atomic or compound requirement, where multiple
functionalities have been combined into a single requirement statement.

This requirement combines three actions that the Motion Sensor must do into a single
statement. This can lead to issues with implementation, testing, and allocation among
other things.

Let’s rewrite these three actions into 3 atomic requirement statements.

While in Night Mode, the Control System shall set the Status Indicator Light

Brightness to 30%.

The Motion Sensor shall detect movement at distances between 5cm and 5m.

The Motion Sensor shall detect movement at a 150° horizontal sensing angle.

The Motion Sensor shall detect movement at a 60° vertical sensing angle.

The Motion Sensor shall detect movement at distances between 5cm and 5m, and

within a 150° horizontal range or a 60° vertical range.

The solution shall be able to incorporate multiple user databases & shall be able

to cross reference databases by name and/or phone number (system or group

administrator access only).

The solution shall be able to incorporate multiple user databases & shall be able

to cross reference databases by name and/or phone number (system or group

administrator access only).

If any component of the system fails (i.e. controller, radar, etc.) then the system will

disengage immediately.

https://qracorp.com/
http://qracorp.com
https://qracorp.com/
http://qracorp.com
https://www.linkedin.com/company/qracorp/mycompany/
https://www.linkedin.com/company/qracorp/mycompany/
https://twitter.com/qracorp?lang=en
https://twitter.com/qracorp?lang=en

13qracorp.com12qracorp.com

Here is how we would recommend rewriting the non-atomic requirements.

Example 2:

There are quite a few problems with this requirement. We won’t go into all the problem
words, but if you would like to dive deeper into this example, please refer to our EARS
Templates Part 2.

When it comes to the singularity of this requirement, the issue is that we are attempting
to account for many components, we are also not being specific about how many compo-
nents there are with the words any and etc. Do we really mean any component? How do
we account for all components included in etc.? Are there 3 components, 10 components,
or 100 components? Will all components be accounted for without additional expense or
wasted time? Is the scope of all components clearly understood by the stakeholders?

In this case, each component should be its own singular requirement.

Here is how we would recommend rewriting the non-atomic requirements.

Use these examples to help support your atomic requirement writing and to avoid the
common pitfalls when it comes to capturing requirements into singular statements.

SOL 212.1 The solution shall be able to incorporate multiple user databases.

SOL 212.2 The solution shall be able to cross reference databases by name and/or

phone number (system or group administrator access only).

If the controller fails, then the Cruise Control system shall disengage within 0.2 seconds.

If the radar fails, then the Cruise Control system shall disengage within 0.2 seconds.

If the x fails, then the Cruise Control system shall disengage within 0.2 seconds.

If the xx fails, then the Cruise Control system shall disengage within 0.2 seconds.

If any component of the system fails (i.e. controller, radar, etc.) then the system

will disengage immediately.

Conclusion.

While authoring your requirements, it’s vital to go beyond the content, objectives, and
purpose. Ensure your requirements are clear, precise, and manageable for all readers
and stakeholders. We recommend using EARS templates and regularly reviewing your
requirements using QVscribe. By having a clear process, you can quickly and efficiently
refine your writing and correct any non-singular issues that may arise.

This guide is designed to assist you in integrating atomic requirement writing into your
work, team, organization, or even industry.

https://qracorp.com/
http://qracorp.com
https://qracorp.com/
http://qracorp.com
https://www.linkedin.com/company/qracorp/mycompany/
https://www.linkedin.com/company/qracorp/mycompany/
https://twitter.com/qracorp?lang=en
https://twitter.com/qracorp?lang=en
https://qracorp.com/datasheets/ears-templates-part-2/
https://qracorp.com/datasheets/ears-templates-part-2/
https://qracorp.com/ears-resources/

To learn more about QVscribe, visit qracorp.com/qvscribe

qracorp.com

https://qracorp.com/qvscribe
https://twitter.com/qracorp
https://www.linkedin.com/company/qracorp/mycompany/
https://www.youtube.com/c/Qracorporation?app=desktop
http://qracorp.com

