ReAL

Use Cases

Case study #1 The impact of ORS ReAL for our customers

FASHION COMPANY USE CASE

Context

- Fashion company 1 billion € revenues
- Network KPIs
 - 297 Stores (retail, outlet, web)
 - 2 Distribution Centers

Problem Complexity

3.5 millions of SKU/store combinations

The starting Point

Global fashion company with increasing lost sales

Main Results

- -87% Lost Sales
- -7% Average STOCK

THE IMPACT OF ORS ReAL – Situation Before

Situation Before ReAL Implementation: Fashion retail company with an increasing trend of lost sales

Lost Sales in \$ - Fiscal Calendar - Weekly

THE IMPACT OF ORS ReAL – Situation After

Applying ORS ReAL

Lost Sales in \$ - Fiscal Calendar - Weekly

CO

THE IMPACT OF ORS ReAL – Situation After

Stock units Stores - Fiscal Calendar - Weekly

 \sim

Case study #2 The impact of ORS ReAL shown in a PoC

LUXURY COMPANY USE CASE

Context

- Italian luxury brand (1 billion € revenues) part of one of the leading global fashion group
- Network KPIs:
 - 208 Stores globally
 - 163 items
 - 1 Central Warehouse

Problem Complexity

7,605 Store-SKUs combinations

Results

-30% Average STOCK -20% Out of Stock

 $\Box O$

THE DATASET

Dataset Description

- Inventory and sales history (weekly data) of 163 products in 208 stores from 2016 used before the simulation time window.
- Inventory warehouses history (weekly data) from 2016.
- In transit quantity (weekly data) from DC to stores from 2016.
- Products sales history used before the experiment.
- Simulation horizon = validation period = last 6 months (from Oct 2018 to March 2019)
- Allocation map: 7605 store-SKU combinations.

Missing Data

Products hierarchy or classification.

THE APPROACH

- 1. Learning Phase The forecast algorithm is trained over a period in the past.
- 2. Benchmark Phase The allocation and replenishment algorithm ran in a *production mode* over a benchmark period (year, season, etc...).
- **3. Results** ORS results are then compared with customer's real past data.

The tool helps:

- To understand the results and the goodness of the allocation model.
- To test the stability and robustness of the allocation model.
- To calibrate the set of parameters.

THE RESULTS

For all the SKU@Store combinations with low sales volume in the last six months:

	O.R.S. Simulation	Actual Stock	Absolute Difference	Percentage Difference
Average Stock (Units)	2510	¥12	-1-12	<mark>-30.50%</mark>
Out Of Stock (NWeeks)	1553	16.25		<mark>-7.50%</mark>

For all the SKU@Store combinations with high sales volume in the last six months:

	O.R.S. Simulation	Actual Stock	Absolute Difference	Percentage Difference
Average Stock (Units)	10 g 1	14.4	436	<mark>-30.00%</mark>
Out Of Stock (Nweeks)	132	96	-27	<mark>-34.00%</mark>

Based on these figures, and on ORS demand forecast a **reduction in lost sales of 50%** was estimated