
Best Practices
Integrating MQTT

Guides to best practices for implementing MQTT based solutions using the 
Reekoh integration platform and components.

November 2020The Industrial IoT Integration Cloud



Best Practices Integrating MQTT

MQTT has become a de-facto standard protocol for many IoT and 
Industrial IoT solutions. When working with MQTT capabilities in Reekoh, 
we have devised a series of best practices that you can follow to best 
handle your data and scaling requirements.

MQTT Capabilities in Reekoh

Reekoh Plugins and Modules that enabled MQTT

Reekoh MQTT Plugin and Module Attributes

Gateway Plugin

Stream Plugin

Connector Plugin

Channel Plugin

Standalone Cloud 
Broker Module

MQTT Gateway is a hosted broker facilitating rapid data ingest for an integration solution

MQTT Connector is an MQTT client optimised for high-volume data egress

MQTT Channel is a hosted broker facilitating lower-volume data egress to subscribing clients

The standalone Reekoh Cloud Broker is a high-volume, clustered MQTT broker, which can 
be deployed purely to facilitate site to site connectivity or permitting selected data to be 
emitted into an integration pipeline

MQTT Stream is an MQTT client that subscribes to an external broker or the Standalone 
Cloud Broker. Achieves scale through pipeline design

Data Ingress

Data Egress

Auto-Scale

MQTT Behaviour

Suitable Volumes

Reekoh Usage

Gateway Plugin

Broker Broker BrokerClient Client

High Low ALLLow High

Pipeline Pipeline ModulePipeline Pipeline

Stream Plugin Connector Plugin Channel Plugin Standalone Broker



MQTT Request/Response Patterns

This is a naive implementation of a request 
response pattern over MQTT. Data is published 
to a Topic on the Gateway, and the Connector is 

publishing to other Topics on the Gateway, to 
which the consumer is subscribing. Auto-scaling 

on the MQTT Gateway can mean that some 
messages may be published on di�erent replicas 

and therefore may not be able to be reliably 
subscribed to. 

This approach permits a request/response 
pattern through separating data ingress from 

data egress, allowing the use of optimisations for 
each stage of the pipeline. Best suited to 

patterns where outbound only communication is 
desired and lower volumes are required (e.g. 

bridging OT systems to IT applications)
The lack of auto-scaling support on the Channel, 
which is required to permit reliable subscription, 
limits applications to those with lower volumes.

Gateway to Connector Gateway to Channel

Other data transformation steps

GATEWAY CONNECTOR GATEWAY CHANNEL

Other data transformation steps

This approach permits a high volume request 
response pattern, but only if topic segregation is 

possible (for example with Sparkplug B). It 
permits the use of a single MQTT endpoint for 

both request and response.

Topic Segregated Flow

Other data transformation steps

STREAMS CONNECTOR

CLOUD BROKER

This approach permits a high volume request 
response pattern, but requires the use of two 

di�erent MQTT endpoints. Very similar to 
Gateway to Channel approach, except facilitates 

high volume egress as well.

Gateway to Cloud Broker

Other data transformation steps

GATEWAY CONNECTOR

CLOUD BROKER

Best Practices Integrating MQTT



Standalone MQTT Cloud Broker can be used for all 
Sparkplug interactions. Gateways permit registration of 
multiple topics through wild-carding as data ingress. 
Streams can subscribe to subsets of data only. 

It’s planned that Sparkplug B Birth/Death Certificates 
will integrate with the Reekoh Device Registry module, 
and that Payload Definitions can be loaded as Data 
Schemas and used within the Reekoh Data 
Management module. 

The standalone MQTT Cloud Broker module can be used to create high-volume, clustered MQTT brokers from 
within the Reekoh platform This broker can be used on its own, and not tied to an integration pipeline, for 
purposes where existing applications may require a broker to communicate directly with each other. The broker 
can also be used to emit selected data to an integration pipeline

Integration-less MQTT with
Standalone Cloud Broker Module

Using Sparkplug

Best Practices Integrating MQTT


