
WHITE PAPER

Embedded Analytics
Solutions for Secure Embedding

Phil Ballai

Enterprise Architect, Sigma

Table of Contents

Introduction 2

Build vs Buy 3

Decision Criteria 4

Ways to Embed 7

External Embedding 9

How EmbeddingWorks in Sigma 12

Step 1: Identify the content to embed 13

Step 2: Share the dashboard 14

Step 3: Copy the embedding path 15

Step 4: Set up the Node.js Express Server 17

Step 5:Match the values for your embed 18

Step 6: Start the Node.js Express Server 19

Enforcing Row Level Security 23

Conclusion 30

1

Introduction

In the age of digital transformation, data's importance has grown exponentially.
Enterprises, regardless of their size, face increasing demands from customers seeking
access to their data. Historically, businesses have responded by establishing "customer
portals" facilitating secure access to a self-service analytics environment. In today's
dynamic market, providing such a service is no longer just an added benefit—it's a
necessity.

Embedding analytics seamlessly integrates your customer's experience. If a customer
spends significant time in your application, embedding ensures they don't need to leave
your platform to obtain insights elsewhere. Essentially, embedding amplifies user
engagement, encouraging customers to spendmore time exploring data insights within
your ecosystem.

At its core, embedding involves integrating one software application with another.
Everyday examples include watching an embedded YouTube video on social media or a
blog post. Sigma can securely embed your dashboards within any application, enhancing
user accessibility and experience.

Although some entities still rely on "data dumps" or emailing data sets, thesemethods are
increasingly perceived as archaic, insecure, and inefficient.

This white paper aims to provide an in-depth overview of the various aspects to consider
when integrating a customer-centric analytics solution into your online platforms and a
demonstration of how embedding works in Sigma.

Offering embedded analytics to customers provides amyriad of benefits, such as:

● Monetizing Your Data: Transform data into a valuable asset.

● Creating NewRevenue Streams: Innovate business models by leveraging data.

● Differentiating Your Business: Stand out in a competitivemarket.

● Enhancing Service Engagement: Promote regular interactions with your services.

● Boosting Customer Satisfaction & Retention: Offer more value, keeping customers

loyal.

● Elevating Brand Value: Reinforce your brand's importance in the digital age.

2

While the advantages are evident, many organizations either don't offer analytics portals
or have limited, static versions that lack interactive depth.When businesses consider
introducing or enhancing a customer portal with analytics, they face the critical decision
of building in-house versus purchasing a ready solution.

Build vs Buy

The decision to either build an in-house analytics solution or purchase an existing one
often arises when a business identifies the need for advanced data analytics for its
customers.Whether you already have an in-house solution that's proving challenging to
maintain, or you're starting fresh and seeking themost efficient route, it's vital to
continually assess both the time andmonetary investments involved.

The build vs buy decision isn't novel; it has been a topic of discussion for years, with
businesses weighing the pros and cons of each option. The crux of the decision hinges on
the following considerations:

Opportunity Cost

Pros of Buying: Over time, investing in a pre-built Business Intelligence (BI) tool may
provemore economical than dedicating resources to build one from scratch. Choosing the
right BI tool can also liberate your developers, allowing them to concentrate on other
pressing projects.

Pros of Building: Creating a bespoke solution can cater to your unique business needs,
ensuring that every feature aligns with your specific requirements. However, this can
often come at a higher upfront cost and longer development timeline.

Maintenance

Pros of Buying: Purchasing a solution, especially a cloud-based Software as a Service
(SaaS) offering, can alleviate much of themaintenance burden. Such platforms generally
offer regular updates, security patches, and support, ensuring a seamless experience
without extensive input from your team.

3

Pros of Building: On the flip side, building your solution allows for tailor-made
maintenance schedules and patches specific to your business's needs. But remember,
everything you build requires dedicated support, whichmight strain your resources.

Constant Demand for Change

Pros of Buying: Established analytics platforms often evolve in response to industry
trends and feedback from a broad user base, ensuring they remain relevant and
up-to-date. Adopting such a platform can ease the process of scaling and implementing
new features.

Pros of Building: Building your analytics solution grants flexibility. As your business grows
and needs change, you have direct control over adjustments and improvements. However,
swift adaptation requires constant vigilance and can be resource-intensive.

Summary

The decision to build or buy hinges on a business's specific needs, resources, and
long-term vision. Both paths offer advantages and challenges. It's crucial to make an
informed decision, considering not only the immediate requirements but also the future
evolution of your analytics needs and the broader business landscape.

Decision Criteria

In the burgeoning world of Business Intelligence (BI), numerous tools offer embedding
capabilities. As a decision-maker looking to seamlessly integrate dashboards into your
application, the variety of options can be daunting. However, insights from Sigma
customers reveal some critical themes that underscore why Sigma stands out for
embedding:

Ease of Implementation

Sigma's setup process is refreshingly straightforward. By employing an iFrame and
constructing a server-side API, integration is accomplished effortlessly. Sigma even offers
API samples across popular programming languages, with tasks like customizing the user

4

experience integrationmanaged by the API itself. On average, this setup process can be
completed within a day.

Learn how to implement Sigma’s embedded API

Quick Time to Value

Agility is paramount in today's fast-paced business environment.When introducing a new
dashboard element or entirely novel visualization, the transition from conceptualization
to customer access should be quick. Laborious coding or intricate datamodeling can
hinder this process, making your embedding solution less effective.

Live DataQuerying

Customers expect real-time or near-real-time data insights. To fulfill this expectation,
embedded solutions should fetch themost current data whenever accessed. This dynamic
updating ensures that users always access themost relevant, up-to-date insights,
regardless of the size of the dataset.

Learn how Sigma queries data

Performance

The user experience hinges on performance. Rapid response times during data drilling or
filtering processes are essential. Traditional BI performance remedies, such as in-memory
or on-premise solutions, might offer solutions but often at the expense of higher costs and
complexity. Themore advanced approach? The CloudDataWarehouse (or Lakehouse). It's
pivotal to select a BI tool specifically designed for CDWs rather than onemerely adapted
to them.

Scalability

The ideal embedded solution should grant users access to comprehensive, fine-grain data
without restrictions like data aggregation or limited timeframes. This ensures that users
can engage in intricate, ad-hoc queries without hindrance, even if there are billions of
rows involved.

5

https://quickstarts.sigmacomputing.com/guide/embedding_3_application_embedding/index.html?index=..%2F..index#0
https://quickstarts.sigmacomputing.com/guide/administration_sigma_calculations/index.html?index=..%2F..index#0

Security

Ensuring data exclusivity for each customer is critical. Throughmechanisms like row-level
security (RLS), BI tools can ensure data exclusivity. Effective embedding solutions also
offer single-use URLs, enhancing security without demanding user authentication against
the BI tool.

Learn how to implement RLS,

Authentication and Authorization

Proper authentication ensures that users only access data relevant to them.Whereas
"internal embedding" often employs Single Sign-On (SSO) via SAML, customer portals
benefit from signed embedding schemes, which use a confidential, unique key. The
takeaway? Opt for BI tools that don't mandate explicit, cumbersome authentication
processes.

Learn how to implement Sigmawith SSO usingOkta

Cloud-NativeOrientation

Modern BI tools should be cloud-native, emphasizing aspects like scalability,
comprehensive functionality, and amodern feel. It's essential to avoid tools that may be
cloud-hosted but aren't cloud-native by design.

Interactivity

A high degree of user interactivity ensures better engagement. This includes features like
drilling down, filtering, sorting, and overall data exploration. For optimal interactivity, a BI
tool should possess a refined query executionmodel, supporting varied data exploration
techniques.

Summary

The desired characteristics of an embedding solution aremultifaceted: it should be fast,
offer real-time data, guarantee top-tier performance, scale as required, maintain stringent
security protocols, ensure proper user authentication, operate natively in the cloud, and

6

https://quickstarts.sigmacomputing.com/guide/embedding_4_row_level_security/index.html?index=..%2F..index#0
https://quickstarts.sigmacomputing.com/guide/administration_sso_okta/index.html?index=..%2F..index#0

provide a rich interactive experience. A holistic embedded solution, like the one offered by
Sigma, encapsulates all of these attributes.

Ways to Embed

The embeddingmethod often varies based on the target audience or consumers of the
data. Typically, embedding needs can be categorized into three primary types:

Public Embedding

Purpose: Usedwhen the data is intended for the public domain or isn't specific to a

particular company or individual.

Security: No stringent security measures are required since the data is not confidential.

Example: A government agencymight want to showcase a census dashboard.

How Sigma Supports: Embed the public link within an iFrame and the dashboard is ready

for public viewing.

Internal Embedding

Purpose: Designed for an organization's internal stakeholders, such as employees, and

offers specific access based on authentication.

Usage: Organizations use this tomonitor various internal metrics and KPIs. For instance,

Sigma embeds dashboards within Salesforce to track business performancemetrics like

sales pipelines, forecasts, and software adoption rates.

Learn how to embed Sigma in Salesforce

Authentication: Either a local account within the BI tool is created, or Single Sign-On

(SSO) via Security AssertionMarkup Language (SAML) is employed.

Working Principle: When users access a dashboard, they can only view it if they are

authenticated against the BI tool. SSO is commonly used: Once users log into a portal

7

https://quickstarts.sigmacomputing.com/guide/embedding_5_application_embedding_into_salesforce/index.html?index=..%2F..index#0

through SAML, the BI tool checks for authentication. If the Identity Provider (IDP)

confirms, users can access the dashboard.

Suitability: It is ideal for businesses that rely heavily onmetrics to drive their strategies

and operations, especially when the users typically undergo SAML authentication.

External Embedding

Purpose:Designed for customers who log into custom-built portals, specifically crafted to
provide themwith tailored data.

Appearance & Branding: These portals often bear the brand of the provider and are
seamlessly integrated into the services offered by them.

Authentication:With Sigma, the embed inherits the security from the parent application
at runtime, using whatever security mechanism the parent application used to grant the
user access.

User Experience: Ideally, customers shouldn't even discern that the dashboards are
embedded. The transition should be seamless, and the interface should be congruent with
the rest of the application.

Summary

Choosing the right embedding type hinges on your data's intended audience and the level
of access and security needed. Awell-integrated and appropriately chosen embedding
type can offer a seamless and efficient experience for the end-users, enhancing their
interaction and trust in your application.

8

External Embedding

External embedding has emerged as the favoredmethod for businesses that have bespoke
customer portals andwish to introduce or elevate their analytics offerings. For
organizations contemplating the incorporation of external embedding within their
customer portals, Sigma stands out as a leading choice.

Sigma is the first analytics and business intelligence solution tailored for cloud data
warehouses. It seamlessly combines a contemporary spreadsheet interface directly linked
to your cloud data warehouse, ensuring a real-time, immersive experience. Its platform
aligns with the critical requirements highlighted previously in the "Decision Criteria"
section.

With Sigma, businesses unlock the following capabilities:

Preserved Application Authentication

Sigma adopts your existing security at runtime, eliminating the need to create local users
or navigate a new authentication structure. This simplified process helps to significantly
reduce implementation time.While SAML is optional and can be integrated if desired,
Sigma's design allows you to lean on the authentication system you’ve already put in place.
More on this in the next section.

Federated Access Control

Sigma supports Teams,Workspaces, and Role-Based Access Control so that you have
fine-grained control over what customers, groups, and users can see and do in the
embedded platform.

Learn about Federated Access Control with Sigma

Row-Level Security (RLS)

Design a universal set of dashboards tailored to your customers. Each customer, upon
accessing a dashboard, is presentedwith data specific to them. This approach streamlines
maintenance, eliminating the need for individual customer views. Notably, RLS operates
evenwithout direct user authentication against Sigma.

9

https://quickstarts.sigmacomputing.com/guide/embedding_how_to_federate_access_with_sigma/index.html?index=..%2F..index#0

Learn how to implement RLS

Versatility in Embedding

Choose between embedding entire dashboards or singular visualizations based on your
needs.

Customization

Sigma supports tailor-made layouts and themes to ensure visual cohesion with your brand
and portal.

Interactivity

Users can actively engage with the data through functionalities like drilling down, filtering,
and utilizing charts as controls, provided they have the appropriate role assignment.

Responsive Design

Sigma’s embedded dashboards are optimized for various devices, includingmobile phones,
tablets, and laptops. The dashboards adjust dynamically based on screen size.

Learn how to create responsiveness in Sigma

Filter Integration via URL

This feature enables default filter configurations once users access a dashboard. For
instance, if a user focuses on the “West” region within your application and subsequently
accesses an embedded dashboard, the information will already be filtered to highlight the
“West” region, courtesy of the URL parameters.

Learn how to leverage parameters in Sigma

JavaScript Event Listener

Sigma activates a JavaScript event whenever a dashboard filter is modified. This capability
facilitates the transfer of context from one dashboard to another.While similar to the URL
filter integration, in this scenario, filters transition between Sigma-embedded dashboards.

10

https://quickstarts.sigmacomputing.com/guide/embedding_4_row_level_security/index.html?index=..%2F..index#0
https://quickstarts.sigmacomputing.com/guide/embedding_4_row_level_security/index.html?index=..%2F..index#0
https://quickstarts.sigmacomputing.com/guide/embedding_dynamic_iframes/index.html?index=..%2F..index#0
https://quickstarts.sigmacomputing.com/guide/embedding_howto_leverage_parameters_and_ua/index.html?index=..%2F..index#0
https://quickstarts.sigmacomputing.com/guide/embedding_howto_leverage_parameters_and_ua/index.html?index=..%2F..index#0

An illustrative examplemight be a tab-based interface where every tab displays a distinct
embedded dashboard. If a user sets a date range filter on one tab (e.g., “last 30 days”), that
specific date range can be carried over to the next accessed tab.

Numerous Sigma embeds clients utilize this functionality to transition filter values
between their portal modules and Sigma embeds. This integrated approach ensures a fluid
user experience, making the embedded BI component appear innate to the platform.

Learn about using Actions / Events in Sigma

Summary

External embedding with Sigma offers a harmonized, interactive, and responsive analytics
experience. Integrating seamlessly with custom-built portals ensures that users derive
insights efficiently, enhancing overall user engagement and satisfaction.

11

https://quickstarts.sigmacomputing.com/guide/embedding_6_actions_events/index.html?index=..%2F..index#0
https://quickstarts.sigmacomputing.com/guide/embedding_6_actions_events/index.html?index=..%2F..index#0

HowEmbeddingWorks in Sigma

External embedding is made possible by the creation of a unique, encrypted, one-time-use
embedURL pointing to the workbook, workbook page, or element youwish to display,
along with any optional parameters youwish to include.

This URL is generated on the server side of your parent application through an API you set
up and is rendered client side in an HTML iFrame element.

The image above is a workflow that provides a high-level overview of the process. It is
very important to note that each API-generated URL can only be used once and if
modified externally and resent, it will generate an error message in the browser.

12

Step 1: Identify the content to embed

In Sigma, wewill select a dashboard to embed. It does not matter which you select, but the
below dashboard is provided in the Sigma trial environment so that wewill use it for
simplicity. Note that the red arrow indicates that the base dashboard shows all sales
regions. Later, wewill use RLS to show only the east andwest regions automatically.

Sample dashboard from Sigma trial environment.

13

Step 2: Share the dashboard

For this example, wewill share the dashboard with the “FinanceViewers” team. To do this,
click on the caret next to “Sales Performance” (the title of the workbook), then click
“Share.” From there, select the person or team to grant access to. In this example, select
the “FinanceViewers” team, then click “Share.”

How to share a dashboard with a person or team.

14

Step 3: Copy the embedding path

Next, we need to get the embed path (URL) from the dashboardmenu. Again, go to “Sales
Performance” in the header, click the caret, then select “Embedding…”. A pop-upwill
appear. Under the dashboard section, click “Copy” to the right of the embed path.

How to copy the embed path (URL).

From there, wemust use Sigma’s administrative panel to generate keys. These keys work
to establish a trust relationship between your application and your Sigma instance. Be
sure to copy the provided Client Id and Secret and store them, then click “Close.”

15

How to copy the Client Id and Secret.

Now that we have copied our embedURL and secrets, we can place and configure our
server-side API.

For this example, wewill create a simple node.js project. This project will use JavaScript
for the API and embed it into a simple HTML page.

NOTE: The code and process details are available here if you’d like to explore this on your

own.

16

https://quickstarts.sigmacomputing.com/guide/embedding_3_application_embedding/index.html?index=..%2F..index#0

Step 4: Set Up theNode.js Express Server

Initialize the Server:Begin by creating the server.js file and initializing the Express
application. Import the required express and cryptomodules at the start of the file.

const express = require('express');
const crypto = require('crypto');
const app = express();

Configure Embedding Parameters:Define constants for EMBED_PATH and
EMBED_SECRET. These should be replacedwith the actual values you obtain from your
Sigma embedding setup.

const EMBED_PATH = 'YOUR EMBED_PATH HERE'; // Replace with embed path
const EMBED_SECRET = 'YOUR API SECRET HERE'; // Replace with API secret

Serve theMain HTML Page: Set up a route handler to serve yourmain HTML pagewhen
the root URL is accessed.

app.get('/', (req, res) => {
res.sendFile(__dirname + '/index.html');

});

Generate the EmbedURL:Create an API endpoint that will handle the generation of the
embedURL, which includes security measures like nonce generation and signature
creation.

17

Insert the following code block at this point in your server.js file to define the /api/foo
endpoint:

// API endpoint to generate the embed URL
app.get('/api/foo', (req, res) => {

const nonce = crypto.randomUUID();
let searchParams = new URLSearchParams({

':nonce': nonce,
':client_id': 'YOUR CLIENTID HERE', // Replace with client ID
':email': 'embed_viewer@sigmacomputing.com',
':external_user_id': 'embed_viewer@sigmacomputing.com',
':external_user_team': 'FinanceViewers',
':account_type': 'Viewer',
':mode': 'userbacked',
':session_length': '600',
':time': Math.floor(new Date().getTime() / 1000).toString()

});

const URL_WITH_SEARCH_PARAMS = EMBED_PATH + searchParams.toString();
const signature = crypto

.createHmac('sha256', Buffer.from(EMBED_SECRET, 'utf8'))

.update(Buffer.from(URL_WITH_SEARCH_PARAMS, 'utf8'))

.digest('hex');

const URL_TO_SEND = `${URL_WITH_SEARCH_PARAMS}&:signature=${signature}`;
res.status(200).send({ url: URL_TO_SEND });

});

Start the Server:Write the command to start the server, listening for requests on port
3000. You can confirm the server is running by checking for a console message.

app.listen(3000, () => {
console.log('Server listening on port 3000');

});

The server.js file should contain all the steps above, with the cleaned-up code
provided in the appropriate section to handle the /api/foo endpoint. This endpoint is
crucial as it constructs the secure URL needed to embed Sigma visualizations with the
proper parameters and security features in place.

18

Summary: You can find the entire code below:

const express = require('express');
const crypto = require('crypto');

const app = express();
const EMBED_PATH = 'YOUR EMBED_PATH HERE'; // Replace with your actual embed
path
const EMBED_SECRET = 'YOUR API SECRET HERE'; // Replace with your actual API
secret

// Serve the main HTML page
app.get('/', (req, res) => {

res.sendFile(__dirname + '/index.html');
});

// API endpoint to generate the embed URL
app.get('/api/foo', (req, res) => {

const nonce = crypto.randomUUID();
let searchParams = new URLSearchParams({

':nonce': nonce,
':client_id': 'YOUR CLIENTID HERE', // Replace with your actual

client ID
':email': 'embed_viewer@sigmacomputing.com',
':external_user_id': 'embed_viewer@sigmacomputing.com',
':external_user_team': 'FinanceViewers',
':account_type': 'Viewer',
':mode': 'userbacked',
':session_length': '600',
':time': Math.floor(new Date().getTime() / 1000).toString()

});

const URL_WITH_SEARCH_PARAMS = EMBED_PATH + searchParams.toString();
const signature = crypto

.createHmac('sha256', Buffer.from(EMBED_SECRET, 'utf8'))

.update(Buffer.from(URL_WITH_SEARCH_PARAMS, 'utf8'))

.digest('hex');

const URL_TO_SEND = `${URL_WITH_SEARCH_PARAMS}&:signature=${signature}`;
res.status(200).send({ url: URL_TO_SEND });

});

// Start the server
app.listen(3000, () => {

console.log('Server listening on port 3000');
});

19

Step 5:Match the values for your embed

In this step, youwill update your server.js file to include the specific values for your
Sigma embed configuration. This ensures that the server generates a correctly formatted
URL that aligns with your Sigma setup and user requirements.

Set Embed Path and Secret:Replace the placeholder values for EMBED_PATH and
EMBED_SECRETwith the actual values you have saved from your Sigma account setup.

const EMBED_PATH = 'INSERT YOUR EMBEDDED PATH HERE';
const EMBED_SECRET = 'INSERT YOUR SECRET HERE';

Build the Search Parameters:Construct the search parameters by incrementally adding
the required details. This includes the client ID, user email, user ID, team, and account
type. The parameters must match the values expected by Sigma for successful embedding.

// Start with the base parameters including the nonce
let searchParams = new URLSearchParams({

':nonce': crypto.randomUUID(),
// Add more parameters below

});

// Add the client ID
searchParams.append(':client_id', 'YOUR CLIENTID HERE');

// Add the email address of the authenticated user
// Use dynamically retrieved email in production
searchParams.append(':email', 'finance_viewer@testco.com');

// Add the user ID of the authenticated user
// Use dynamically retrieved user ID in production
searchParams.append(':external_user_id', '12345');

// Add the team of the user
// Replace with the actual team name
searchParams.append(':external_user_team', 'FinanceViewers');

// Add the account type of the user

20

// Replace with the actual account type
searchParams.append(':account_type', 'Viewer');

Remember to replace the placeholder text with actual data specific to your environment.
In a production environment, the email and user ID should be programmatically retrieved
rather than hardcoded.

Complete the URL Construction:After appending all the necessary parameters, combine
themwith the embed path to form the entire URL string. Then, create a secure signature
and append it to the final URL.

const URL_WITH_SEARCH_PARAMS = EMBED_PATH + searchParams.toString();

const signature = crypto
.createHmac('sha256', Buffer.from(EMBED_SECRET, 'utf8'))
.update(Buffer.from(URL_WITH_SEARCH_PARAMS, 'utf8'))
.digest('hex');

const URL_TO_SEND = `${URL_WITH_SEARCH_PARAMS}&:signature=${signature}`;

Send the URL in Response:Within the /api/foo endpoint, ensure that the final URL is
sent back in the response to the client.

app.get('/api/foo', (req, res) => {
// ... previous code to generate the URL ...
res.status(200).send({ url: URL_TO_SEND });

});

Once you have updated these values, save the changes to your server.js file. Your server is
now configured to generate URLs that arematched to your Sigma embed configuration
and can be used to embed Sigma visualizations into your web application securely.

21

Step 6: Start the Node.js Express Server

With the configurations set, it's time to start the Node.js server and verify that the Sigma
embed is operational within your HTML page.

Launch the Server:Use the command line interface to navigate to the directory where
your server.js file is located. Start the server by running the following command:

node server.js

Server Initialization:Upon running the command, the server will initialize and start
listening for requests on the specified port (in this case, port 3000). You should see a
console output confirming the action:

console.log('Server listening on port 3000');

Access theMain Page:Open aweb browser and navigate to
http://localhost:3000/. You should see yourmain HTML page being served by the
server.

Verify the EmbedURL: Themain HTML page shouldmake a request to the /api/foo
endpoint to retrieve the embedURL. This will be used to set the src attribute of an iframe
that will display the Sigma visualization.

22

For reference, the HTML page code is as follows, with the iFrame code shown in red:

<html>
<head>
<title>Sigma Embedding - RLS</title>

</head>
<body>
<h2>Sigma Embedding - Row Level Security</h2>
<h3>iframe URL below comes from API call to server</h3>
<iframe id="sigmaDashboard" width="100%" height="90%"></iframe>
<script>
const URL = "http://localhost:3000/api/foo";
fetch(URL)
.then(data => {return data.json()})
.then(res => {

document.getElementById("sigmaDashboard).src = res.url
})
.catch(e => console.log(e));

</script>
</body>

</html>

Embed Rendering:With the URL set, the Sigma dashboard should render within the
iframe. You'll see the embedded Sigma visualization on the page.

23

How an embed will look when running localhost:3000.

Note: The signature is a SHA256 hash of the secret and the final URL, with all of the

parameters.

24

Screenshot of the one-time URL.

Accessing the “inspect” mode of the browser, youwill see a one-time URL.

25

If we inspect that URL, here is what wewill find:

<iframe id="sigmaDashboard" width="100%" height="90%" src="

THIS IS THE EMBED PATH:
https://app.sigmacomputing.com/embed/1-5Xa2sUUdcrE2zBzl7G1Gzm

THIS IS THE NONCE:
?:nonce=deabbdc7-ffff-4e3f-bb72-d2dc18d177c2

THIS IS THE CLIENTID:
&:client_id=b52989b07f20ac8f675fb9d9ef0db294aa144658ae2c852cbe17c8c8a

THIS IS THE USER’S EMAIL:
&:email=finance_viewer@testco.com

THIS IS THE USER’S UNIQUE ID:
&:external_user_id=12345

THIS IS THE USER’S TEAM:
&:external_user_team=FinanceViewers

THIS IS THE USER’S ACCOUNT TYPE:
&:account_type=Viewer

THIS IS THE TYPE OF SIGMA EMBED (External):
&:mode=userbacked

THIS IS THE TIME THE EMBED MAY LIVE BEFORE A NEW URL IS GENERATED:
&:session_length=600

THIS IS THE UTC TIME THE URL WAS LAST GENERATED:
&:time=1696880353

THIS IS THE UNIQUE SIGNATURE:
&:signature=ccb11c457e5ec8154584acafe1a0f73b5e295e0599912fdbaff1e532a

">
</iframe>

26

Troubleshooting

● If the Sigma visualization does not appear, check the browser's developer console
for any errors.

● Ensure that CORS policies are appropriately handled if the request is made to a
different domain.

● Verify that the EMBED_PATH and EMBED_SECRET are correctly set in your
server.js file.

27

Enforcing Row Level Security

Next, wemust govern the data individual users can access.We'll accomplish this through
Row Level Security (RLS) in external embedding.

Let’s assumewewant our “FinanceViewers” to only access stores in the East andWest
regions. Our data has a column (Store Region) that allows us to support this with RLS.

In Sigma, our example workbook hasmultiple tabs, with one tab (Data) acting as the
“source.”We are using this data to build dashboards and visualizations, querying the
warehouse once. There are a few different methods to apply a user attribute to Sigma
data:

1. Use the user attribute value that is passed in a custom SQL query as a condition in a
where clause. Since this involves writing some SQL, we probably want to avoid that
and let Sigma do the SQLwork for us in the background.

2. Add a Sigma filter control to the workbook that is viewable by the creator, but
hidden from the average user.

3. Apply the user attribute directly to the source data as a function that drives the
column data, in this case, “Store Region.” This is the preferredmethod andwill be
used in the following example.

Sigma’s API supports any value passed to a custom “user attribute” at runtime. By simply
adding a formula to the dataset, the API evaluates the new “user attribute” and filters the
data according to the value(s) passed. First, we need to add a new user attribute in Sigma.
Wewill call our user attribute “Region” and leave “Default Value” blank. This ensures that
no data will be shown unless the API passes a value for ua_Region.

NOTE: you can also assign user attributes to Teams or individual members. In this
example, wewill use the user attribute directly.

28

Row-Level Security Example

To assign users to a user attribute, go to the Administration screen, then on the left select
User Attributes. You should be able to add a Region for row-level security. In the example
below, youwill also be able to see Teams orMembers assigned.

Screenshot of where to find and assign user attributes

Next, go back to your data source, and add a new column to the source data on the data
tab called ua_Region.

This columnwill use the following formula:

Contains(CurrentUserAttributeText("Region"), [Store Region])

29

The contains function in the new ua_region column.

30

Then add a filter against the new column, ua_Region, and select True. The result of this
will be a table with only thematching rows passed by the API for ua_Region.

Screenshot of the filtered table on the user attribute of Region.

31

Screenshot of the visualizations before leveraging row-level security.

Adjusting the API to Utilize User Attributes

To incorporate the newly defined user attributes into the API, follow these steps tomodify
your server.js file:

Specify Embed Path and Secret:Assign the EMBED_PATH and EMBED_SECRET variables
with the values provided by your Sigma embedding setup.

const EMBED_PATH = 'INSERT_YOUR_EMBED_PATH_HERE';
const EMBED_SECRET = 'INSERT_YOUR_EMBED_SECRET_HERE';

32

Constructing the EmbedURL:Begin building your embedURL by appending each
required parameter to the searchParams object.

// Initialize searchParams with the nonce
let searchParams = new URLSearchParams({ ':nonce': crypto.randomUUID() });

// Append the client ID
// Replace with your client ID
searchParams.append(':client_id', 'INSERT_YOUR_CLIENT_ID_HERE');

// Append the email address of the user being authenticated
// Replace with the email of the authenticated user
searchParams.append(':email', 'embed_viewer@sigmacomputing.com');

// Append the external user ID, set to match the user's email for simplicity
// Replace with the external user ID
searchParams.append(':external_user_id', 'embed_viewer@sigmacomputing.com');

// Append the team associated with the user
// Replace with the appropriate team name
searchParams.append(':external_user_team', 'FinanceViewers');

// Append the account type for the user
// Ensure this account type is predefined in Sigma
searchParams.append(':account_type', 'Viewer');

Incorporate User Attributes for Row-Level Security (RLS): To apply RLS, add the user
attribute ua_Region to the searchParams. The value for this should be the regions you
wish to include, separated by commas.

// Append the user attribute for RLS. Case sensitivity matters.
searchParams.append(':ua_Region', 'West,Midwest,South,East,Southwest');

33

Finalize the URL:Combine the searchParamswith the EMBED_PATH to form the
complete embedURL. Then, generate the secure signature and append it to the URL.

// Combine the base embed path with the search parameters
const URL_WITH_SEARCH_PARAMS = `${EMBED_PATH}?${searchParams.toString()}`;

// Generate the secure signature
const signature = crypto

.createHmac('sha256', EMBED_SECRET) // Use the embed secret

.update(URL_WITH_SEARCH_PARAMS) // Apply the full URL

.digest('hex'); // Output as hexadecimal string

// Append the signature to the final URL to authenticate the request
const FINAL_URL = `${URL_WITH_SEARCH_PARAMS}&:signature=${signature}`;

Save and Test:After updating your code, save the server.js file and refresh your
browser to test the changes. If implemented correctly, you should now see Sigma
visualizations reflecting data for all specified store regions.

34

Screenshot of the visualizations after leveraging row-level security.

Sigma’s Unique Encryption

Wepreviously discussed how external embedding is made possible by creating a unique,
encrypted, one-time-use embedURL. To test this, copy and paste the belowURL that has
been generated by the API andmodified to include the South region into your browser.
You'll notice the URL returns an error message as it can only be used once.

https://app.sigmacomputing.com/embed/1-5QFPkoPbkjUHD2wzC8fLgl?:nonce=a0fc25ed
-7bc5-481b-b793-9272c9c48b2b&:client_id=b52989b07f20ac8f675fb9d9ef0db294a
a1858920844658ae2c852cbe17c8c8a&:email=finance_viewer@testco.com&:ext
ernal_user_id=12345&:external_user_team=FinanceViewers&:account_type=
Viewer&:ua_Region=East,West,South&:mode=userbacked&:session_lengt
h=600&:time=1696885437&:signature=1637ea9a037fe8f223bbaa0e0c1b09311c0
d5e0b0715d691c934a4bf86b0f9f0

Learnmore about Sigma’s API

35

https://quickstarts.sigmacomputing.com/guide/embedding_howto_leverage_parameters_and_ua/index.html?index=..%2F..index#0

Conclusion

Throughout this white paper, we explored different ways to embed visualizations while
navigating through various authenticationmechanisms. The decision rests on configuring
your existing environment and your organization’s security goals.

Public Embedding

Offers an open, non-restricted viewwithout security layers. It's akin to a public domain,
accessible to all without authentication barriers.

Internal and External Embedding

Both present comparable security features, notably Row-Level Security (RLS).While
internal embedding often relies on pre-existing authentication systems like SSO, external
embedding relies on unique, secure URLs.

It's important to understand that embedding isn't a one-size-fits-all approach. Your
organizational needsmight utilize multiple embedding techniques. For instance, while
internal embeddingmight resonate for your internal platforms, external embedding will
better suit your external, customer-centric portals.

To try out Sigma’s embedded platform capabilities today, sign up for a free trial.

You can quickly connect to your data and be on your way to prototyping your new
embedding solution!

36

https://www.sigmacomputing.com/trial/

