

Orb – User Guide

1

Orb
User Guide

Orb – User Guide

2

Table of Contents

1. KEY CONCEPTS .. 3

1.1 An overview .. 3

1.2 How pipeline definitions are interpreted .. 3

1.3 How the data model is structured ... 4

2. SNAPLOGIC ANALYSIS WITH ORB ... 7

2.1 Managing data .. 7

2.2 Navigating through the catalogue ... 7

2.3 Searching for snaps ... 9

2.4 Working with reports .. 9

3. ADVANCED TOPICS ... 10

3.1 Accessing Neo4j database ... 10

3.2 Creating report queries ... 10

3.3 Working with Orb API ... 11

Orb – User Guide

3

1. KEY CONCEPTS

Orb is an integration platform analysis and discovery application. It accepts Snaplogic
pipeline definitions to build a database, that Orb users to work with. Rather than keeping the
pipeline source code, Orb builds its own data model, based on selected pipeline properties
and discovered relations. Orb users access its web-based front-end to browse information in
a form of manageable reports.

1.1 An overview

The idea of Orb comes from an assumption, that pipeline definitions are in fact data linked
together with relations. If you read all of them, together with accounts and tasks you will be
able to build a model representing the entire platform. This perspective helps to answer
questions such as:

• What are the most complex pipelines (and why)?

• What would be the impact of a change to a given pipeline?

• What is the difference between two Snaplogic orgs (environments)?

• Given a pipeline, what are similar pipelines and how?

• What pipelines break defined quality standards?

• Who are top contributors for the last week/month?

• What are top oldest/newest/recently changed pipelines?

• What pipelines use a given snap pack?

• What are databases / systems / endpoints used by the platform?

These are difficult to answer just by using the Snaplogic platform alone. Orb takes an
approach to bring the data to one unified data store so the analysis can happen.

1.2 How pipeline definitions are interpreted

A pipeline is essentially a JSON document. It means it has a structure and is easily to parse by
a programmable logic. Orb takes an advantage of this fact and reads portions of information
that can be useful, in particular the following:

• Main properties such as name, path (including the organization name), author and
description

• Pipeline properties (both names and default values)

• Snaps along with their settings (all you can see when you configure a Snap) and the
information about the snap pack they come from

• Few properties hidden to the Snaplogic user, such as pipeline instance version
Snaplogic identifiers (snode_id, instance_id)

What Orb does not read are

• Transformation logic such as mapping table, json/xml generator templates

• Scripts

Orb – User Guide

4

Because Orb works with pipeline/account/tasks definitions and has no access to runtime
data, all the attribute values that depend on runtime (such as expressions) will have an
impact of blurring the end result. Data especially valuable is:

• Pipeline/pipeline and pipeline/account relations

• Endpoints, URLs, connection parameters

1.3 How the data model is structured

We already know that Orb reads Snaplogics definitions, but what does it make out of it?
Understanding the application data model is key when searching for answers. The diagram
describing it is shown below.

In a nutshell, the database is structured out of nodes and relations.

Each node has a set of properties. These are nothing but key/value pairs representing
properties of Snaplogics definitions. These definitions are in fact JSON structures with
properties on different levels, and node properties are their flattened versions. One special
property uid is always present and defines the unique identifier of a node in a context of a
parent (node it belongs to). For example, an uid of a Pipeline is unique in a context of a
Group, and an uid of a Snap is unique in a context of a Pipeline.

Orb – User Guide

5

Orbs underlying database allows nodes to be described by types. These types are nothing
but labels and don’t imply any schema requirements. A node can be labeled with any
number of types.

Orb data structure assumes every node (except od Group) is of type Entity. Pipelines,
Accounts, Tasks are additionally of type Component. Snaps are described by multiple types
depending on their snap pack.

Type Super Types Relations IN Relations OUT

Group - - CONTAINS

Pipeline Component, Entity CONTAINS, USES CONTAINS

Account Component, Entity CONTAINS, USES -

Task Component, Entity CONTAINS USES

Snap Entity CONTAINS USES, GOES_TO

Relations are what glues nodes together. Orb user interface divides them into IN and OUT,
because the focus is on a single entity (such as Pipeline). For example, Pipeline can contain
snaps (OUT relation), but can be also referred by a snap from another pipeline (IN relation).
From a data model point of view, to see a relation we need two entities, therefore there is
no need to describe them as inbound or outbound. Only Group and Pipeline can contain
and only Snap goes_to. The last relation uses is established from Task to Pipeline and from
Snap to either Pipeline or Account.

1.3.1 Groups

Every pipeline, tasks and account stored in Orb database has to exist in a context of a group.
A group can be anything - from a small scenario for the purpose of an analysis, to a whole
Snaplogic organization. It’s up to you to decide during the import of the data. Contents that
belong to different groups don’t relate to each other.

One scenario to follow might be to build a group for each Snaplogic organization your
company has access to. This approach helps to understand the difference between
environments. Groups can also be used to compare the state of the platform before and
after the release.

1.3.2 Pipelines, Tasks, Accounts

Pipelines, Tasks and Accounts are main building blocks of Snaplogic. In Orb, they always
belong to a group. Tasks refer to Pipelines. Pipelines contain Snaps. There’s no direct relation

Orb – User Guide

6

between Pipelines and Accounts or Pipelines themselves, but through Snaps. Because
Pipelines are made of Snaps, additional information such as statistics are collected.

1.3.3 Snaps

Snaps are always contained within Pipeline. They use Accounts and Pipelines through
references. They also refer to each other with GOES_TO relation. Snaps can be of various
types and belong to snap packs. When Orb reads Pipeline definition and goes through a list
of Snaps, it takes class_id property and builds a set of labels out of it. Let’s take a look at
the example of Mapper snap. This Snaps value of class_id property is com-snaplogic-
snaps-transform-datatransform. Orb always ignores first three words and turns what’s
left into Snap types. Following this logic, Mapper Snap from this example will be represented
in Orbs database with types: Snap, Transform, DataTransform. Nodes represent Snaps with
most of their properties, however complex dynamic structures, such as mapping tables,
routing tables or scripts are skipped.

Orb – User Guide

7

2. SNAPLOGIC ANALYSIS WITH ORB

Orb provides user interface, in a form of web-based application, to browse and manage
data. Web user interface can be accessed by three types of roles

Role Privileges

Admin

Manage users
Upload projects

Browse and search Tasks, Accounts, Pipelines and Snaps
Manage and execute reports

Super User

Upload projects

Browse and search Tasks, Accounts, Pipelines and Snaps
Manage and execute reports

User
Browse and search Tasks, Accounts, Pipelines and Snaps
Manage and execute reports

2.1 Managing data

Things that you upload to Orb through its user interface are Snaplogic projects. A project
first has to be exported from the Manage tab in Snaplogic. To upload it to Orb, navigate to
Management -> Upload. Type the name of the group (new or existing one) and select the zip
file to be uploaded and choose Upload.

Since a single pipeline can be exported from Snaplogic Designer, it can also be imported to
Orb. To do so, simply change the scope from Project to Pipeline in the upload screen.

To delete a group from the database, navigate to Management -> Storage and choose Delete
next to a group you want to remove.

2.2 Navigating through the catalogue

Catalogue is a functionality of Orb user interface, where one can navigate through Pipelines,
Accounts and Tasks. In contrast to the overview approach offered by the reports section, this
set of views allows to focus on a single element.

Using the top menu, navigate to Catalogue and select the desired type of object. The left
pane allows to select the group and desired object. The details pane contains several
sections:

2.2.1 Summary

This section shows alle the properties of a catalogue item. Some of them, under General
properties are named in a user-friendly way, and others, under Other properties have their

Orb – User Guide

8

plain database names displayed. This section allows a user to understand what properties
can be found for Pipelines, Accounts and Tasks.

2.2.2 Snaps

This tab lists all Snaps for a Pipeline grouped by their snap pack. Details of each Snap can be
viewed after clicking on a Snap.

2.2.3 Snap details

This window shows information gathered by Orb about a Snap.

Details -> General properties and Other properties show all attributes collected for the Snap.

Below Snap properties two sections regarding relations are displayed:

• Uses – whenever a Snap uses an Account or another Pipeline this reference is
displayed here.

• Goes To – this relation indicates a Snaps connected to outputs of the detailed Snap.
In other words, whenever there is a transition from this Snap to another in the
Pipeline, there is a corresponding relation here.

Occurrences tab shows a global list (including all groups) of Pipeline, where this Snap occurs.
There are two occurrence types:

• Identical – identically configured and named Snap

• Similar – identically configured Snap but named differently.

2.2.4 Deployment

This tab contains Pipeline properties with their values.

2.2.5 Similarity

This tab contains a list of Pipelines that Orb considers similar to the one displayed. Similarity
is defined by the count of identical and similar Snaps between two Pipelines. Two Snaps are
identical, when they have the same name and configuration. They are considered similar,
when configuration appears the same, but there is a difference in naming.

2.2.6 References

Whenever a Pipeline uses an Account, or another Pipeline through its Snap configuration, it
is listed in this tab. A separate list of relations is displayed for all Pipeline using this Pipeline
or Account. These two lists are named Relations Out and Relations In.

Orb – User Guide

9

2.3 Searching for snaps

To quickly scan the database for a specific type of Snap, navigate to Search in the top menu.
You can either search by name of the Snap, or the type (extracted from the snap pack).
Results are always in a context of a group. They contain the list of pipelines containing Snaps
matching the criteria. Snaps details can be viewed the same similar to Catalogue.

2.4 Working with reports

Reports allow user to build custom scenarios into the application. Report definitions are
based on Cypher query language. Cypher queries are executed directly on the underlying
Neo4j database instance.

Reports are organized in groups. To create or remove a group, navigate to Management ->
Report groups.

To create or modify a report, navigate to Management -> Reports. When creating a report,
two fields require an explanation:

• Query – Cypher query to be executed directly on the underlying database. Query has
to return a table structure. Every field defined in a query will result in a report result
column in Orb, when the report is executed.

• Parameters – coma separated parameters used in the query. Every parameter will
result in an input field to be filled in before the report is executed.

To execute a report, navigate to Reports in the top menu bar. All reports defined in the
Management section of the application are visible here. An executed report can be
downloaded as CSV or XSL file.

Orb – User Guide

10

3. ADVANCED TOPICS

3.1 Accessing Neo4j database

Orb uses Neo4j as its underlying database to store Snaplogic components. To work on new
reports, or go beyond what the user interface offers, accessing Neo4j instance is the way to
go.

Orb installation offers a separate endpoint to access Neo4j web console. Access to this
console should be shared wisely, as there is no control over permissions a user can be
assigned with. To gain this functionality, please refer to Neo4j licensing page.

Neo4j uses Cypher as its query language. It’s distant from what one may know but it’s
human readable. Cypher user reference guide may be found at

https://neo4j.com/docs/cypher-manual/current

3.2 Creating report queries

With knowledge of Cypher, access to Neo4j web console and understanding of Orb data
model, one can create new report queries to extend existing functionality. This chapter
explains basics to start with.

Cypher query language can return either node structure (with relations), or table structure.
The latter is very similar to what SQL databases got us accustomed to. Orb reports work only
with the table structure.

Let’s start with creating a simple report query that returns all groups:

match(g:Group) return g.uid as GROUP_NAME

This example shows two required parts of a Cypher query – the match part and the return
part. The match part specifies criteria for nodes and relations to search by, and the return
part extracts information to display in the report.

Let’s try another one:

match(g:Group{uid:'DEV'})-[:CONTAINS]->(c:Pipeline) return c.uid as

PIPELINE_NAME

The result would be a list of pipelines that belong to a ‘DEV’ group. We can see a relation
between a group and a pipeline. We can also see a predicate within the match part to
narrow down the result to one group only.

Something more complex:

match (g:Group)-[:CONTAINS]->(a:Account)<-[:USES]-(n)

with

 g.uid as g_id,

 a.name as a_id,

 count(n) as u_ct

where

 a_id is not null

return

 g_id as Group_Id,

https://neo4j.com/docs/cypher-manual/current/

Orb – User Guide

11

 a_id as Account,

 u_ct as Use_Count

order by

 Use_Count desc

This query returns most used accounts across the database. Pay attention to the match
section first. What we are looking for is ‘n’. Now, right below it, the with section allows to
chain transformations and subsequent match sections (here: the count of n is what we are
after). We can also see a where clause, just like in a SQL. It can be used instead of putting
predicates inside the match section. Right after the return section, order by can be applied
to sort the result.

With the power of Cypher, complex queries can be created. Examples above are only to get
the user going and progressing with Cypher in the context of report definitions in Orb.

3.3 Working with Orb API

Orb provides an API layer to allow both populating and querying the database. The API can
be tested with a swagger console available at http://{host}:{port}/swagger-ui.htm

The API is protected by an OAuth2 authentication layer. Use details below to acquire the
bearer token:

Auth URL: http://{host}:{port}/auth/realms/orb-realm/protocol/openid-connect/auth

Token URL: http://{host}:{port}/auth/realms/orb-realm/protocol/openid-connect/token

Grant type: client_credentials

API consists of four sections:

3.3.1 Browse

Browse endpoints allow to retrieve data either by specifying an identifier or executing a
report

GET /api/browse

Retrieves the list of groups and externals. Externals are not supported for Snaplogic platform
at the moment. Each group entry gives the requestor information about the id and the
number of components (Snaplogic Pipelines/Accounts/Tasks) that belong to it.

Parameter Type Required Description

No parameters

Sample response:

{

 "groups": [

Orb – User Guide

12

 {

 "id": "acme_Prod",

 "nodeId": 0,

 "componentCount": 127

 },

 {

 "id": "acme_Dev",

 "nodeId": 1450,

 "componentCount": 404

 },

 {

 "id": "analysis_task_1209",

 "nodeId": 3795,

 "componentCount": 132

 }

],

 "externals": []

}

GET /api/browse/group/{id}

Returns a list of components contained by a group identified by {id}. This mandatory path
parameter stands for an id of a database node object.

Parameter Type Required Description

id Path Y Id of a group to be retrieved

Sample response:

{

 "id": "acme_Test",

 "nodeId": 0,

 "components": [

 {

 "id": "9b74f5fc-f37d-4f7c-9997-5bc819bb73be",

 "nodeId": 1446,

 "labels": [

 "Account",

 "Binary",

 "Binarybasicauthaccount"

]

 },

 {

 "id": "8fe94976-9e1e-40d5-951d-7bab501f82f4",

 "nodeId": 1416,

 "labels": [

 "Account",

 "Sqlserverdatabaseaccount",

 "Accounts",

 "Sql"

]

 },

Orb – User Guide

13

 {

 "id": "/acme_Test/HR/Payroll/ROUTER.pipeline",

 "nodeId": 1158,

 "labels": [

 "Pipeline"

]

 },

 {

 "id": "/acme_Test/HR/Payroll/SPLITTER.pipeline",

 "nodeId": 1023,

 "labels": [

 "Pipeline"

]

 }

]

}

GET /api/browse/component/{id}

Returns an information about a component. {id} is required and represents the database
node. The response object can either represent Pipeline, Account or Task. It contains a set of
attributes, a list of labels to determine and a list of entities.

Parameter Type Required Description

id Path Y Id of a component to be retrieved

Sample response:

{

 "id": "/acme_Dev/EDI/DOC/IN_AX2012.pipeline",

 "nodeId": 5438,

 "labels": [

 "Component",

 "Pipeline"

],

 "attributes": {

 "instance_fqid": "819d73b6-32d0-47d8-a3ed-2e076f70f7db_67",

 "property_map.info.pipeline_doc_uri": "null",

 "statistics.route_count": "0",

 "class_id": "com-snaplogic-pipeline",

 "partition_snode_id": "60534f2420443c1c5e1a36ce",

 "snode_id": "608bf0335a93a616ae21e810",

 "link_serial": "136",

 "rid": "5438",

 "_id": "819d73b6-32d0-47d8-a3ed-2e076f70f7db",

 "statistics.mapping_count": "16",

 "property_map.info.purpose": "null"

 },

 "entities": [

 {

 "id": "31645150-dbbd-4671-aae3-67bc1ccdc8d3",

Orb – User Guide

14

 "nodeId": 5439,

 "name": "DST AX AIF",

 "labels": [

 "Snap",

 "Flow",

 "Pipeexec"

]

 },

 {

 "id": "6559d184-9bf6-4e83-81cd-96b9d8b16ad6",

 "nodeId": 5440,

 "name": "Union",

 "labels": [

 "Snap",

 "Flow",

 "Union"

]

 }

]

}

GET /api/browse/entity/{id}

Returns details of an entity. A response object can be either a snap, if an entity belongs to a
pipeline, or a configuration object, when contained by an account. Every entity, a part of its
attributes, contains a list of inbound and outbound relations.

Parameter Type Required Description

id Path Y Id of an entity to be retrieved

Sample response:

{

 "id": "/acme_Test/System/acme_ftp.account",

 "nodeId": 1447,

 "name": "/acme_Test/System/acme_ftp.account",

 "labels": [

 "AccountConfiguration",

 "Binary",

 "Binarybasicauthaccount"

],

 "attributes": {

 "original.parent_snode_id": "5f19729c746e5163dd2f2b44",

 "original.partition_snode_id": "5e164d3e212a7b3db0224455",

 "instance_fqid": "9b74f5fc-f37d-4f7c-9997-5bc819bb73be_2",

 "original.original.asset_id": "null",

 "original.original.time_leased": "null",

 "property_map.settings.username": "ext217",

 "class_id": "com-snaplogic-snaps-binary-binarybasicauthaccount",

 "original.original.metadata.pattern": "false",

 "class_build_tag": "main6403"

Orb – User Guide

15

 },

 "relationsIn": [

 {

 "type": "CONTAINS",

 "reference": "9b74f5fc-f37d-4f7c-9997-5bc819bb73be"

 }

],

 "relationsOut": []

}

GET /api/browse/external/{id}

Not available for Snaplogic distribution of Orb.

POST /api/browse/report/execute/{id}

Executes a report by its {id} and returns the result. Accepts several parameters to control the
output of the report.

Parameter Type Required Description

id Path Y Report identifier

parameters Body N
Json object containing key/value parameters to
filter the result of the report.

orderBy Body N
Json collection of strings representing fields to
order the result by.

limit Body N The number of results to limit the response to.

page Body N
Page number to be set when the limit is smaller
than the total number of records returned.

Sample request:

{

 "limit": 0,

 "page": 0,

 "parameters": {}

}

Sample response:

{

 "reportName": "Complexity",

 "parameters": {},

 "orderBy": null,

 "limit": 0,

 "page": 0,

Orb – User Guide

16

 "count": 393,

 "fields": [

 "Group",

 "Pipeline",

 "Complexity_Score",

 "Snaps",

 "Flow",

 "Transform",

 "Mappings",

 "Routes"

],

 "results": [

 [

 "acme_Test",

 "/amce_Test/HR/WD/HR.pipeline",

 18,

 103,

 27,

 63,

 372,

 32

],

 [

 "acme_Test",

 "/acme_Test/HR/WD/HW2.pipeline",

 18,

 102,

 27,

 62,

 367,

 32

]

]

}

POST /api/browse/report/export/{id}

Returns the report execution result in a coma separated format. Allows to filter the same
way the execution does. Doesn’t allow pagination and sorting the result.

Parameter Type Required Description

id Path Y Report identifier

parameters Body N
Json object containing key/value parameters to
filter the result of the report.

Sample request:

{

 "parameters": {}

}

Orb – User Guide

17

Sample response:

Group,Pipeline,Complexity_Score,Snaps,Flow,Transform,Mappings,Routes

acme_Test,/acme_Test/HR/WD/HR.pipeline,18,103,27,63,372,32

acme_Test,/acme_Test/HR/WD/WD2.pipeline,18,102,27,62,367,32

POST /api/browse/report/excel/{reportName}

Same as two endpoints above, but the result is an excel file.

3.3.2 Collect

Collect endpoints populate Orb database with data.

POST /api/collect/{vendor}/{product}

Creates a node structure in Orb database based on the definition send in the request body.
The content of a pipeline/task/account is sent as a file in a form/multipart request along
with necessary parameters

Parameter Type Required Description

vendor Path Y Vendor name. Use “snaplogic”.

product Path Y Product name. Use “iip”.

group Query Y Name of a group

username Query Y
Name of the user to indicate who performed the
import. This value is not validated and serves the
audit function only.

Content-Type Header Y form/multipart

Sample request: a file content as a request form part.

POST /api/collect/{vendor}/{product}/metadata

Creates a node structure in Orb database that extends a pipeline/task/account. A request
body is a set of key/value pairs to be attached to a database sub-node. This data cannot be
viewed through Orb UI.

Orb – User Guide

18

Parameter Type Required Description

vendor Path Y Vendor name. Use “snaplogic”.

product Path Y Product name. Use “iip”.

group Query Y Name of a

username Query Y
Name of the user to indicate who performed the
import. This value is not validated and serves the
audit function only.

component Query Y
Uid of a pipeline/account/task to extend with
metadata information

Sample request:

[

 {

 "key": "myNewParam",

 "value": "myNewValue"

 }

]

3.3.3 Group

Group endpoint allows requestor to register a new group

POST /api/group

Creates a group. Importing data to Orb using API does not create a non-existing group by its
own. This operation has to be executed first. It is idempotent, so doesn’t fail when executed
for an existing group.

Parameter Type Required Description

group Query Y Name of a group to be created

vendor Query Y Vendor name. Use “Snaplogic”.

product Query Y Product name. Use “IIP”.

username Query Y
Name of the user to indicate who performed the
import. This value is not validated and serves the
audit function only.

Orb – User Guide

19

3.3.4 Inventory

Inventory endpoints expose management of all Orb data, that is not a graph representation
of Snaplogic definitions.

GET /api/inventory/audit

Retrieves a collection of audit entries. Each entry represents an operation performed on
either a pipeline, account, or a task.

Parameter Type Required Description

No parameters

Sample response:

{

 "entries": [

 {

 "entryId": 1,

 "username": "abuksztaler@sii.pl",

 "dttm": "2021-05-12T11:41:12.044654",

 "group": "acme_Dev",

 "component": "5d9ce4d62c06b765a59b1771.slp",

 "action": "ADD",

 "entryType": null,

 "attributes": null

 },

 {

 "entryId": 2,

 "username": "abuksztaler@sii.pl",

 "dttm": "2021-05-12T11:41:12.015754",

 "group": "acme_Dev",

 "component": "5e2aae4a3aa2eb1a30fcfe71.sla",

 "action": "ADD",

 "entryType": null,

 "attributes": null

 }

]

}

POST /api/inventory/audit

Creates new audit entry.

Parameter Type Required Description

Orb – User Guide

20

No parameters

Sample request

{

 "username": "abuksztaler@sii.pl",

 "group": "acme_Dev",

 "component": "5e2aae4a3aa2eb1a30fcfe71.sla",

 "action": "ADD",

}

GET /api/inventory/audit/{filter}

Retrieves a collection of audit entries based on a {filter}. The filter is a phrase to search for in
username and audit entry attributes.

Parameter Type Required Description

Filter Path Y Phrase to search for in audit entry attributes.

 Sample response:

{

 "entries": [

 {

 "entryId": 1,

 "username": "abuksztaler@sii.pl",

 "dttm": "2021-05-12T11:41:12.044654",

 "group": "acme_Dev",

 "component": "5d9ce4d62c06b765a59b1771.slp",

 "action": "ADD",

 "entryType": null,

 "attributes": null

 },

 {

 "entryId": 2,

 "username": "abuksztaler@sii.pl",

 "dttm": "2021-05-12T11:41:12.015754",

 "group": "acme_Dev",

 "component": "5e2aae4a3aa2eb1a30fcfe71.sla",

 "action": "ADD",

 "entryType": null,

 "attributes": null

 }

]

}

PUT /api/inventory/audit/{id}

Modifies an audit entry identified by {id}.

Orb – User Guide

21

Parameter Type Required Description

Id Path Y Audit entry unique identifier

DELETE /api/inventory/audit/{id}

Deletes audit entry identified by {id}

Parameter Type Required Description

Id Path Y Audit entry unique identifier

GET /api/inventory/reportgroups

Retrieves a collection of report groups.

Parameter Type Required Description

No parameters

Sample response:

{

 "reportGroups": [

 {

 "id": 1,

 "name": "General",

 "description": "General report group ",

 "editable": false,

 "createdDate": "2021-05-10T08:21:43.722076",

 "modifiedDate": "2021-05-10T08:21:43.722076",

 "createdBy": "SYSTEM",

 "modifiedBy": "SYSTEM",

 "fullName": "General / General report group "

 },

 {

 "id": 2,

 "name": "Snaplogic",

 "description": "SnapLogic generic reports",

 "editable": true,

 "createdDate": "2021-05-10T08:26:52.727011",

 "modifiedDate": "2021-05-10T08:26:52.727011",

 "createdBy": null,

 "modifiedBy": null,

 "fullName": "Snaplogic / SnapLogic generic reports"

 }

]

Orb – User Guide

22

}

POST /api/inventory/reportgroups

Creates a new report group.

Parameter Type Required Description

No parameters

Sample request:

 {

 "name": "My group",

 "description": "My report group"

 }

DELETE /api/inventory/reportgroups/{id}

Removes a report group identified by {id}

Parameter Type Required Description

Id Path Y Report group unique identifier

PUT /api/inventory/reportgroups/{id}

Modifies a report group identified by {id}

Parameter Type Required Description

Id Path Y Report group unique identifier

Sample request:

{

 "name": "My changed group",

 "description": "My changed report group"

 }

Orb – User Guide

23

GET /api/inventory/reports

Retrieves a collection of reports

Parameter Type Required Description

No parameters

Sample response:

{

 "reports": [

 {

 "id": 52,

 "name": "Complexity",

 "description": "Complexity report for SnapLogic pipelines",

 "query": "match (g:Group)-[:CONTAINS]->(p:Pipeline)-

[:CONTAINS]->(sn:Snap) with g,p,count(sn) as s optional match (p)-

[:CONTAINS]->(sn:Snap:Flow) with g,p,s,count(sn) as s1 optional match (p)-

[:CONTAINS]->(sn:Snap:Transform) with g,p,s,s1,count(sn) as s2,

toInteger(coalesce(p.`statistics.mapping_count`, '0')) as mc,

toInteger(coalesce(p.`statistics.route_count`, '0')) as rc return g.uid

as Group, p.uid as Pipeline, ((s*100)+(mc*20)+(rc*20))/1000 as

Complexity_Score, s as Snaps, s1 as Flow, s2 as Transform, mc as

Mappings, rc as Routes order by Snaps desc",

 "parameters": "",

 "group": {

 "id": 2,

 "name": "Snaplogic",

 "description": "SnapLogic generic reports",

 "editable": true,

 "createdDate": "2021-05-10T08:26:52.727011",

 "modifiedDate": "2021-05-10T08:26:52.727011",

 "createdBy": null,

 "modifiedBy": null,

 "fullName": "Snaplogic / SnapLogic generic reports"

 },

 "createdDate": "2021-05-10T08:28:15.077095",

 "modifiedDate": "2021-05-10T08:35:58.671764",

 "createdBy": null,

 "modifiedBy": null

 }

]

}

POST /api/inventory/reports

Creates a new report definition.

Parameter Type Required Description

No parameters

Sample request:

Orb – User Guide

24

{

 "name": "Complexity",

 "description": "Report for SnapLogic pipelines",

 "query": "match (n:Entity) return n.uid",

 "parameters": "",

 "groupName": "MyGroup"

}

DELETE /api/inventory/reports/{id}

Removes a report definition identified by {id}

Parameter Type Required Description

Id Path Y Report definition unique identifier

PUT /api/inventory/reports/{id}

Updates a report definition identified by {id}

Parameter Type Required Description

Id Path Y Report definition unique identifier

Sample request:

{

 "description": "Report for SnapLogic pipelines",

 "query": "match (n:Entity) return n.uid",

 "parameters": "",

 "groupName": "MyGroup"

}

GET /api/inventory/reports/{name}

Retrieves a report definition by {name}

Parameter Type Required Description

Name Path Y Report definition name

Sample response:

{

Orb – User Guide

25

 "id": 54,

 "name": "Most used pipelines",

 "description": "",

 "query": "match (g:Group)-[:CONTAINS]->(p:Pipeline)<-[:USES]-(n) with

g.uid as g_id, p.name as p_id, count(n) as u_ct return g_id as Group_Id,

p_id as Pipeline, u_ct as Use_Count order by Use_Count desc",

 "parameters": "",

 "groupName": "Snaplogic",

 "createdDate": "2021-05-10T08:36:48.345572",

 "modifiedDate": "2021-05-10T08:45:37.464541",

 "createdBy": null,

 "modifiedBy": null

}

GET /api/inventory/users

Returns a list users defined in Orb.

Parameter Type Required Description

No parameters

Sample response:

{

 "users": [

 {

 "id": "fe358034-a718-4e42-b10a-df2ead0769cf",

 "username": "adam_b",

 "firstName": "Adam",

 "lastName": "Buksztaler",

 "enabled": false,

 "emailVerified": true,

 "email": "abuksztaler@sii.com",

 "roles": [

 "orb-user",

 "orb-superuser"

],

 "createdDate": "2020-11-11T08:19:49.69"

 },

 {

 "id": "58bf4653-fcd1-4cd0-a23a-046eb3365e80",

 "username": "default_admin",

 "firstName": "Default",

 "lastName": "Admin",

 "enabled": true,

 "emailVerified": true,

 "email": "orb@sii.pl",

 "roles": [

 "orb-admin"

],

 "createdDate": "2020-11-08T20:08:56.094"

 }

]

}

Orb – User Guide

26

GET /api/inventory/users/{username}

Returns a user identified by {username}

Parameter Type Required Description

Username Path Y Username

Sample response:

{

 "userId": "58bf4653-fcd1-4cd0-a23a-046eb3365e80",

 "username": "default_admin",

 "firstName": "Default",

 "lastName": "Admin",

 "email": "orb@sii.pl",

 "enabled": true,

 "emailVerified": true,

 "roles": [

 "orb-admin"

],

 "createdDate": "2020-11-08T20:08:56.094"

}

