

QIP-ADMET

AI-Powered ADMET Predictor

Whitepaper

Paper

Trv It Now

Demo Request

Accelerate Your Drug Discovery with Accurate QIP-ADMET

Experience how our Quantum-Informed Pretrained ADMET prediction models facilitate drug discovery with unparalleled accuracy and robustness. QIP-ADMET is trained on extensive datasets, including experimental data, in silico quantum mechanical (QM) data, and molecular descriptors, ensuring reliable performance and comprehensive ADMET insights.

QIP-ADMET: Standigm's AI-Powered ADMET Predictor

Harness the power of advanced AI to push the boundaries of pharmaceutical development and make data-driven decisions with confidence.

QIP-ADMET Key Features

Exceptional Accuracy

Rigorously validated with AUROC, AUPRC, and MAE metrics from the TDC ADMET dataset to ensure reliable performance.

Comprehensive ADMET Insights

Benefit from a wide range of predicted ADMET properties to guide your molecular optimization decisions.

Advanced Molecular Understanding

Leverage pre-training and shared representation framework to enrich molecular feature representations, providing deeper insights and overcoming the challenge of overfitting.

Visual Explorations

Easily visualize how changes in molecular fragments affect prediction scores with our intuitive, color-coded explanations.

Accurate ADMET Prediction with QIP-ADMET

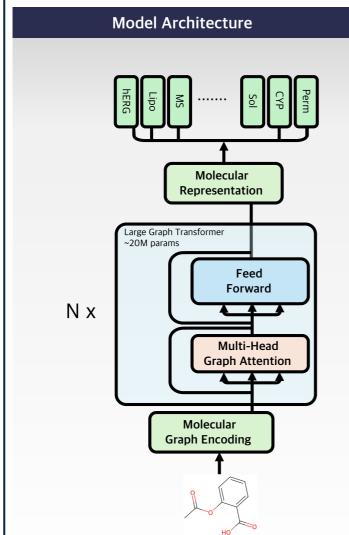
Predictable ADMET Properties by QIP-ADMET

Absorption	BBB, logBB, Bioavailability, P-gp inhibition, P-gp substrate, Lipophilicity, Caco-2 permeability, water solubility, PBS kinetic solubility				
Distribution	VDss (human), Microsomal clearance (human, mouse, rat), Hepatic clearance (human, rat), Protein plasma binding rate (human)				
Metabolism	CYP substrate and inhibition (1A2, 2B6, 2C19, 2C8, 2C9, 2D6, 3A4)				
Excretion	Liver microsomal stability (human, mouse, rat), Plasma stability (human)				
Toxicity	DILI, Ames mutagenicity, Carcinogenicity (mouse, rat), Self-aggregation, hERG inhibition, Acute toxicity LD50				

Try It Now

Back to Top

Demo Request


Benchmark Comparisons

Benchmark comparisons with other commercial softwares (Predictor A, B, and C)

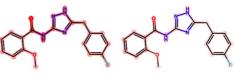
Experiment	Metric	Predictor A		Predictor B		Predictor C	Standigm QIP-ADMET
hERG inhibition	AUROC	Probability	hERG IC50	hERG pIC50		hERG	hERG
		0.636	0.721	0.645		0.605	0.733
Human microsomal stability	AUROC	Metabolic Stability		metabolism			MS-human
		0.538		0.528			0.740
Mouse microsomal stability	AUROC						MS-mouse
Mouse filicrosoffial stability							0.814
Permeability (Caco-2)	AUROC	Caco-2 w/ logP	Caco-2 w/ logD	Caco-2	MDCK	Caco-2	Permeability
		0.636	0.639	0.585	0.570	0.679	0.632
PBS kinetic solubility	AUROC	Solubility		PlogS	ClogS		Solubility-PBS
		0.814		0.703	0.767		0.890
Lipophilicity (logP)	MAE	logP					Lipophilicity
		0.524					0.356
CYP inhibition							
1A2	AUROC	0.772					0.855
2C9	AUROC	0.638					0.779
2C19	AUROC	0.663					0.781
2D6	AUROC	0.671					0.782
3A4	AUROC	0.700					0.842

Benchmark data are from PubChem/ChEMBL (CYP), Astrazeneca (Liphophilicity) and our in-house stocks (others)

QIP-ADMET Model Details

Leveraging a transformer-based algorithm, our model significantly improves the representation of molecular structures.

Model Training


Pre-training using QM-data(~80M), chemical features (~1B), and other molecular descriptors

Multitask learning

Finetuning

Pretraining establishes a solid foundation, multitask learning expands versatility across diverse tasks, and finetuning sharpens specificity.

Enhancing Interpretation

Property A

Property B

Property C

Property D

Enhancing interpretability in ADMET predictions by distinguishing between potentially improvable fragments (red) and degradable fragments (blue). This color-guided approach inspires chemists' intuition

Try It Now

Back to Top

Demo Request