

1. Use Cases and Scenarios

This service is designed to support a wide range of enterprise scenarios where seamless Layer 2 connectivity is required between non-VMware environments and Azure VMware Solution (AVS). Key use cases include:

• Workload Migration

Extend L2 networks to AVS to simplify VM migration without re-IP, ensuring application continuity across platforms.

• Hybrid Application Deployment

Maintain consistent network policies and security controls across on-premises and cloud workloads, enabling true hybrid operations.

• Disaster Recovery and Business Continuity

Use AVS as a secondary site for workloads running in non-VMware environments, replicating traffic over the extended L2 network.

• Cloud Bursting for Legacy Platforms

Extend compute capacity into AVS when local environments (e.g., Hyper-V, bare metal) reach limitations, without requiring major refactoring.

• Testing and Dev Environments

Mirror existing VLANs in AVS for dev/test environments that need to simulate production connectivity.

• Multi-tenant Network Isolation

Assign each user or tenant a dedicated VLAN, leveraging the one-user-per-network model to ensure strict network segmentation.

2. Architecture Overview

The architecture for this service includes the following logical components:

• Source Environment

Non-VMware infrastructure such as physical servers, Hyper-V, KVM, or legacy virtualization platforms.

• L2 Extension Gateway

A physical or virtual appliance placed at the edge of the source environment to encapsulate Layer 2 traffic using technologies like VXLAN, L2TPv3, or SD-WAN tunnels.

• Secure Tunnel (L2 over L3)

The Layer 2 traffic is tunneled securely over Layer 3 (IP-based) transport to Azure, leveraging encrypted VPN tunnels or private ExpressRoute connectivity.

• AVS Private Cloud

The Azure VMware Solution environment receives and bridges the extended VLANs through a designated NSX-T segment that matches the incoming encapsulated traffic.

• Network Segmentation Control

Each VLAN is isolated, adhering to the "one user = one network" policy, allowing scalable multi-user support.

3. Supported Environments

This service is compatible with a wide variety of infrastructure types. Supported source environments include:

- Microsoft Hyper-V
 - On-premises Hyper-V clusters or standalone hosts.
- KVM-based Platforms
 - Including Proxmox VE, OpenStack KVM, Red Hat Virtualization (RHV), and similar.
- Physical Servers / Bare Metal
 - Any x86 or ARM-based hardware with bridged network access.
- Mainstream Operating Systems
 - Linux distributions (RHEL, Ubuntu, CentOS, SUSE), Windows Server (2012+), and BSD variants.
- Legacy Systems
 - Older, non-virtualized platforms can be supported via custom L2 encapsulation appliances.
- Edge Devices and Firewalls
 - Compatibility with SD-WAN appliances, Layer 2 VPN devices, or specialized L2 gateways.

The only requirement is IP connectivity between the source environment and Azure, either through VPN or ExpressRoute. NSX-T support in AVS is used to terminate and manage the extended VLANs on the cloud side.