

AIの画像分類・認識技術を活用した良否判定を 低コスト、短期間で実装!

~ エッジAI検査・インテグレーションサービス「TAiVIS」のご紹介~

東京エレクトロン デバイス株式会社 クラウドIoTカンパニー エンベデッドソリューション部

検査現場の抱える問題点

AIで何が出来る のだろうか? 働き方改革とか 言われても・・・ どれ程度の費用を 想定すれば いいだろうか?

ベテラン検査員、 来年定年だなぁ THE STATE OF THE PARTY OF THE P

既に検査装置を導 入しているけど更な る精度向上は 可能?

何から始めればい いのやら? データサイエンティ ストなんか在籍し ていない・・・

認識精度は?

Copyright © Tokyo Electron Device LTD. All Rights Reserved.

AI検査の得意分野はなにか?どんなメリットがあるか?

課題	目視検査
導入コスト	-
個体差のある対象物の判別	0
官能検査	0
他品種展開	-
継続的な精度向上	
位置のバラつき	0
多品種同時検査	×
検査品質の安定性	×
トレーサビリティ	×
認識精度	
均一な対象物の判別	0

マシンビジョン	A1 画像検査
×	
×	
×	
×	
×	
	0
	0
0	0
0	0
0	0
0	0

AIを活用すれば検査における様々な課題を解決できます!

「TAIVIS」の3つの特徴

特徴

エッジAI検査に必要 な機能をプラットフォー ム化

エッジアプリケーションの柔軟なセミカスタム対応

特徴

特許出願済み

「複数の対象物」を「並列」に判定処理

【特徴 : エッジAI検査に必要な機能をプラットフォーム化】

学習用画像の準備からエッジ実装まで、エッジAI検査に必要な機能をプラットフォームでご提供。

【特徴 : 検査シナリオに即したエッジアプリケーションの柔軟なセミカスタム対応】

セミカスタムに対応したアプリケーションにより、トライアルから本番導入までをスムーズに対応。

【特徵:TAiVIS独自技術(特許出願中)】

AIアクセラレータを活用する事により「複数の対象物」を「並列」に判定処理する事が可能。 これにより推論処理部分のコストを大幅に削減し低価格を実現。

TAIVIS: AI学習モデルの開発ステップ

データ収集

データ前処理

→ クラウド学習 (Azureサービス)

精度評価

 \rightarrow

実装

画像データ収集・前処理

学習用素材を作成

【データ収集】【前処理】

- ・画像取得・画像切り出し
- ・カメラ調整・画像水増し処理
 - ・前処理フィルター

学習モデル作成

クラウドで学習モデルを生成

【作業内容】

- ・画像アップロード
- ・タグ付け作業

学習モデル評価

学習モデルの精度検証

>

【検証内容】

・認識精度の検証

エッジへの実装

Intel® OpenVINO™

【効果】

- ・インテルCPUの最適化による 推論パフォーマンス向上
- ·ヘテロジニアスな環境のサポート(CPU/GPU/FPGA/ASSP)

TAIVIS 検査シナリオに即したエッジアプリケーション例

Copyright © Tokyo Electron Device LTD. All Rights Reserved.

TAiVIS独自技術活用で課題を解決/導入ケース1

Copyright © Tokyo Electron Device LTD. All Rights Reserved.

TAiVIS独自技術活用で課題を解決/導入ケース2

Copyright © Tokyo Electron Device LTD. All Rights Reserved.

TAiVISシステム構成 ~ クラウド環境とエッジ実装 ~

Copyright © Tokyo Electron Device LTD. All Rights Reserved.

目視検査を行っている

位置決めがシビア

自社製品に AI付加価値をのせたい

画像処理外観検査では 判定出来ない

複数製品を 同時に検査したい

とにかく試してみたい

東京エレクトロンデバイスへご相談下さい