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Relational data modeling can often be restrictive as it provides no direct facility for modeling polymorphic types,
reified relations, multi-valued attributes, and other common high-level structures in data. This creates many
challenges in data modeling and engineering tasks, and has led to the rise of more flexible NoSQL databases,
such as graph and document databases. In the absence of structured schemas, however, we can neither express
nor validate the intention of data models, making long-term maintenance of databases substantially more
difficult. To resolve this dilemma, we argue that, parallel to the role of classical predicate logic for relational
algebra, contemporary foundations of mathematics rooted in type theory can guide us in the development of
powerful new high-level data models and query languages. To this end, we introduce a new polymorphic
entity-relation-attribute (PERA) data model, grounded in type-theoretic principles and accessible through
classical conceptual modeling, with a near-natural query language: TypeQL.We illustrate the syntax of TypeQL
as well as its denotation in the Pera model, formalize our model as an algebraic theory with dependent types,
and describe its stratified semantics.
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INTRODUCTION

Classical foundations of mathematics rely on truth-valued propositions to express relationships
between objects. This perspective influenced many early developments in computer science includ-
ing logic programming [12, 37] and relational databases [13], which encode data in “true facts”,
such as the proposition Marriage(𝑝1, 𝑝2) that ‘persons 𝑝1 and 𝑝2 are married’.
Modern practical mathematical foundations [14, 53] emphasize proof construction over truth

values, captured by the pivotal propositions-as-types paradigm [55]. From this perspective, all
propositions are types with terms representing how a proposition is satisfied: for example, a term
𝑚 in the type Marriage(𝑝1, 𝑝2) may represent a past marriage event𝑚 between 𝑝1 and 𝑝2. Note
that we may now have zero, one, or multiple such marriage events between the same 𝑝1, 𝑝2. This
seemingly minor change has drastic implications, as it allows for terms to be referenced by other
terms or types, thus leading to a compositional theory of structured data and proof: for example, we
may now consider the type WitnessName(𝑚) of ‘names of witnesses at the marriage𝑚’, making
explicit reference to a specific marriage𝑚. Note, replacing𝑚 with a placeholder variable 𝑥 , we also
obtain the type-theoretic analogue of a predicate (i.e., a “proposition with variables”): the resulting
type WitnessName(𝑥) with variable 𝑥 is an example of a so-called dependent type.
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110:2 Christoph Dorn & Haikal Pribadi

Table 1. Type-theoretic view on conceptual modeling

Conceptual modeling Type Theory

entity type

(e.g., type of “persons 𝑝”)

type without dependencies,
containing objects

(e.g., 𝑝 : Person)
relation type

(e.g., type of “marriages
𝑚 between 𝑝1 and 𝑝2”)

type with dependencies,
containing objects

(e.g.,𝑚 : Marriage(𝑝1, 𝑝2))
attribute type

(e.g., type of “witness names
𝑛 of marriages𝑚”)

type with dependencies,
containing values

(e.g., 𝑛 : WitnessName(𝑚) )

Mathematical foundations based on dependent type theory (DTT) have been highly successfully
applied [15, 29, 45, 50], with recent applications also to database theory [9, 10, 20, 51]. However, DTT
has arguably found little application in practice, with its perceived abstractness remaining a contin-
ued obstruction to its adoption. A core innovation of the present work is to marry type-theoretic
ideas with well-established intuitive notions of conceptual data models. The underlying corre-
spondence is illustrated in Table 1, which compares notions from entity-relation-attribute (ERA)
modeling [18, §3] to their type-theoretic counterparts. Note that the table makes a practice-oriented
distinction between objects, i.e., terms that are stored using unique but arbitrary object identifiers
(OIDs), and values, i.e., terms that are stored in a meaningful pre-defined format representing
elements from a specific mathematical domain (such as booleans, integers, strings).
Based on the correspondence in Table 1, our work introduces a new query language, TypeQL,

which builds on types in lieu of propositions. Namely, we understand (composite, dependent) types
themselves as data retrieval queries: types declaratively describe the collection of data that is to be

retrieved. This type-theoretic approach enables several important features of TypeQL:
• Queries in TypeQL can be parametric in that they can contain type variables, i.e., variables in
types of types. This allows queries to adapt to changes in the user-specified type schema.

• Type schemas can express type polymorphism: this includes, firstly, type inheritance polymor-
phism (types may inherit the specification of a single parent type) and, secondly, type interface
polymorphism (types may implement multiple interface types, on which other types depend).

• The type system of TypeQL can further be extended with user-specified inference rules that
enable rule-based reasoning in analogy to classical logic programming.1

Contributions and goals. In this paper we introduce a simple, but high-level, new data model,
called the polymorphic entity-relation-attribute (Pera) model, and formalize it as a type system.
In parallel, we introduce a practical type-theoretic query language, TypeQL. We describe the
denotational semantics of TypeQL in the Pera model and exhibit a computable class of queries
for the model following the ‘queries as types’ paradigm. Importantly, TypeQL’s intuitive near-
natural syntax makes our model a practical and accessible choice for real-world applications.
Concretely, with the development of TypeQL, we aim to address three key needs of modern
database engineering:

1 While we adopt the classical perspective of logic programming here, there is also purely type-theoretic perspective on such
rules: namely, one can envision them themselves as dependent types or, rather, as dependent subtypes (just as proposition
𝜙 are subtypes of the unit type 1). We refer to [17] for a more detailed discussion of this generalization of rules.
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(1) Direct and intuitive modeling of diverse data. Our polymorphic conceptual approach seamlessly
subsumes existing database paradigms, including relational, graph, and document databases (see
Remark 2.2). We posit that this makes TypeQL a powerful tool for addressing several common
integration tasks and interoperability issues [31, 32, 41, 42].

(2) Schema extensibility and composability. Type-theoretic querying and type inference allow queries
to be written in generic form using type variables, which makes them robust to changes in the
underlying schema by dynamically inferring types from the query’s context.

(3) Semantic integrity of complex data. An expressive type system provides effective protection
against unintentional mistakes, improving long-term maintainability of database applications.
Type-theoretic rule-based reasoning provides a further powerful way to keep data in-sync and
consistent.

A central goal of our paper is to describe the basic theoretical foundations for the Pera model,
enabling future investigations into the complexity and optimization of TypeQL queries. Note, the
query language TypeQL is being actively developed and implemented as part of the open source
DBMS TypeDB [1]. The intuitiveness and expressivity of TypeQL has resonated with a world-wide
userbase, but no formal theory for its approach has so far been proposed—in this paper, we will
describe such a theory. We remark that our paper will work with a mathematically idealized core
fragment of TypeQL, which we hope can guide future development of the language.

Related work. Conceptual (or semantic) data models [19, 43], such as Chen’s ER model [7]
and its extensions [54], provide intuitive and expressive representations of domains, but are often
less practical to directly formalize and implement, cf. [27]. Object-oriented databases are practice-
oriented with native support for inheritance [4, 33, 38, 40] but add substantial complexity, which
has hampered their scalability and adoption [2, 34–36]. Our approach differs from this by instead
building on a set of simple type-theoretic primitives, including type dependency and subtyping.
Deductive databases [48] combine logic programs and databases, with Datalog [2, §12] [30] being the
prominent example. We will adapt several ideas from logic programming to define interpretations
of queries, turning type-theoretic derivations into logic program rules, and using negation-as-
failure [11] and stratifications [3, 23, 46]. Formal semantics are generally recognized as a crucial
step in database language design [28], as they provide correctness guarantees for query planning
and optimization algorithms. Recent work includes formalizations of, e.g., graph models, both
semi-structured [21, 49] and structured [52], RDF models [47], and document models [5]. Our
formalization follows a type-theoretic approach, using ‘algebraic theories with dependent types’
[6] in place of the more traditional multi-sorted algebraic theories.

Preliminaries. We generally focus on outlining key intuitions rather than providing a compre-
hensive formal discussion. For most technical details, we refer the reader to [17].
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1 TYPE THEORY FOR THEWORKING DATABASE THEORIST

Type-theoretic thinking has inspired the design of many practical high-level programming lan-
guages. To quote from Harper [29]:
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Types are the central organizing principle of the theory of programming languages. Language

features are manifestations of type structure. The syntax of a language is governed by

the constructs that define its types, and its semantics is determined by the interactions

among those constructs. The soundness of a language design—the absence of ill-defined

programs—follows naturally.

Type-theoretic syntax is often a close reflection of the semantics of a given application domain. In its
purest theoretical form, this is the domain of mathematical foundations, which led to the inception
of dependent type theory. For our purpose of designing a simple, and yet expressive, type-theoretic
data model, we will borrow several ideas from DTT—this includes, in particular, dependent types
themselves. In this section, we provide an introduction to these ideas and the design choices for
the Pera type system. For details on DTT we refer the reader to existing excellent introductions
[8, 26, 39, 45].

1.1 Type-theoretic systems. The notion of a ‘type system’ is often used in a rather broad sense.
In this paper, we will use it in the sense of type-theoretic systems, meaning systems of inference
rules that allow us to construct a (typed) language. We begin by giving a brief overview of the key
syntactic components of such languages.
A type, like a set, can be thought of as a formal collection of elements, also called terms. If a

term 𝑡 is contained in a type 𝑇 , we express this using the typing judgment 𝑡 :𝑇 . In fact, in DTT,
types, too, are terms of a type called a type universe (or a type of types). We denote this type by the
special symbol Type: the typing judgment 𝑇 : Type should thus be read as ‘𝑇 is a type, i.e., a term
in the type of types’. While universes are often themselves terms in yet larger universes, we will
not require this: to emphasize the resulting two-level hierarchy, we call Type a meta-type.

Example 1.1 (Types and terms). Type systems commonly include types such as the unit type 1,
the type of booleans B, and a type of natural numbers N. Each type 𝑇 will come with a notion of
well-formed terms 𝑡 (i.e., the typings 𝑡 :𝑇 constructible in the type system). For example, N could
have terms that are number constants such as 11 : N, or arithmetic expressions such as 4 + 7 : N.

Type systems not only record types and their terms but also describe constructs of types and
terms. Such constructs allow us to construct new terms or types from old ones. For example, given
two terms 4 and 7 of N, our type system may allow us to construct the term 4 + 7 : N.

A common construct is the tuple construct which operates on both types and terms. On types, it
constructs, given two types 𝑇 and 𝑆 , a new type 𝑇 × 𝑆 . On terms, we can input existing terms 𝑡 :𝑇
and 𝑠 : 𝑆 and construct a term (𝑡, 𝑠) :𝑇 × 𝑆—this directly models how we expect tuples to work.
The Pera type system will comprise two closely related constructs: ordered 𝑇 -sets, i.e., non-

repeating 𝑇 -lists 𝑙 = [𝑡1, ..., 𝑡𝑘 ] whose elements are terms 𝑡𝑖 all belonging to the same type 𝑇 , and
typed bags, i.e., multisets 𝑢 = {𝑡1›𝑇1, 𝑡2›𝑇2, ...} whose elements are terms 𝑡𝑖 annotated with their
individual types 𝑇𝑖 (note: we use the symbol ‘›’ to avoid confusion when typing the bag 𝑢 : 𝑃 itself).
Such annotations become necessary since the same term may live in multiple types and since we
work with bags up to reordering: e.g., we consider {𝑡›𝑇, 𝑡›𝑇 ′, 𝑠›𝑆} identical to {𝑡›𝑇 ′, 𝑠›𝑆, 𝑡›𝑇 }.

Besides tuples, a second common construct concerns functions between types. Roughly, given a
function 𝑓 :𝑇 → 𝑆 between types 𝑇 and 𝑆 and a term 𝑡 :𝑇 , we can construct a term 𝑓 (𝑡) : 𝑆 . While
functions play a key role in programming languages, their role for database languages is naturally
more limited. This is because, functions are expensive to search. The Pera type system, therefore,
limits the usage of functions to three simple, but fundamental, cases: projections, subtypes, and
(first-order) dependent types. We detail these below.
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(1) Projections. Given an ordered set 𝑙 = [𝑡1, ..., 𝑡𝑘 ], our type system will allow projecting to its 𝑖th
element, written 𝑙 (𝑖) = 𝑡𝑖 . We remark that bags, in contrast to ordered sets, are unordered, which
makes defining projections trickier. Nonetheless, we will later see how so-called ‘canonical
projections’ are applicable to bags in special cases.

(2) Subtypes. Subtypes are usually captured simply as special functions, namely, the injective ones.
In the absence of a general notion of functions 𝑇 → 𝑆 , the TypeQL type system resorts to a
direct axiomatization of subsumptive subtyping [44, §15.1]: this means that, when𝑇 is a subtype
of 𝑆 , written 𝑇 ≤: 𝑆 , then, for any typed term 𝑡 :𝑇 , we may construct the typed term 𝑡 : 𝑆 (in
functional terms, we may think of this as the image inj(𝑡) : 𝑆 of 𝑡 under a function inj : 𝑇 → 𝑆).

(3) Dependent types. Consider a type 𝑇 and a function 𝐹 from 𝑇 to our meta-type Type. As before,
we can now construct, for each term 𝑡 :𝑇 , a term 𝐹 (𝑡) : Type. But Type is the type of types, so
𝐹 (𝑡) is, in fact, a type which may have terms itself. In the Pera type system, we work with
dependent types not via functions 𝐹 : 𝑇 → Type but (as common in DTT) using so-called
hypothetical typing judgments 𝑥 :𝑇 ⊢ 𝐹 (𝑥) : Type, which we discuss in the next section.

Example 1.2 (Dependent types). For any number 𝑛 in the natural number type N, we could
define the type Factor(𝑛) : Type to contain all factors of 𝑛—this makes Factor an example of a
dependent type. Of course, for our practical database, real-world modeling examples are more
relevant. Consider the following: for any person 𝑝 : Person, we could define a type Name(𝑝)
collecting all names of 𝑝 (of which there could be zero or more)—the Pera type system will
precisely allow us to make such definitions.

Intuitively, while types may be thought of as sets, dependent types may be thought of as indexed
families of sets. In fact, we sometimes speak of a type family to mean a dependent type with a
single ‘index’ dependency (such as Factor(𝑛), which depends on the index 𝑛).

Remark 1.1. Whenworkingwith general types𝑇 , note that the symbol𝑇 may represent a dependent
type (e.g., Factor(𝑥)). The result of substituting all occurrences of a term 𝑥 by another term 𝑠 in 𝑇
will be abstractly denoted by 𝑇 [𝑠/𝑥] (e.g., when 𝑇 is Factor(𝑥), then 𝑇 [6/𝑥] is Factor(6)).

1.2 Inference rules. So far, we have described types, terms and their constructs in natural
language. Formally, a type system is captured by a system of so-called inference rules (IRs). Inference
rules allow us to iteratively generate new statements, also called judgments, for the language defined
by our type system. Generally, an IR will be of the following form

J1 J2 ... J𝑘

J RuleName

This IR states that the judgment J can be derived from the judgments J1,J2, ...,J𝑘 by the rule
RuleName. In our later formal presentation of the Pera model, we use in-line notation for IRs,
writing the above as ⟨J1, J2, ..., J𝑘 ⇒ J ⟩, and we usually leave IRs unnamed. We remark that IRs
are often given schematically, containing variabilized expressions (‘meta-variables’) that can be
substituted. The following example illustrates this.

Example 1.3 (Inference rules). Consider the IR ⟨𝑇 :Type, 𝑆 :Type ⇒ 𝑇 ×𝑆 :Type⟩. This entails
that the type𝑇 × 𝑆 is well-formed (i.e.,𝑇 × 𝑆 : Type is derivable) as long as, individually,𝑇 and 𝑆 are
well-formed. For example, assume our type system guarantees that the type N :Type is well-formed.
Substituting N for both 𝑆 and 𝑇 in our IR, we derive that N × N, too, is well-formed.

Importantly, an IR can also have no hypotheses, in which case we speak of an axiom and write
⟨J ⟩. We say a conclusion J is specified to mean it is derivable from an axiom.
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1.3 Hypothetical judgments and contexts. Most type systems incorporate variables directly
into their syntax in order to express functional dependencies. This is achieved by specialized judg-
ments J , called hypothetical judgments, which are of the form Γ ⊢ I, comprising two ingredients:
(1) Γ is a context, i.e., a list of typed variables 𝑥1 :𝑇1, ..., 𝑥𝑛 :𝑇𝑛 .
(2) I is some (non-hypothetical) judgment which may reference the variables specified in Γ.
A judgment J of the form Γ ⊢ I should be read as ‘assuming Γ, we know I’.

Example 1.4 (Hypothetical judgments). The judgment 𝑥 : N ⊢ Factor(𝑥) : Type expresses a
dependency of the RHS of ‘⊢’ (the judgement that Factor(𝑥) is a type) on the variable 𝑥 specified to
be of type N in the context shown on the LHS of ‘⊢’.

In order to describe well-formed typings and contexts in parallel, two basic kinds of judgments are
commonly found in type systems. We adopt these in hypothetical form for our system as follows:
(1) Typing judgment. The judgment Γ ⊢ 𝑡 :𝑇 states that ‘𝑡 :𝑇 is a valid typing assuming the typed

variables from Γ’ (note: in general, both 𝑡 and 𝑇 may contain variables from Γ).
(2) Context judgment. The judgment Γ ⊢ Δ Ctx states that ‘Δ is a valid context assuming the typed

variables from Γ’ (note: types in Δ may contain variables from Γ).

Example 1.5 (Contexts). The context Δ =
(
𝑥 :N, 𝑦 :N, 𝑛 : Factor(𝑥),𝑚 : Factor(𝑦), 𝑝 : (𝑛 =N 𝑚)

)
assumes, in words, two number variables 𝑥 and 𝑦 that share a common factor (note: 𝑝 is a term
of the equality proposition 𝑛 =N 𝑚—we discuss how to interpret propositions as types in the next
section). In reasonable type systems, this context will be well-formed (i.e., the context judgment
• ⊢ Δ Ctx is derivable, where • denotes the empty context). Observe that variables may appear in
types only after being introduced (e.g., 𝑥 appears in Factor(𝑥) after being typed as 𝑥 : N).

We emphasize that, in the Pera type system, all judgments in IRs will fall into one of the above
two cases. Moreover, in most IRs, the context Γ in such judgments will be a meta-variable that is to
be replaced by an actual well-formed context. Since IRs of the form ⟨Γ ⊢ I1, ..., Γ ⊢ I𝑘 ⇒ Γ ⊢ I0⟩
with all judgments using the same variabilized context Γ occur frequently, we simply write them as
⟨I1, ..., I𝑘 ⇒ I0⟩ instead. We remark that the notation is unambiguous: it is the only case of IRs in
which non-hypothetical judgments are used.

Notation 1.1. We use vector notation ®𝑎 to denote finite, potentially empty, lists 𝑎1, ..., 𝑎𝑛 . The
notation extends component-wise to composite expressions. For example, by writing ®𝑥 : ®𝑇 , we will
mean the list of typings 𝑥1 :𝑇1, ..., 𝑥𝑛 :𝑇𝑛 .

Given a context Γ = ®𝑥 : ®𝑇 , a context substitution replaces the variables ®𝑥 by a choice of terms ®𝑡 .
We write Γ [®𝑡/®𝑥] to denote the resulting list of typings 𝑡1 :𝑇1 [®𝑡/®𝑥], ..., 𝑡𝑛 :𝑇𝑛 [®𝑡/®𝑥] (here, Remark 1.1
applies). Note that, a priori, this construction is purely syntactic, meaning these typings need not
be well-formed (i.e., • ⊢ 𝑡𝑖 :𝑇𝑖 [®𝑡/®𝑥] need not be derivable in our type system).

Example 1.6 (Context substitutions). A reasonable substitution [®𝑡/®𝑥] for the context Δ from
the previous Example 1.5 could be [(6, 4, 2, 2, refl)/(𝑥,𝑦, 𝑛,𝑚, 𝑝)] which would yield the list of
judgements Δ[®𝑡/®𝑥] =

(
6 :N, 4 :N, 2 : Factor(6), 2 : Factor(4), refl : (2 =N 2)

)
. Here, refl is a constant

that represents a ‘proof by reflexivity’ [45, §A.2.10]: importantly, starting in the next section, we
will ignore proofs in our syntax and, thus, the mechanics of such terms can safely be ignored. The
substitution is ‘reasonable’ in that all of the resulting typings should be well-formed in a reasonable
type system: for example, the term 6 is indeed of type N.

1.4 Propositions as Types. A core innovation underlying DTT is the ‘Proposition as Types’
paradigm, providing a proof-centric view on classical predicate-based logic. To quote Wadler [55]:
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Such a synthesis is offered by the principle of Propositions as Types, which links logic to

computation. At first sight it appears to be a simple coincidence—almost a pun—but it

turns out to be remarkably robust, inspiring the design of automated proof assistants and

programming languages, and continuing to influence the forefronts of computing.

When treating propositions as types, proofs become the terms of propositions. Moreover, type
constructs immediately apply to propositions. For example, the product construct allows us to
construct, given proofs 𝑝 :𝜙 and 𝑞 :𝜓 , a combined proof (𝑝, 𝑞) :𝜙 ×𝜓 (this is rightfully reminiscent of
proving the ordinary conjunction 𝜙 ∧𝜓 ). In this way, type theory uniformly captures both set-like
types (say, Factor(𝑥)) and propositional types (say, 2 + 𝑥 =N 4).
While in DTT we usually equate all proof terms of a proposition, in the Pera type system,

for simplicity, we ignore proof terms altogether. More precisely, the Pera type system includes a
meta-type Propwhose terms are propositions 𝜙 :Prop. We ignore proof terms 𝑝 :𝜙 in all our syntax,
effectively leading to a mixed context approach, in which contexts are lists that mix typings 𝑥 :𝑇
and propositions 𝜙 : for example, 𝑥1 :𝑇1, 𝜙2, 𝑥3 :𝑇3, 𝜙4, 𝜙5, ... . Our previous discussion of contexts
and notation for context substitutions still applies, simply by ignoring all terms of propositions.

Example 1.7 (A taste of TypeQL). Consider the following context, which omits proof terms:

Δ =
(
𝑥 : Person, 𝑦 : Person, 𝑛 : Name(𝑥),𝑚 : Name(𝑦), (𝑛 =N 𝑚)

)
In words, Δ assumes person variables 𝑥 and 𝑦 that share a common name. In fact, TypeQL will
allow us to express such contexts of variables in a straight-forward manner: assuming Person and
Name are valid types specified in the type schema of our database, the following will be a valid
TypeQL pattern:

$x isa person; $y isa person; $x has name $n; $y has name $m; $n == $m;

We will discuss TypeQL patterns in more detail in Section 2.

The example hints at a relation between contexts and database queries—this should be understood
as an extension of the ‘Propositions as Types’ paradigm to ‘Queries as Types’, as we now explain.

1.5 Queries as Types. In the relational model, queries are propositions asmanifested by relational
calculus [2, §5.3]. Using the ‘Propositions as Types’ paradigm, we will instead consider Queries
as Types. As an example, the type of tuples (𝑥,𝑦) where 𝑥 : Person and 𝑦 : Name(𝑥) is a query: it
queries for tuples of persons 𝑥 and their (potentially many) names 𝑦. Note that, in DTT, this type
would be written using the Σ-type construct:

Σ𝑥 :PersonName(𝑥)

However, for simplicity, the Pera type system avoids explicit usage of Σ-types. Instead, we express
dependent tuples by contexts

2. (We also avoid dependent function types, i.e., Π-types, altogether in
our queries since querying functions is expensive, as remarked earlier.) Concretely, this means that
the above query/type will be expressed by the context

𝑥 : Person, 𝑦 : Name(𝑥)

While we will later formally define ‘Queries as Contexts’ in this way (see Definition 3.1), the reader
should keep in mind that this is just a convenient way of realizing the ‘Queries as Types’ approach.

2For experts: this is based on the observation that in DTT, dependent pairs (𝑡, 𝑠 ) : Σ𝑇 𝑆 are equiderivable with substitutions
[𝑡/𝑥, 𝑠/𝑦 ] of contexts 𝑥 :𝑇, 𝑦 : 𝑆 . We also remark that, in a similar vein, first-order functions 𝑓 : Π𝑇 𝑆 are equiderivable
with hypothetical typings 𝑥 :𝑇 ⊢ 𝑓 : 𝑆 .
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1.6 Data: values vs. objects. Types, like Person and Name(𝑥) in the above query, collect terms
(i.e., ‘data’). There are two different kinds of such terms in the Pera model, as we now describe.

• Values. Values are terms from a pre-defined mathematical domain, like booleans, integers, or
strings. The Pera value system comprises both value types (e.g., integers ‘Z’) which capture these
domains, and operations between them (e.g., addition ‘+’). The value system, as a subsystem
of the Pera type system, will not be of essence to our exposition of the Pera model, and so
we will only give a minimal example of it later on. Types in the database’s type schema can
be defined to contain terms of a specific value type (e.g., the type Name(𝑥) may be defined to
contain strings)—such types will be called attribute types.

• Objects. Objects, unlike values, are not sourced from a pre-defined domain but instead, are
abstractly represented by unique object identifiers (OIDs). The representation is ‘arbitrary’ in that
the choice of OIDs can be implementation-dependent. Types in the type schema containing objects
will be referred to as object types. Object types are called relation types if they are dependent
types, and entity types if their are independent types.

1.7 Polymorphism: inheritance vs. interfaces. Subtypes allow terms to be cast between types,
see Sec. 1.1. There are two different usages of subtyping in the Pera model.

• Inheritance. Frequently, one wants to capture that one type is a specialization of another type,
e.g., Adultmay be a specialization of Person. This is a classical case of inheritance polymorphism
which, in the Pera type system, can be modeled by specifying the corresponding subtyping
Adult ≤: Person in our type schema. We remark that the Pera model enforces single inheritance,
meaning that types have at most one parent type which they inherit from.

• Interface implementation. For any user-defined dependent type, say Name(𝑥), the Pera type
system abstracts the type of terms 𝑡 which can be substituted for 𝑥 by creating a new type for
these terms, called an interface. For example, in the case of Name(𝑥), we would introduce a new
interface, say, the type NameOwner, together with a dependency:

𝑥 : NameOwner ⊢ Name(𝑥) : Type

Now, in order to speak of the names Name(𝑝) of a person 𝑝 : Person, the interface must be
implemented, meaning we specify the subtyping Person≤:NameOwner in our type schema. This
allows us to cast 𝑝 : Person as 𝑝 : NameOwner, which entails that Name(𝑝) is a valid type.

The usage of interfaces is unique to the Pera type system and motivated by real-world modeling
challenges: since a single interface may be implemented by multiple types, it enables expressing
polymorphic type dependencies. For example, we may additionally specify City ≤: NameOwner,
which allows us to also consider the names Name(𝑐) of cities 𝑐 : City. In the Pera model, object
types can implement interfaces (in fact, any number thereof), but attribute types cannot. Moreover,
an attribute type will depend on only a single interface, called its ownership, while a relation type
(i.e., dependent object type) may depend on multiple interfaces, called its roles.3

Remark 1.2 (Polymorphic foreign keys). While the previous example of the NameOwner

interface concerned the attribute type Name(𝑥), interfaces for relation types are also highly useful
in practice. For example, they allow us to model what, in relational modeling, could be reasonably
described as ‘join tables with foreign keys from multiple tables’.

3These choices avoid ambiguity for practical modeling tasks: e.g., the ambiguity between 𝑛-ary attributes (say, ‘distance of
cities 𝑥 and 𝑦’) and unary attributes of 𝑛-relations (say, ‘distance of a path 𝑝 between city 𝑥 and 𝑦’). A detailed discussion
of the motivations behind these choices is beyond our current scope.
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2 TYPEQL BY EXAMPLE

Having learned about the individual type-theoretic ingredients of the Pera type system, in this
section, we will see an example of how they work in concert by describing a complete database
in TypeQL. Since the Pera syntax aims to produce high-level, natural-language-like code, code
examples usually need minimal textual explanation. We will highlight the correspondence to earlier
type-theoretic ideas in selected cases. Key conventions of TypeQL code include: all variables are
prefixed with ‘$’, comments start with ‘#’, and completed statements end with ‘;’. As a general
syntactic construction, TypeQL allows the contraction of statements subj phrase1; subj phrase2;

into a single statement subj phrase1, phrase2;. Value terms will be restricted to strings ("abc"),
integers (12), and booleans (true). In this paper, object terms will be represented by OIDs that are
written using human-readable labels prefixed with ‘&’.

A. Type schema

define

user sub entity,

owns username,

plays post:author,

plays collab_post:contributor;

moderator sub user,

plays review:reviewer,

plays collab_post:lead_author;

thread sub entity,

owns title,

plays post:parent;

post sub relation,

relates author,

relates parent,

owns visibility,

owns title,

owns content,

plays review:submission;

collab_post sub post,

relates lead_author as author,

relates contributor @card(10);

review sub relation,

relates reviewer,

relates submission,

owns score;

username sub attribute,

value string;

title sub attribute,

value string;

content sub attribute,

value string;

score sub attribute,

value long;

visibility sub attribute,

value boolean;

B. Data and rules

insert

$bob isa user,

has username "Bob23";

$ana isa moderator,

has username "Ana_ACM";

$rules isa thread,

has title "Forum Rules";

$rule isa collab_post,

with (lead_author: $ana,

contributor: $bob,

contributor: $ana,

parent: $rules),

has title "Rule 1",

has content "you must say hi";

$bobs_message isa post,

with (author: $bob,

parent: $rules),

has content "hi ana! u r cool";

$anas_reaction isa review,

with (reviewer: $ana,

submission: $bobs_message),

has score 50;

define rule post_visibility:

when {

$post isa post,

with (author: $user);

{ $user isa moderator; }

or

{ $r isa review,

with (submission: $post);

$r has score >= 10; };

} then {

$post has visibility true;

}

C.Queries

# Query 1

match

$user isa user, has username $name;

# Query 2

match

$user isa user, has $attribute;

$attribute isa $Type_of_Attr;

# Query 3

match

{ $text isa title,

contains "Forum"; }

or

{ $text isa content,

contains "hi"; };

# Query 4

match

$post isa post, with (author: $author);

$post has visibility true;

try { $post with (contributor: $user);

not { $user is $author; }; };

# Query 5

match

$r isa review,

with (reviewer: $a,

submission: $post);

$s isa review,

with (reviewer: $a,

submission: $post);

$r has score $num;

$s has score != $num;

# Query 6

match

$r with (reviewer: $a, submission: $post);

not { $s with (reviewer: $b, submission: $post);

not { $a is $b; }; };

Fig. 1. A TypeQL database for a simplified ‘pre-moderated forum’ and selected TypeQL queries

2.1 Type schema. TypeQL’s schema specifications comprise the following general ingredients.
Firstly, schemas specify entity types (e.g., ent_typ sub entity), relation types (e.g., rel_typ sub

relation) depending on one or more role interface (e.g., rel_typ relates rol_typ), and attribute

types (e.g., att_typ sub attribute) whose single ownership interface is kept tacit. Secondly, they
specify the respective inheritance hierarchies of entity, relation, and attribute types (e.g., typ1 sub

typ2), as well as interface implementations of both role interfaces (e.g., typ plays rol_typ) and
ownership interfaces (e.g., typ owns att_typ).
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Panel A of Figure 1 illustrates the type schema of a toy database for a pre-moderated forum.
The first line begins by specifying a new entity type, by stating user sub entity. Under the hood,
the Pera type system will translate this specification into an axiom of the form ⟨user : Ent⟩. The
type Ent is, in fact, a short-hand for the type Obj({}) where, more generally, Obj({𝐼1, ..., 𝐼𝑘 }), for
𝑘 ≥ 0, represents the ‘type of all object types whose interfaces are {𝐼1, ..., 𝐼𝑘 }’. Of course, since {} is
the empty bag, Ent precisely collects the object types without any interfaces and, thus, without
dependency on other types—in other words, it collects entity types (see Sec. 1.6). From the given
axiom, our type system will then be able to derive, for example:

• ⊢ user : Type .

In words, without any required assumptions, user is a well-formed type in our type system.
Next, consider the specification moderator sub user. Under the hood, this now corresponds

to two axioms: first, as before, we introduce an entity type ⟨moderator : Ent⟩. Secondly, we also
introduce the subtyping axiom ⟨ moderator ≤: user⟩. From these axioms, our type system will allow
us to then derive, for example, the hypothetical judgment:

𝑥 : moderator ⊢ 𝑥 : user .

In words, assuming 𝑥 is a moderator, then 𝑥 is also a user.
Progressing through panel A, we next consider the specification post sub relation, relates

author, relates parent. This translates, firstly, to the axiom ⟨post :Obj({author, parent})⟩ stating
post is an object type with dependency on the role interfaces author and parent. Secondly, we need
to specify said interfaces, which is achieved by axioms ⟨author : Itf⟩ and ⟨parent : Itf⟩, where the
special type Itf represents the ‘type of all interfaces’ in our system. From these axioms, our type
system will be able to infer, in particular, the following more familiar judgment:

𝑥 : author, 𝑦 : parent ⊢ post({𝑥›author, 𝑦›parent}) : Type .

In words, for each post author 𝑥 and each parent section 𝑦 we have a type of ‘posts by 𝑥 in 𝑦’ in
our type system. Observe that post(𝑢) depends on the bag term 𝑢 = {𝑥›author, 𝑦›parent}: recall
from 1.1, this is an unordered bag of terms annotated with their types, and, thus, identical to, say,
{𝑦›parent, 𝑥›author}. As an aside, note that we model post as a relation type mainly for illustrative
purposes. One could alternatively conceive it as an entity type. Importantly, by choosing post to be
a relation type, objects in post can be instantiated with direct references to an author object and
parent object, as we will see later in our discussion of data insertion.

We can also specify subtypes of relation types: consider the specification collab_post sub post,

relates lead_author as author, relates contributor @card(10);which specifies a new relation
type ⟨collab_post : Obj({lead_author, parent, contributor, ..., contributor})⟩ together with ap-
propriate specifications of new interfaces. Note, the existing parent role interface is tacitly in-
herited from post even though collab_post relates parent is not explicitly stated. Note further,
the contributor role is repeated 10 times, corresponding to the annotation @card(10), meaning
collab_post objects can be instantiated with up to 10 contributors.4 We also specify the subtypings
⟨collab_post ≤: post⟩ (‘sub’ statement) as well as ⟨lead_author ≤: author⟩ (‘as’ statement). From
these axioms, the IRs in the Pera type system will allow us to derive, for example, that:

𝑥 : lead_author, 𝑎 : contributor, 𝑏 : contributor, 𝑦 : parent,
𝑧 : collab_post({𝑥›lead_author, 𝑎›contributor, 𝑏›contributor, 𝑦›parent})

⊢ 𝑧 : post({𝑥›author, 𝑦›parent}) .

4Of course, the number 10 was arbitrarily chosen. We remark that infinite cardinalities are possible in TypeQL (using
@card(*)) but we omit them here for simplicity.
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In words, for any collaborative post 𝑧 with lead author 𝑥 , contributors 𝑎 and 𝑏, and parent section
𝑦, 𝑧 is also a post with author 𝑥 and parent section 𝑦. Here, the RHS bag 𝑢 = {𝑥›...𝑦›...} is called
the canonical projection of the LHS bag 𝑣 = {𝑥›..., 𝑎›..., 𝑏›..., 𝑦›...}. We write canonical projections
as 𝑢 = 𝜋 (𝑣): these projections either upcast or remove individual terms in a bag in a unique (thus
canonical) way, but we forego a detailed definition here; see [17] for details.

Further down in panel A, we specify the attribute types of our schema. For example, title sub

attribute, value string translates, firstly, to an axiom ⟨title:Att({title_owner})⟩, which should
be read as ‘title is a term in the type of attribute types with ownership interface title_owner’.
Secondly, we create the required ownership interface by an axiom ⟨title_owner : Itf⟩. Thirdly, we
add the subtyping ⟨title ≤: S⟩, where S is the value type of strings (we remark that, technically,
this is a generalized kind of subtyping of families, since title(𝑥) is really a type family with index
𝑥 ; see Remark 3.2). These axioms will allow our type system to derive, e.g., the judgement:

𝑥 : title_owner, 𝑡 : title({𝑥›title_owner}) ⊢ 𝑡 : S .

In words, when some object 𝑥 has title 𝑡 , then we know that 𝑡 is a string.
We remark that, like objects types, attribute types can be organized by inheritance, but we

omitted this case from our example for brevity.
Finally, we briefly address implementations of interfaces. In TypeQL, these are specified using the

keywords plays (used for role interfaces) and owns (used for ownership interfaces). For example, the
specification user plays post:author (which appears, in contracted form, in lines 1-2 of panel A)
should be read as ‘users play the role of authors for posts’.5 Under the hood, the specification will
translate simply to the axiom ⟨user ≤: author⟩. Similarly, the statement post owns title should
be read as ‘posts can be owners of titles’, and translates to the axiom ⟨post ≤: title_owner⟩. The
latter axiom, for example, will allow our type system to infer

𝑥 : author, 𝑦 : parent, 𝑧 : post({𝑥›author, 𝑦›parent}) ⊢ 𝑧 : title_owner .

In words, any post 𝑧 (with author 𝑥 and parent section 𝑦) may own a title, i.e., may be cast into a
title_owner 𝑧.

2.2 Data and rules. Panel B of Figure 1 comprises two parts: the insertion of data using insert

and the definition of a new rule using define rule. We preface our discussion with the remark
that the presentation of rules here is directly inspired by classical logic programming principles;
however, as mentioned in footnote 1, there is also a ‘natively type-theoretic’ perspective on rule-
based reasoning, as further explained in [17]. Semantically, both approaches are closely related,
and, thus, we will stick to the more familiar case of classical rule-based reasoning here.
In a TypeQL insert clause, new objects are instantiated using isa, references to role-playing

objects are made using with6, while attributes are associated to owner objects using has. In general,
each object instantiation will create a unique new OID as a new term in the corresponding object
type, while, for attribute types, we store value terms. In our example, weworkwith the simplification
that an insertion of a variable $var will create a same-named OID &var in the appropriate object
type. For example, in Panel B, $bob isa user corresponds to the axiom ⟨&bob :user⟩, specifying that
&bob is a term in user. Similarly, the statement $bobs_message isa post, with (author: $bob,

parent: $rules) corresponds to the axiom ⟨&bobs_message : post({&bob›author, &rules›parent})⟩.
Finally, the statement $rules has title "Forum Rules" (which, in contracted form, appears in line
3 of the insert clause) corresponds to the axiom ⟨"Forum Rules" : title({&rules›title_owner})⟩.
5 Note, we write post:author instead of just author since, in practical TypeQL, role type identifiers are required to be
unique only within their respective relation type hierarchy. However, we will not bother with this detail here. Instead, we
will assume all role type identifiers to be globally unique (and thus, ‘post:’ may be omitted).
6The naming of with is still tentative at the time of writing.
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Next, consider the define rule clause in Panel B. In analogy to Datalog, rules in TypeQL allow
us to infer new data, specified in a then {...} statement, whenever all statements in specified in a
when {...} block hold for an appropriate substitution of variables. The statements inside the when

block are collectively called a pattern. Substitutions of patterns can be formalized using context
substitutions (see Sec. 1.3) after translating patterns into contexts—we’ll examine this translation
process in more detail when discussing queries below. Note, the rule in panel B concretely states
the following: for any post $p which, either has author $u who is a moderator, or has been reviewed
with a score >10, we infer that $p has a visibility attribute true. Importantly, rules fit well into
the framework of type-theoretic inference systems: they can be formalized simply as extensions
of our type system by corresponding IRs. However, care needs to be taken when working with
negated propositions: the precise semantics of rules can then be understood using classical logic
program theory; see Section 3.2. For simplicity, we ignore negations in rules in this section.

2.3 Queries. Finally, panel C of Figure 1 illustrates six simple queries that can be run on our
database. Queries are indicated using the keyword match. What follows after match is again a pattern.
Every pattern can be formally understood as a (list of) contexts by a process of denotation that is
detailed in [17]—the process is mostly straight-forward and we illustrate it here by example. For
instance, the pattern of Query 1 will denote the following context:

Δ = 𝑢 : user, 𝑛 : username({𝑢›username_owner}) .

(Note: variables correspond by their first letter; e.g., $name from panel C corresponds to 𝑛 in the
context Δ above, and $user corresponds to 𝑢.) In words, the context Δ assumes a user 𝑢 and a
username 𝑛 with owner 𝑢. The query will retrieve all pairs (𝑠, 𝑡) of users with their username.
Let us briefly sketch how this works in type-theoretic terms. Query results of Δ are formally

defined to be well-formed context substitutions [(𝑠, 𝑡)/(𝑢, 𝑛)] for Δ, meaning each typing in the
resulting list Δ[(𝑠, 𝑡)/(𝑢, 𝑛)] is derivable in our type system. Given the specifications made in Panels
A and B, and their corresponding type-theoretic interpretation, it is not too hard to see that there
are two well-formed substitutions for our query Δ (and thus, Query 1 has two results):
(1) For the first substitution, we set (𝑠, 𝑡) = (&ana, "AnaACM"). In this case Δ[(𝑠, 𝑡)/(𝑢, 𝑛)] com-

prises the typings &ana : user and "AnaACM" : username({&ana›username_owner}). The former
is well-formed since we defined &ana to be a term in the type moderator which is a subtype
of user. The latter is well-formed since we defined &ana to have username "AnaACM".

(2) For the second substitution, set (𝑠, 𝑡) = (&bob, "Bob23"). As in the first case, one verifies the
well-formedness of the resulting typings.

More interestingly, the denotation of Query 2 yields the following context:

Δ = 𝑢 : user, 𝐼 : Itf, user ≤: 𝐼 ,𝑇 : Att({𝐼 }), 𝑎 :𝑇 ({𝑢›𝐼 })
In words, this context assumes a user 𝑢, and some interface 𝐼 that user implements, as well as
an attribute type 𝑇 with ownership interface 𝐼 , and a value term 𝑎 in 𝑇 owned by 𝑢. In other
words, Query 2 queries for any attribute 𝑎 that 𝑢 may have. One verifies that this has the following
well-formed substitutions Δ[(𝑠,𝑢, 𝑣, 𝑡)/(𝑢, 𝐼,𝑇 , 𝑎)]:

(1) (𝑠,𝑢, 𝑣, 𝑡) = (&ana, username_owner, username, "AnaACM");
(2) (𝑠,𝑢, 𝑣, 𝑡) = (&bob, username_owner, username, "Bob23").

Two interesting observations apply to Query 2 and its denotation Δ. First, the type-theoretic
approach elegantly allows us to variabilize types themselves in queries: indeed, $Type_of_Attr in
the query (corresponding to 𝑇 in Δ) is a type variable that is returned as part of the query result.
Second, formal and practical queries are not exactly the same—indeed, our formal type-theoretic
query Δ needed to introduce an auxiliary variable 𝐼 to express its practical counterpart (note:
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variables in blue are those which are not auxiliary). To describe the results of practical TypeQL
queries, we can simply project away auxiliary variables, i.e., we would only return the terms (𝑠, 𝑣, 𝑡)
for Query 2.

Query 3 introduces a new keyword, or, akin to a traditional sum type. Instead of introducing a
new sum type construct (Δ1 + Δ2 + ...), we model such sum types by lists of contexts (Δ1,Δ2, ...).
Concretely, the denotation of Query 3 will yield two contexts as follows:

Δ1 = 𝑜 : title_owner, 𝑡 : title({𝑜›title_owner}), "Forum" ⊂ 𝑡

Δ2 = 𝑜 : content_owner, 𝑡 : content({𝑜›content_owner}), "hi" ⊂ 𝑡

where ‘𝑠 ⊂ 𝑡 ’ means ‘𝑡 contains 𝑠 as strings’. In words, Δ1 assumes some object 𝑜 which has title 𝑡
containing "Forum", while Δ2 assumes some object 𝑜 which has content 𝑡 containing "hi". Note
the variable 𝑜 is auxiliary in both cases.

A result for the combined query ®Δ = (Δ1,Δ2) will precisely be a result for one of its list members
Δ1 or Δ2. It is not hard to convince oneself that the following are the results for ®Δ:
(1) The substitution [(&rules, "Forum rules")/(𝑜, 𝑡)] for Δ1;
(2) The substitution [(&rule, "you must say hi")/(𝑜, 𝑡)] for Δ2;
(3) The substitution [(&bobs_message, "hi ana! u r cool")/(𝑜, 𝑡)] for Δ2.

Recall that in order to compute the results for the original Query 3, we will project away substitutions
for auxiliary variables, thus only returning substitutions for 𝑡 in this case.
Similarly, Query 4 will denote a list of two contexts, but, in order to see this, a bit more work

is required. First, any pattern of the form P; try {Q;} may be desugared to the more elementary
pattern {P; Q;} or {P; not {Q;};}. This introduces a new keyword, not, called pattern negation.
The negation not {Q;} of a pattern Q states that the pattern Q cannot be satisfied: formally, this
means no well-formed substitution of ΔQ (the denotation of Q) exists. In the Pera type system,
negated patterns are described by a combination of two more fundamental constructs:

• each proposition 𝜙 : Prop has a negation ¬𝜙 : Prop, which states ‘𝜙 does not hold’;
• each context Λ has a satisfaction proposition ∥Λ∥ : Prop, which states that ‘a well-formed
substitution of Λ exists’. For experts, recalling from Sec. 1.5 that we think of contexts as com-
posite types, we remark that satisfaction propositions precisely model the usual propositional
truncation of types; see [45, §3.7].

Having introduced these additional constructs, let us now describe the denotation of Query 4. Since
the denotation of patterns is compositional (though care needs to be taken when re-using variables
across patterns, as we will see), we first break up the query pattern into three subpatterns as follows.

A = $post isa post, with (author: $author); $post has visibility true;

B = $post with (contributor: $user);

C = not { $user is $author; };

A good first guess for the denotation of pattern A is:

ΔA = 𝑎 : author, 𝑟 : parent, 𝑝 : post
(
{𝑎›author, 𝑟 ›parent}

)
,

𝑣 : visibility
(
{𝑝›visibility_owner}

)
, 𝑣 =B ⊤

In words, this context assumes an author 𝑎 of a post 𝑝 with (auxiliary) parent section 𝑟 such that 𝑝
has visibility attribute 𝑣 that equals true. However, this denotation misses a subtlety about the
Pera model: when specifying data in dependent types some ‘interfaces may be left unspecified’.
For example, when specifying a collab_post object, not all 10 contributor interfaces need to be
specified; instead, the number of objects playing the role of contributor for that collab_post object
may range from 0 and 10. Similarly, without imposing further constraints on our type schema in
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Panel A, the number of parent sections for each post object may range from 0 to 1. This subtlety is
not captured by our context ΔA above: it only considers posts with exactly one specified parent
section 𝑟 . In order to correct this mismatch, we can use the typed bag construct of the Pera type
system. Namely, we can rewrite the first line of ΔA to be:

ΔA = 𝑎 : author, 𝑞 : {parent}, 𝑝 : post
(
{𝑎›author} ∪ 𝑞

)
, ...

Now, 𝑞 is a typed bag of bag type {parent} and this entails it can either be the empty bag {} or a
singleton bag {𝑟 ›parent}. The operation ‘∪’ represents the union of two typed bags. The precise
workings of bags in the Pera type system are spelled out in the next section.

We next consider pattern B, and the issue of ‘unifying variables’ across different patterns. Note,
the variable $post appears in both patterns A and B. To resolve this, first, let B denote the following
context with 𝑝 renamed to 𝑝:

ΔB = 𝑢 : contributor,𝑤 : {parent, 9 · contributor}, 𝑝 : collab_post
(
{𝑢›contributor} ∪𝑤

)
In words, ΔB assumes a collab_post 𝑝 with a contributor 𝑢 and an (auxiliary) bag𝑤 comprising a
potential parent section and potentially up to 9 contributors. Now, since 𝑝 and 𝑝 correspond to the
same variable $post, we would like to equate them: however, since equality is a typed operation,
care needs to be taken in which type this comparison can take place. As a generic way to achieve
comparability of some given terms 𝑡 :𝑇 and 𝑠 : 𝑆 , we introduce the following context snippet:

is(𝑡 :𝑇, 𝑠 : 𝑆) ≔ 𝑋 : Type,𝑇 ≤: 𝑋, 𝑆 ≤: 𝑋, 𝑡 =𝑋 𝑠 .

In words, this assumes a joint supertype 𝑋 in which 𝑡 :𝑇 and 𝑠 : 𝑆 become equal.
In fact, the same snippet can be used to deal with pattern C. Abbreviating by 𝐴 and 𝑈 the

types of 𝑎 and 𝑢 previously specified in ΔA and ΔB, respectively, we let C denote the context
ΔC = ¬∥is(𝑎 :𝐴,𝑢 :𝑈 )∥. In words, ΔC assumes that it is not the case that we can find a type 𝑇 in
which 𝑎 and 𝑢 become equal. We remark that ΔC is not well-formed on its own (since it doesn’t
specify the variables 𝑎 and 𝑢), but it will be well-formed as long as we also assume ΔA and ΔB.
Putting the above pieces together, we finally construct the denotation of Query 4 as a list of

type-theoretic contexts. First, following our initial remarks, we rewrite the query to be of the form:
match {A; B; C;} or {A; not {B; C;};};

where A, B, and C are patterns as defined earlier. Abbreviating by 𝐶 the type of 𝑝 in ΔB and by 𝑃 the
type of 𝑝 in ΔA, Query 4 will correspond to the list of contexts:

Δ1 = ΔA,ΔB, is(𝑝 :𝐶, 𝑝 : 𝑃),ΔC

Δ2 = ΔA,¬∥ΔB, is(𝑝 :𝐶, 𝑝 : 𝑃),ΔC∥
The translation of Query 4 into type-theoretic language is instructive in many ways. Of course,
it still falls short of providing a detailed and rigorous procedure for the translation of TypeQL
code into a formal type-theoretic system. Such a procedure goes hand-in-hand with the formal
specification of TypeQL’s syntax and is spelled out in [17]. The formal type-theoretic system of the
Pera model, which forms the backend of this translation, will be outlined in the next section.

Exercise 2.1 (More qeries). We omit a detailed discussion of the remaining Query 5 and 6,
which do not introduce new keywords, but encourage the reader to ponder their semantics. How
many results can we expect for Queries 4, 5, and 6, respectively?7

Remark 2.1 (Ordered sets). The example in Figure 1 does not exhaustively cover all aspects of
the Pera model. A central omission is the construct of ordered sets. Ordered sets provide a powerful
counterpart to bags. Namely, while bags are used to formalize objects with an unordered multiset
7Hint: the rule defined in Panel B affects results of Query 4. Answers: the queries yield, respectively, 2, 0, and 1 result(s).
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Contexts

A. Empty context

1. ⟨• ⊢ • Ctx⟩
B. Types

1. ⟨Γ ⊢ 𝑇 : Type ⇒ • ⊢ Γ, 𝑥 :𝑇 Ctx⟩

for fresh 𝑥 ∈ Var

2. ⟨• ⊢ Γ Ctx ⇒ • ⊢ Γ, 𝑋 : Type Ctx⟩
for fresh 𝑋 ∈ Var

3. ⟨• ⊢ (Γ, 𝑥 :𝑇,Δ) Ctx ⇒ Γ, 𝑥 :𝑇,Δ ⊢ 𝑥 :𝑇 ⟩

C. Propositions

1. ⟨Γ ⊢ 𝜙 : Prop ⇒ • ⊢ Γ, 𝜙 Ctx⟩

2. ⟨• ⊢ (Γ, 𝜙,Δ) Ctx ⇒ Γ, 𝜙,Δ ⊢ 𝜙 ⟩
D. Hypothetical Ctx judgments

1. ⟨Γ ⊢ Δ Ctx ⇒ • ⊢ Γ,Δ Ctx⟩

2. ⟨• ⊢ (Γ,Δ) Ctx ⇒ Γ ⊢ Δ Ctx⟩

Propositions

E. Negation

1. ⟨𝜙 : Prop ⇒ ¬𝜙 : Prop⟩

F. Satisfaction

1. ⟨ ®Δ Ctx ⇒ ∥ ®Δ∥ : Prop⟩
for ®Δ = Δ1, ...,Δ𝑛

2. ⟨ ®Δ Ctx, Δ𝑖 [®𝑡/®𝑥 ] ⇒ ∥ ®Δ∥ ⟩
for any 𝑖 , terms ®𝑡

G. Equality

1. ⟨𝑡 :𝑇, 𝑠 :𝑇 ⇒ (𝑡 =𝑇 𝑠 ) : Prop⟩
... IRs for reflexivity, symmetry,

transitivity of =𝑇
H. Structural equality

1. ⟨𝑡 :𝑇, 𝑇 =Type 𝑆 ⇒ 𝑡 : 𝑆 ⟩
2. ⟨𝜙, 𝜙 =Prop 𝜓 ⇒ 𝜓 ⟩

Subtyping

I. Subtypes and subfamilies

1. ⟨𝑇1 : T1, 𝑇2 : T2 ⇒ 𝑇1 ≺:𝑇2 : Prop⟩
for appropriate (T1,T2 ) (see Rmk. 3.2)

2. ⟨𝑇1 : T1, 𝑇2 : T2 ⇒ 𝑇1 ≤:𝑇2 : Prop⟩
for T𝑖 as before

3. ⟨𝑇1 ≺:𝑇2 ⇒ 𝑇1 ≤:𝑇2⟩
... IRs for reflexivity, transitivity of ≤:
J. Subsumption

1. ⟨𝑇, 𝑆 : Type, 𝑡 :𝑇, 𝑇 ≤: 𝑆 ⇒ 𝑡 : 𝑆 ⟩
2. ⟨𝑇, 𝑆 :Type, 𝑡 :𝑇,𝑇 ≤:𝑆, 𝑡 =𝑆 𝑠 ⇒ 𝑠 :𝑇 ⟩

3. ⟨𝑇, 𝑆 : Type, 𝑡 :𝑇, 𝑇 ≤: 𝑆, 𝑡 =𝑆 𝑠

⇒ 𝑡 =𝑇 𝑠 ⟩

Fig. 2. Logical part of the Pera type system

of references to other objects, say, $path with (edge3: $e, edge1: $f...), ordered sets are used
to formalize ordered sets of references, say, $path with (edges[]: $e), which can then be accessed
sequentially as $e[0], $e[1], etc. We include ordered sets in our formalization in Section 3, but
omit an in-depth illustration of their usage for brevity. An example of a type schema comprising
ordered interface sets is given in Appendix A.

Remark 2.2 (Comparison to other data models). Data in the Peramodel is structured based on
two simple ingredients: dependent types for expressing dependencies between data, and subtypes
for expressing polymorphism. Nonetheless, the resulting model is powerful enough to, in a natural
manner, capture several existing data models—in Appendix A, we substantiate this claim with
examples that illustrate how the Pera model compares to other common data models.

3 TYPE SYSTEM AND SEMANTICS

In the previous two sections we discussed, at an intuitive level, the basic type-theoretic ingredients
of the Pera type system, how these can be packaged into a practical high-level query language,
and how queries can be evaluated. Taken together, these sections cover essentially all key ideas of
the Pera model. However, for the purpose of developing a formal theory of the Pera model, in this
section we provide a full presentation of its type system. As explained in Section 1, this is defined
as a system of inference rules (IRs). In the second part of the section, we then discuss the formal
semantics of queries, addressing, in particular, the case of rules containing negated patterns.

Remark 3.1 (System vs. model). Analogous to the ‘relational calculus’ being a specific formal
incarnation of the ‘relational model’ (describing both a data model for structuring data and queries
for querying the data), we consider the ‘Pera type system’ to be a specific formal incarnation of
the ‘Pera model’ (comprising, similarly, both a data model and a definition of queries).

3.1 Type system and algebras

The complete Pera type system is shown across Figures 2, 3, and 4. Figure 2 captures the logical
constructs (e.g., contexts, subtyping, negation, etc.), Figure 3 captures the conceptual constructs (e.g.,
object types, attribute types, interfaces, values, etc.), and Figure 4 handles term collections in the
type system. Pera algebras are extensions of the Pera type system, comprising additional axioms
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Interfaces and values

K. Types of value/interface types

• ⟨T : Type⟩
for T ∈ {Val, Itf }

L. Type casting

• ⟨𝑇 : T ⇒ 𝑇 : Type⟩
(for T as before)

Objects and attributes

M. Type families of obj./attr. types

• ⟨𝑃 : IBag ⇒ T(𝑃 ) : Type⟩
for T ∈ {Obj,Att}

N. Dependent type casting

• ⟨𝑇 : T(𝑃 ), 𝑢 : 𝑃 ⇒ 𝑇 (𝑢 ) : Type⟩
for T as before

Value system

O. Booleans

1. ⟨B : Val⟩
2. ⟨⊤ : B⟩
3. ⟨⊥ : B⟩

P. Integers

1. ⟨Z : Val⟩
2. ⟨𝑛 : Z⟩ for 𝑛 ∈ Z
Q. Operators

1. ⟨𝑛 : Z, 𝑚 : Z⇒ (𝑛 op𝑚) : Z⟩
for op ∈ {+, −, ∗}

2. ⟨𝑛 : Z, 𝑚 : Z⇒ (𝑛 op𝑚) : B⟩
for op ∈ {≡, ≦, ⪇}

... IRs for evaluation: 𝑎 op 𝑏 =𝑇 𝑐

Other types/operators: strings S, ...

Type abstraction system

R. Object-to-Object and Attribute-to-

Attribute casting (“inheritance”)
• ⟨𝑇 :T(𝑃 ), 𝑆 :T(𝑄 ), 𝑇 ≤:𝑆, 𝑟 :𝑇 ({®𝑡 })

⇒ 𝑟 : 𝑆 (𝜋 ({®𝑡 }) ) ⟩
for closed {®𝑡 }, 𝑃 , 𝑄 , and for 𝜋 ({®𝑡 })
the canonical projection of {®𝑡 } to𝑄 ,
with T ∈ {Obj,Att}

S. Object-to-Interface abstraction

(“interface implementation”)
• ⟨𝑃 : IBag, 𝑢 :𝑃,𝑇 :Obj(𝑃 ), 𝐼 : Itf, 𝑇 ≤:𝐼

⇒ 𝑇 (𝑢 ) ≤: 𝐼 ⟩
T. Attribute-to-Value abstraction

• ⟨𝑃 : IBag, 𝑢 : 𝑃, 𝑇 : Att(𝑃 ), 𝑉 : Val,
𝑇 ≤:𝑉 ⇒ 𝑇 (𝑢 ) ≤:𝑉 ⟩

Fig. 3. Conceptual part of the Pera type system

Ordered sets of objects

U. Ordered 𝐼 -set types

(“ordered sets of objects from a single 𝐼 ”)
1. ⟨𝐼 : Itf ⇒ 𝐼 [ ] : Type⟩
V. Terms of ordered 𝐼 -set types

1. ⟨®𝑡 : 𝐼 , 𝐼 : Itf ⇒ [®𝑡 ] : 𝐼 [ ]⟩
for distinct closed terms ®𝑡 = 𝑡1, ..., 𝑡𝑛 , 𝑛 ≥ 1

2. ⟨𝐼 : Itf, 𝑓 : 𝐼 [ ], 𝑖 : N, 𝑖 ≤Z | 𝑓 | ⇒ 𝑓 (𝑖 ) : 𝐼 ⟩
3. ⟨𝐼 : Itf, ®𝑡 : 𝐼 , 𝑖 : N, 𝑖 ≤Z 𝑛 ⇒ [®𝑡 ] (𝑖 ) =𝐼 𝑡𝑖 ⟩

for ®𝑡 as before
W. Ordered set size function

1. ⟨𝐼 : Itf, 𝑓 : 𝐼 [ ] ⇒ | 𝑓 | : Z⟩
2. ⟨®𝑡 : 𝐼 , 𝐼 : Itf ⇒ | [®𝑡 ] | =Z 𝑛⟩

for ®𝑡 as before

Bags of objects

X. Type of interface bag types

1. ⟨IBag : Type⟩
2. ⟨𝑃 : IBag ⇒ 𝑃 : Type⟩

Y. Interface bag types

(“bags of objects from multiple interfaces”)
1. ⟨{} : IBag⟩
2. ⟨𝐼 : Itf, 𝑃 : IBag ⇒ {𝐼 }∪𝑃 : IBag⟩
... analogous rules for ordered 𝐼 -sets 𝐼 [ ]
Z. Terms of interface bag types

1. ⟨𝑃 : IBag ⇒ {} : 𝑃 ⟩
2. ⟨𝐼 : Itf, 𝑃 : IBag, 𝑢 : 𝑃 ⇒ 𝑢 : {𝐼 }∪𝑃 ⟩
3. ⟨𝐼 : Itf, 𝑡 :𝐼 , 𝑃 : IBag, 𝑢 :𝑃 ⇒ {𝑡›𝐼 }∪𝑢 : {𝐼 }∪𝑃 ⟩

... analogous rules for ordered 𝐼 -sets 𝐼 [ ]

Fig. 4. Ordered interface sets and unordered interface bags in the Pera type system

describing a type schema and data of types, and additional IRs describing rules, as illustrated in
Section 2. In other words, Pera algebras formally present complete databases. Below, we discuss
these components individually, providing brief and selected comments in each case. A more detailed
discussion can be found in [17]. For our presentation, we fix disjoint, countably infinite sets oid of
object identifiers (OIDs), Tid of type identifiers (TIDs), and Var of variable names.

Logical type system. The IRs for constructing well-formed contexts, together with reflexive
hypothetical judgements, are fairly standard. We also introduce propositions for negation and
context satisfaction, as well as propositional equality, which were illustrated previously in Sec.
2.3. We remark that equality is decidable, and thus the usual distinction between definitional and
propositional equality need not be made. Note, our subtyping rules are slightly more verbose than
usual, firstly, since we introduce ≤: as the transitive closure of another proposition, ≺:, and secondly,
since we allow 𝑇1 ≤:𝑇2 for various constellations of terms 𝑇1,𝑇2 as described in Remark 3.2 below.
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Database type system. In Figure 3, we first introduce Val and Itf for collecting value and interface
types, respectively.We also provide a rather minimal example of a value systemwhere, for simplicity,
terms are introduced as constants from the meta-theory, and functions are evaluated by equations
from the meta-theory. We also introduce a type of object types Obj(𝑃) (resp. attribute types Att(𝑃))
with interfaces 𝑃 . Here, 𝑃 is a bag of interface types. This is relevant for object types, for which we
may specify multiple interfaces (with repetitions), while for attribute types the bag 𝑃 must always
have cardinality 1 (as discussed in Sec. 1.7). We also introduce various ways of abstracting types,
as further detailed in the next remark.

Remark 3.2 (Families and subtypes). A term 𝑇 : Obj(𝑃) (or 𝑇 : Att(𝑃)) should be thought of as
a type family: for each bag of objects 𝑝 : 𝑃 , there is a type 𝑇 (𝑝) : Type. In order to effectively work
with subtype polymorphism, we, therefore, extend the classical notion of subtyping 𝑇1 ≤:𝑇2 from
bare types 𝑇𝑖 : Type to more general type families 𝑇𝑖 : T𝑖 . In the Pera type system, the following
constellations of ‘types of type families’ (T1,T2) may be used for subtyping (see IRs (I)):
• (T1,T2) = (Obj(𝑃),Obj(𝑄)) (or (Att(𝑃),Att(𝑄))). This is the case of inheritance, in which we
allow objects 𝑡 :𝑇1 (𝑝) in an object type𝑇1 :Obj(𝑃) to be cast into objects 𝑡 :𝑇2 (𝑞) of another type
𝑇2 : Obj(𝑄), for appropriate bags 𝑝 : 𝑃 and 𝑞 :𝑄 (namely, 𝑝 must canonically project to 𝑞).

• (T1,T2) = (Obj(𝑃), Itf). This is the case of interface implementation, in which an object 𝑡 :𝑇 (𝑝)
may be cast into the ‘implementer’ object 𝑡 :𝑇2 of an interface 𝑇2 : Itf .

• (T1,T2) = (Att(𝑃),Val). This is the case of value abstraction, which takes a term 𝑡 :𝑇1 (𝑝) in an
attribute type 𝑇1 : Att(𝑃), and casts it to its underlying value 𝑡 :𝑇2 of a value type 𝑇2 : Val.

Type schema, data, rules. In addition to the Pera type system outlined above, each individual
Pera algebra features axioms and IRs that capture its type schema, its data, and its rules.
(1) The type schema comprises axioms for types, interfaces, inheritance, interface implementations,

and value abstractions. For example, given identifiers 𝐸, 𝐼 ∈ Tid, the axiom ⟨𝐸 : Ent⟩ specifies
an entity type 𝐸, ⟨𝐼 : Itf⟩ specifies an interface type 𝐼 , and ⟨𝐸 ≺: 𝐼⟩ specifies that 𝐸 implements 𝐼 .

(2) Data comprises axioms defining objects in object types or values in attribute types. For example,
given &𝑜 ∈ oid, an axiom ⟨&𝑜 : 𝐸⟩ specifies that &𝑜 is an object in 𝐸.8

(3) Rules are IRs which, given a well-formed substitution [®𝑡/𝑥] for some fixed context Δ (the rule
body), derive that 𝑡 [®𝑡/®𝑥] :𝑇 [®𝑡/®𝑥] is well-formed, for some fixed typing 𝑡 :𝑇 (the rule head).

Sec. 2.1 and 2.2 illustrate these specifications. Some mild constraints must necessarily be placed on
type and data axioms, e.g., to ensure canonical projections are well-defined. Rules must adhere to
conditions that avoid creation of infinite data, which go hand-in-hand with the computability of
query results discussed below. We refer the reader to [17] for these technical details.

3.2 Query results and computability

We now fix a Pera algebra𝔓 as described in the previous section. In analogy with classical database
theory, we will say that a context is generic if no type or proposition in it contains OIDs.

Definition 3.1. A query in𝔓 is a list of generic contexts that are well-formed in𝔓.

The semantics of queries relies, in essence, on the traditional semantics of logic programs [22–25],
with negation as failure [11]. The basic idea is to cast type-theoretic derivations as logic program
rules. We now outline this correspondence of type-theoretic systems and logic programs.

8We remark that, technically, this axiom should be written ⟨&𝑜 ≤: 𝐸 ({ } ) ⟩. Indeed, 𝐸 ({ } ) : Type is the type obtained from
the term 𝐸 : Obj({ } ) applied to the empty bag {} : {} using IR (N.2). However, abusing notation, we usually simply denote
this type by 𝐸 itself. We secretly used this convention in previous sections: e.g., we wrote 𝑥 : user in place of 𝑥 : user({ } ) .
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An atom A is a hypothetical judgment of the form • ⊢ J , where J is either a typing 𝑡 :𝑇 or
proposition 𝜙 and J does not contain free variables (note, variables in satisfaction propositions
∥ ...∥ are considered bound). A model 𝜒 (−) for our Pera algebra𝔓 is a predicate on atoms, subject
to the following conditions:
(1) 𝜒 is closed under IRs, meaning 𝜒 (A) holds if A can be derived from A1, ...,A𝑘 via an IR in𝔓

and each 𝜒 (A𝑖 ) holds,
(2) exactly one of 𝜒 (• ⊢ 𝜙) and 𝜒 (• ⊢ ¬𝜙) holds.
Note, we can think of 𝜒 as a model of a ground normal logic program in the usual sense, with atoms
A, and rules as in (1), up to identifying the negated atoms ¬(• ⊢ 𝜙) with the atoms (• ⊢ ¬𝜙).
A simple way to ensure a unique minimal model exists is to apply the standard notion of

stratifications [3, 23, 46]. The novelty here, is to port this notion to our type-theoretic setting.
Moreover, to ensure queries yield finitely many results, care needs to be taken since our type system
does contain types with infinitely many terms: variables in these types must be bounded to avoid
infinitely many possible substitutions. Both stratifications and boundedness are discussed in detail
in [17]. Assuming stratifiability and boundedness are enforced on the rules of𝔓 (in which case we
call𝔓 reasonable), then a unique minimal model, denoted 𝜒𝔓(−), exists.
Definition 3.2 (Query results). Given a query Δ1, ...,Δ𝑘 for a reasonable Pera algebra 𝔓, a
result is a context substitution [®𝑡/®𝑥] for some Δ𝑖 such that, for each judgment J in the list Δ[®𝑡/®𝑥],
𝜒𝔓(• ⊢ J) holds.
Based on this definition, in [17], we prove the following computability result.

Theorem 1 (Computability). Given a query Δ1, ...,Δ𝑘 for some reasonable Pera algebra such that

all Δ𝑖 are bounded, then the set of results for that query can be computed in finite time.

The proof of the theorem computes query results by a familiar iterative (‘stratum by stratum’)
fixpoint algorithm, though care needs to be taken to restrict our attention only to a bounded set
of relevant facts. In light of the theorem, it makes sense to revise our earlier definition of queries
slightly and require boundedness of their contexts by default. This carves out a natural class
of computable queries in the Pera model. In fact, one can show that TypeQL queries are, in an
appropriate sense, complete for this class; i.e., any Pera query can be expressed by an equivalent
TypeQL query. However, a detailed exposition of this result requires the formal specification of
TypeQL’s syntax and goes beyond our present scope.

CONCLUSION AND FUTUREWORK

In this paper, we described a succinct formalization of a powerful novel data model for polymorphic
ERA (Pera) modeling, querying, and reasoning. We used type-theoretic ideas to formalize the
data model and queries of the Pera model, and logic programming to describe its semantics. The
data model is built on subtypes and dependent types, featuring type inheritance and polymorphic
type dependencies via interfaces, and queries are defined using common type-theoretic constructs.
Most importantly, the approach comes with a high-level and intuitive query language, TypeQL.
We described TypeQL’s syntax through a comprehensive example, and illustrated how its queries
translate to type-theoretic queries in the Pera model.

Our work yields practical and intuitive modeling techniques for diverse structures of data. It also
establishes a novel type-theoretic pattern-based querying paradigm, which robustly adapts query
interpretations to changes in the underlying type schema. Based on the theoretical foundations laid
in our work, in future work, we intend to investigate important related questions, including query
planning and query optimization for the Pera model. We also hope that the fruitful interaction of
type theory and database language demonstrated here will inspire further research in the area.
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A COMPARISON OF DATA MODELS

The Pera model is based on two simple and fundamental ingredients: dependent types for expressing
dependencies between data, and subtypes for expressing polymorphism. In this appendix, we will
illustrate how these two ingredients provide a unifying perspective on existing data models, and
use this to compare them with the Pera model. We will focus on three prominent (data) models:
the relational model [13], the labeled property graph model [21], and the document model [5].

Remark A.1 (On polymorphism in data models). While polymorphism is a common feature of
many data domains, most contemporary data models provide no direct support for it. Historically,
object-oriented databases (OODBs) were considered a promising approach to infusing data models
with polymorphism: however, while OODBs promoted polymorphism as a first-class construct
in their language, data dependencies now had to be described in a less structured way, using
combinations of object constructors and methods. This additional complexity impeded scalability
and the emergence of a unified query language for OODBs, which put other, conceptually simpler,
data models at an advantage.

In fact, none of the three models discussed in this section provide first-class support for structured
polymorphisms (and, therefore, polymorphism will play a secondary role in the comparisons below).
Instead, in each case, we will focus on the following two basic aspects of each model:
(1) In any model, data is sorted into named categories (e.g., using labels, keys, tables, columns,

etc.)—we usually loosely refer to these ‘categorical containers of data’ as types.
(2) Types may logically depend on other types, meaning that in order to instantiate one type

with data, one or more existing data instances in other types must be referenced.
Exhibiting the types and type dependencies of a given data model will make the translation into
the Pera model essentially immediate: types in the respective models will translate into either
entity, relation, or attribute types in the Pera model, depending on the kind of data that the type
collects (i.e., objects or values) and whether they depend on other types or not. The interesting
observation that types and type dependency provide a simple and unifying way of studying and
comparing how common data models structure their data was previously made in [16].

Visualizing Pera algebras. In Figure 5, we provide a visual guide to key Pera modeling concepts,
which were introduced in the main text. Note that the three primary type kinds (i.e., entity, relation,
and attribute types) are distinguished by color and shape.

• Entity types, i.e., types in our type schema containing objects and independent from other
types, are shaded in purple and with a rounded rectangular shape;

• Relation types, i.e., types in our type schema containing objects and dependent on other
types, are shaded in yellow and with a diamond shape;

• Attribute types, i.e., types in our type schema containing values and dependent on other
types, are shaded in blue and with an oval shape;

• Interface types, on which other types may depend, are shaded in the color corresponding
to the type they belong to (either a relation or attribute type), and are shown with a dotted
boundary.

We remark that the distinction of types by shapes mirrors the usual conventions used in entity-
relationship diagrams [7]. Note also that Figure 5 distinguishes between data-storing types, i.e.,
those for which terms can be created directly through a TypeQL insert clause (or, in formal terms,
through the data axioms of a Pera algebra), and data-structuring types, i.e., those for which terms
cannot be created directly by the user, but are instead derived through the rules of the Pera type
system.
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Based on this visualization of types, we may similarly visualize the data in Pera algebras. (Recall,
Pera algebras are extensions of the Pera type systems with a concrete type schema, data, and
rules.) Namely, we will depict the terms in types by accordingly labeled and color-coded shapes: e.g.,
terms in entity types are shown with a rectangular shape, shaded in purple. In general, when a term
t is specified with type t:T(s,...), then we add the type identifier T as a black label on t’s shape
(e.g., the label ‘user’ in Figure 6). The dependency of T(s,...) on s is shown as an arrow s → t

labeled with I where I is the appropriate interface of T that s is cast into as s:I (e.g., author in
Figure 6). As each attribute type depend on a single interface, we use the label has instead of a
type identifier for that interface. We indicate literal values of attribute terms in green.

Example A.1 (Visualizing the Forum database). To illustrate our convention for depicting
data in a Pera algebra, we revisit our earlier example in Figure 1 showing a database that models
a ‘pre-moderated forum’. The data of that database is visualized in Figure 6. Note that we do not
include the OIDs of object terms in our visualization, but the correspondence to OIDs (and, thus, to
variables in the insert clause of Figure 1) should be evident from objects owning attributes and
playing roles: for example, the user object in Figure 6 represents the term &bob : user.

A.1 Relational model

We begin our comparison to other data models with the relational data model. Due to its simplicity,
expressivity, and scalability, the model has remained a leading database paradigm in industry
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define

table_1 sub entity,

owns val_column_1,

owns val_column_2,

plays FK_column:owner @count(1);

table_2 sub entity,

owns val_column_3,

owns val_column_4,

owns val_column_5,

plays FK_column:reference;

FK_column sub relation:

relates owner,

relates reference;

val_column_1 sub attribute,

value string;

val_column_2 sub attribute,

value datetime;

val_column_3 sub attribute,

value string;

val_column_4 sub attribute,

value long;

val_column_5 sub attribute,

value boolean;
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Fig. 7. Abstract relational schema in TypeQL with concrete visualized database

for more than four decades. Types and type dependencies of the relational model can be easily
described, as summarized below.
(1) Data is sorted using named tables and named columns. The data collected by tables are called

row objects. The data collected in columns are either values (in which case we speak of a value
column), or objects holding references to rows in other tables (in which case we speak of an
foreign key (FK) column)—note that, while foreign keys are usually encoded as values as well,
we here presuppose referential integrity and work directly with references to other objects.

(2) The dependencies between these three kinds of types can be seen as follows. In order to create
(or update) a value in a value column, we must reference an existing row in a table for the value
to live in; thus, value columns depend on tables, and correspond to attribute types. Similarly,
in order to create (or update) a reference in a FK column, we must reference both an existing
row in the column’s table as well as a row object in the referenced table; thus, FK columns
correspond to relation types. Finally, since rows in tables can be freely created (assuming no
further constraints are imposed, see below), tables themselves correspond to entity types.

We remark that real-world relational databases are often equippedwith various ways of constraining
the structure of data (e.g., using KEY or NOT NULL constraints). This may affect type dependencies:
e.g., a ‘join’ table with NOT NULL foreign keys to other tables will now correspond to a relation type,
since its row objects can only be instantiated with reference to other row objects. Since we here
focus only on ‘core fragments’ of the Pera model and other models, we will forego discussing these
more advanced aspects of relational data modeling.

Example A.2 (Relational schema). In Figure 7, on the left, we first give an abstract relational
schema in TypeQL, in which type names correspond to general terminology in the relational model,
as just described, thereby explaining the intended function of these types. Then, replacing abstract
type names with practical ones (but without spelling out the resulting ‘practical’ schema), we depict
a concrete database comprising tables of students and professors. We remark that students have at
most one supervision (note the @count(1) annotation, see [17]) by a professor. Unlike relational
database schemas, this PERA schema can now be effortlessly extended, e.g., to include student
supervisions by two or more professors, or to record multiple interests for individual students.
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define

node_label sub entity,

owns key_to_property_1,

plays edge_label:start,

plays edge_label:end;

edge_label sub relation,

owns key_to_property_2,

relates start,

relates end,

plays path:edge;

key_to_property_1 sub attribute,

value string;

key_to_property_2 sub attribute,

value string;

path sub relation,

relates edge @ordered;

rule inferring_paths: when {

$path with (edge[]: $edges);

$edges[last] with (end: $node);

$edge with (start: $node);

} then {

(edges[]: $edges + [$edge]) isa path;

};
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Fig. 8. Abstract property graph schema in TypeQL with concrete visualized database

A.2 Graph model

The labeled property graph model emphasizes binary connections between data and thereby
facilitates traversal of data in ‘highly connected’ data domains. The types and type dependencies of
the labeled property graph model are summarized below.
(1) Data is organized using labels and property keys. Labels fall into two categories: node labelswhich

categorize node objects, and edge labels which categorize edge objects. In contrast, property
keys collect values.

(2) The dependencies between these three kinds of types can be seen as follows. Node objects
may be freely instantiated and, thus, node labels correspond to entity types. Edge objects must
be instantiated with reference to their start and end nodes and, thus, edge labels correspond
to relation types. Finally, property keys must be associated to (and thus are instantiated with
reference to) either a node or an edge, and so depend on either node or edge types. This means
property keys correspond to attribute types.

In addition to nodes and edges, an important feature of the graph model query languages is the
ability to directly query paths. Paths (analogous to, say, views in the relational model) are data that
are inferred from the existing ‘physical’ data. TypeQL can natively replicate this behaviour using
rules (or dependent subtypes, see footnote 1 and [17]). We remark that the labeled property graph
model usually also supports a form of ‘unstructured inheritance polymorphism’, manifested in the
ability to freely combine labels together (this is ‘unstructured’ in that a node may be labeled both as
a car and a person). We will forego a detailed comparison with TypeQL’s (structured) inheritance
polymorphism.

Example A.3 (Graph schema). An abstract property graph schema is shown in Figure 8 on the
left, together with a concrete database on the right. The latter comprises city-labeled nodes and
flight-labeled edges between them. Importantly, rules give us fine-grained control over which
paths are to be inferred: for example, we could choose to consider only those paths of flights with
at least 30 minutes overlay between legs (which is difficult to express in existing graph databases).
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define

collection sub entity,

owns key_to_val_1;

plays key_to_subdoc_1:parent;

plays key_to_subdoc_2:parent;

key_to_subdoc_1 sub relation,

relates parent;

owns key_to_val_2;

key_to_subdoc_2 sub relation,

relates parent;

plays key_to_subdoc_3:parent;

owns key_to_val_1;

key_to_subdoc_3 sub relation,

relates parent;

plays key_to_subdoc_4:parent;

owns key_to_val_1;

owns key_to_val_3;

key_to_subdoc_4 sub relation,

relates parent;

key_to_val_1 sub attribute,

value string;

key_to_val_2 sub attribute

value long;

key_to_val_3 sub attribute

value datetime;

name:
"public"

user_id:
31415

user_id:
2718

creation_date:
12/08/2020

name:
"readme.txt"

name:
"passwords.txt"

name:
"archive"

· · ·

· · ·

· · ·
· · ·

proj_
admin

proj_
admin

repo

repo

project

has

parent parent

parent
folder

file

file

· · ·

event_log

has

has

has

has

has

subject

project

has

· · ·

Fig. 9. Abstract document schema in TypeQL with concrete visualized database

A.3 Document data

Document databases store data in tree-like structures that can be navigated with keys. They provide
great flexibility in representing data dependencies, and allow recording dependent data ‘locally’ to
enable fast data access. Document databases work primarily with unstructured data. This means
(re)structuring trees can quickly become a complex task, and so can maintaining duplicate data or
checking referential integrity. Nonetheless, even in their unstructured form, we may still distill
notions of types and type dependencies as summarized below.
(1) Data is primarily categorized by collections which collect document objects. Data is also struc-

tured by keys: keys may categorize either nested subdocument objects (yielding keys to subdocu-
ments), or values (yielding keys to values), or objects holding references to other documents
(yielding keys to references). We remark that the latter case is usually implemented using literal
object IDs—here, in analogy to our earlier discussion of the relation model, we will directly
work with references to other objects instead.

(2) The dependencies between these three kinds of types can be seen as follows. Document objects
may be freely instantiated and so collections correspond to entity types. Keys to subdocuments
can only be instantiated inside (and thuswith reference to) an existing document or subdocument
objects and, thus, correspond to relation types. Keys to values are also instantiated inside
(sub)document objects and so correspond to attribute types. Finally, keys to references are
instantiated inside (sub)document objects and, in addition, will reference an existing document
object; they, therefore, also correspond to relation types.

Example A.4 (Document schema). An abstract document schema is given in Figure 9 on the
left, together with a concrete database on the right. The latter comprises a collection of ‘repo’
documents, which have keys to subdocuments listing the ‘project admins’ and the ‘folders’ of each
repo. The latter further have ‘file’ subdocuments associated to them. Documents and subdocuments
have keys to values, such as ‘names’, ‘user IDs’, and ‘creation dates’. Note that we did not include
keys to references in our example (as we only show a single document object).
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{

name: "archive",

proj_admins: [

{

user_id: 31415

},

{

user_id: 2718

},

{ ... } # further proj_admins

],

folders: [

{

name: "public",

files: [

{

name: "readme.txt",

creation_date: 12/08/2020,

event_logs: [

{ ... } # event_log subdocuments

]

},

{

name: "passwords.txt",

...

},

{ ... } # further files

]

},

{ ... } # further folders

]

},

{ ... } # further repos

Fig. 10. Our document database in JSON format

The example illustrates the importance of
TypeQL’s interface polymorphism. Indeed, in-
terface polymorphism allows us to have multi-
ple types of ‘implementers’ of keys across dif-
ferent locations in a document tree: for exam-
ple, the key name to a string value is owned
by repo documents, folder subdocuments, and
file subdocuments simultaneously. Similarly,
if other types would implement the parent role
of the file type then these types, too, could
contain file subdocuments.

It is instructive to revisit the preceding exam-
ple in a format more common to the document
paradigm: this is shown in Figure 10, which
formats the database shown in Figure 9 in a fa-
miliar JSON structure. Note that we pluralized
type names, e.g., writing proj_admins in place
of proj_admin, in order to conform with JSON
conventions.
We remark that, throughout this section,

we implicitly made the assumption that lists
present sets; in other words, the orders of lists
are irrelevant to our data domain (e.g., the list
of proj_admins is ordered, but the order will not
be relevant to our data model and application).
Of course, in general, list orders may be impor-
tant, in which case we can work with ordered
sets in the Pera model to capture this. We omitted the case from our example above for simplicity.

A.4 Summary

Like other data models, the Pera model is conceptually simple: its basic building blocks are type
dependencies and subtypes. Types may collect either objects or values, and types may depend on
either unordered bags or ordered sets of terms. The examples in the preceding sections illustrate
how prominent existing data model can be distilled into specific subsets of these basic ideas. This
makes the Pera model an interesting ‘unifying’ framework to translate and compare between these
models.
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