
Introduction
Organizations are adopting microservices and DevOps to stay com-

petitive and increase the speed of releasing new functionalities with

improved scalability, quality, and (cost) efficiency.

Current processes, tooling (continuous integration/testing/packaging/de-

ployment), and Development/Test/Acceptance/Production environments

(DTAP) are typically designed for traditional codebases and applications,

manual and time-consuming testing, separate organizational silos and

handovers, and “big bang” deployments to production.

With the move to DevOps, these traditional environments, processes, and

tools no longer serve in reducing risk in the software delivery lifecycle

(SDLC.) Instead, they act as a block to the full potential of increased effi-

ciency in software delivery. 

Because of the DevOps mantra of “you build it, you run it,” development

teams are allowed a lot of autonomy and control, and are expected to also

handle quality assurance (QA) and releasing tasks. The reality is that these

are specialized and complex tasks that need expertise and dedicated tool-

ing provided to software delivery teams. In addition, business outcomes

are ignored as they are hard to validate for development teams, and QA

becomes mainly focused on technical aspects.

In this Refcard, we’re going to give you a guide on how you can rethink

your software delivery methodologies for modern software development

— one that reinjects the business function of QA and takes advantage of

continuous releasing in order to lower the risk of releases, shorten devel-

opment cycles, and help software support business.

You will learn:

1.	 How testing is handled in continuous integration, delivery, and

deployment

2.	 The promise of these three “continuous practices”

3.	 How continuous delivery falls short on these promises in practice

4.	 How DTAP stands in the way of continuous delivery fulfilling its

promise

5.	 How to restructure DTAP for continuous releasing to gain the advan-

tages of continuous delivery for software and business

What Are All These Continuous Practices?
Various practices have been developed to optimize parts of the software

development and delivery process. In this Refcard, we’ll consider each

specifically as it relates to testing.

Design Patterns for
Continuous Delivery:
Restructuring DTAP for DevOps

CONTENTS

öö Introduction

öö What Are All These Continuous
Practices?

öö What’s Wrong With Continuous
Delivery?

öö DPAT: The Continuous Release
Cycle

öö Benefits of Continuous Releasing
for Software and Business

öö Conclusion

öö Summary

öö Key Takeaways for Practicioners

BROUGHT TO YOU IN PARTNERSHIP WITH

1

WRITTEN BY OLAF MOLENVELD CTO & CO-FOUNDER OF VAMP
AND JOEP PISCAER ARCHITECT AND PATHFINDER

https://vamp.io/dzone?utm_source=dzone&utm_campaign=box-ad

https://vamp.io/dzone?utm_source=dzone&utm_campaign=full-page-ad

3 BROUGHT TO YOU IN PARTNERSHIP WITH

DESIGN PATTERNS FOR CONTINUOUS DELIVERY

CONTINUOUS INTEGRATION
Continuous integration, or CI, is a set of practices during development

of code.

CI is essentially the automation of a set of housekeeping rules for develop-

ers that makes sure that the Development environment and code repos-

itory remain in shape. The basic practices are to use version control (like

Git) and to regularly check in all code. Developers make sure that the code

they check in passes quality tests and builds into an artifact successfully.

The promise of CI is that work from individual developers moves into

Testing more quickly and without major coding errors, freeing up devel-

opers and testers to pick up new work.

The focus of the testing done during the integration phase is on high

code quality.

CONTINUOUS DELIVERY
Where CI makes sure that the code in the repository is always ready to move

to the next environment, continuous delivery, or CD, is a set of practices that

builds on CI to make sure code is always deployable to Production.

CD implies the automation of all steps needed to take a built artifact and

deploy it into Testing, Acceptance and Production environments.

The promise of CD is to have a pipeline that completely automates the

deployment (and infrastructure provisioning and configuration).

The tests done in the CD pipeline are focused on catching regressions

and checking performance before moving to Production.

CONTINUOUS DEPLOYMENT
Continuous delivery and continuous deployment are very similar con-

cepts. Where continuous delivery promises deployable code, potentially

put into Production, continuous deployment always automatically puts

the code into Production.

The technical act of deploying involves copying deployable code to the

Production environment so that it is ready to receive user traffic.

The technical act of releasing means making the features that code

implements available to users.

However, whereas deployment remains only a technical act, releasing

has both a technical and business — decision-making — function in the

process of software delivery.

THE CONTINUOUS PROMISE
Each of these continuous practices has evolved to optimize parts of the

software delivery process. Together, they promise:

Quality of code. The primary goal of continuous integration is to make

sure that code works and doesn’t regress between releases.

Low risk releases. The primary goal of continuous delivery is to make the

deployment of new software painless.

Faster time to market. The overall goal of the continuous practices is put-

ting software to work as quickly as possible to achieve business goals.

What’s Wrong With Continuous Delivery?
In the ideal world, CI/CD promises to shorten the feedback loop between

Production and the development process and to allow developers to

optimize performance without long wait times or switching context. This

is not surprising, since 70% of digital transformation projects focus on

optimizing CI/CD tooling.

In practice, the DevOps approach still has shortcomings. Testing is

focused on automated testing — on technical checks of developers’

output (the code) — rather than checking for improvements in business

outcomes (conversion, revenue) or impact (market share, profitability,

customer satisfaction).

Relying on automated testing in CI/CD leaves behind exploratory testing. As

a result, the net effect of many CI/CD efforts is that business-oriented QA

engineering is cut out by automating just the low-hanging fruit in CI/CD;

often skipping out on the more valuable, but more complex QA testing.

Or even worse, Testing and Acceptance are skipped entirely by letting

developers write code and put it into Production based on developer-led

testing, cutting out the checks and balances QA would provide. (This is

inefficient, as it results in 20-50% of developer time wasted on non-func-

tional tasks.)

This happens because there are systemic issues with Test and Accep-

tance environments of a typical Development-Testing-Acceptance-Pro-

duction cycle.

A Note on Terminology:

In this Refcard, we’ll be using terminology with some overlap. To prevent

confusion, let’s define it here.

The acronym DTAP is short for Development, Testing, Acceptance, and

Production. These four separate environments are used in a phased

approach of software development.

In this guide, we refer to each of these environments using capitalization:

Development, Testing, Acceptance, and Production.

•	 A Development environment is often a developer’s laptop.

•	 A Testing environment is where completed and built code is tested

to verify it works as expected. Testing should closely resemble

Production.

•	 Acceptance is where successfully tested code is deployed for final

verification, sometimes involving the end user in a pilot group.

•	 Production is the environment where code is made available to

all users.

In addition to the environments, we refer in lower case to development and

testing as the processes where engineers go through different phases of work.

4 BROUGHT TO YOU IN PARTNERSHIP WITH

DESIGN PATTERNS FOR CONTINUOUS DELIVERY

While Testing and Acceptance are great for doing many technical tests,

some testing simply requires real users. No amount of synthetic testing

in pre-Production, automated or otherwise, can identify all the potential

causes of user experience degradation.

TRADITIONAL DTAP DOESN’T WORK FOR DEVOPS
Since we’re no longer building traditional monolithic applications using

traditional methods and silos, we cannot use static pre-production Test

and Acceptance environments to ensure our application will work as

intended. This is because of the independent nature of microservices

and their deployments.

Representative QA engineering that traditionally takes place in the

Testing and Acceptance environments should be done on real user traffic

in Production.

The solution is rearranging the release train so that the business-oriented

QA engineering “acceptance and testing” steps occur in Production.

This gives back control to the QA engineer, and once again opens up

the opportunity of testing in a meaningful way: in Production, with

segments of real user traffic, to validate new features and optimize the

business value of software.

DPAT: The Continuous Release Cycle
DPAT stands for Development, Production, Acceptance, and Testing. It is

a reordering of the traditional DTAP. The rationale behind DPAT is simple:

QA testing yields the best results when done in Production. In fact, it is

only by moving quality assurance to Production that QA can validate

new features and optimize the business value of software.

The right architecture allows control over releases

Unlike past architectures, microservice-style architectures now allow

this type of business-focused representative QA testing to be done in

Production. Having loosely coupled, independent services allows teams

to release multiple versions of the same service and granularly control

the flow of traffic to each version. This allows teams to validate the qual-

ity of each version independently in a gradual and controlled way, under

real production conditions.

This type of testing is called canary testing, and is not unlike the small-scale

trials of testing new versions of software with a group of pilot users.

The major difference, however, is that scaling up a canary release is

much more granular and controlled, as QA engineers can tap into a

larger array of conditions and users to segment traffic and immediately

see results in business outcomes.

SETTING CONDITIONS TO SEGMENT USER TRAFFIC: AUTOMAT-
ING CONTINUOUS RELEASING
This is what we call continuous releasing: the validation of new versions

of software early in the software delivery lifecycle — in Production — by

releasing them gradually to a small segment of user traffic. By testing

new versions of a service on real user traffic, QA engineers can validate

both the technical validity of a release and improve business outcomes,

such as conversion, revenue, or basket size.

Continuous releasing allows teams to validate software and business out-

comes by giving them control over what is released to users. That control

comes through setting release policies. These policies govern the condi-

tions under which a new version is released to users, and in what steps.

Conditions can be as simple as a percentage of traffic, or as complex as a

selection of users based on location, device type, or login status, as well

as business conditions such as “has ordered Product X before.”

Policies allow QA engineers to automatically test an ever-increasing set

of technical and business criteria to optimize new software for business

outcomes such as conversion, basket size, or revenue in Production.

Benefits of Continuous Releasing for Software and
Business
Continuous releasing extends the promise of continuous delivery to

improvements in business outcomes by re-inserting quality assurance at

the end of the release pipeline, where it can now be carried out safely in

Production.

Continuous delivery and continuous releasing are not mutually exclu-

sive. In fact, they complement each other.

CI/CD works well to support development work, allowing developers

to create better quality code by giving them the tools to automate an

ever-growing battery of technical tests to improve software quality, secu-

rity, and performance issues.

Continuous releasing, on the other hand, supports the work of quality as-

surance, giving QA engineers the tools they need to execute business-ori-

ented tests to improve both technical and business outcomes for software.

Conclusion
In conclusion, the continuous releasing practice treats quality assurance

as a business function, responsible and accountable for releasing new

software. This delegates decision-making about feature development

back into the hands of the business, giving product owners — the

stakeholders most qualified to make business decisions — control over

releases, closing the software delivery lifecycle.

5 BROUGHT TO YOU IN PARTNERSHIP WITH

DESIGN PATTERNS FOR CONTINUOUS DELIVERY

Summary
In this Refcard, we’ve examined a number of fundamental changes you

can make to your software delivery lifecycle to gain the competitive advan-

tage of microservices and DevOps and lower the risk of releases, shorten

development cycles, and help software support business.

We’ve introduced the concept of restructuring DTAP as DPAT in order to

create a continuous release cycle. By moving quality assurance testing

to the right — into Production — teams can gain the advantage of low

risk releases for software and organizations can gain the advantage of

increased time-to-value for business.

Key Takeaways for Practitioners
According to the DevOps Research and Assessment (DORA) organiza-

tion’s 2018 State of DevOps Report, successfully evolved DevOps compa-

nies are 44 times more likely to have repeatable and automated software

configuration and release automation. After speaking to more than 100

enterprises over the years about their DevOps journey, we’ve distilled

our best practices into these steps for increasing DevOps ROI:

1.	 Add a continuous releasing stage after continuous delivery

That will allow development teams to independently validate

their code under real world production conditions and observe

that other services are not impacted by a new release.

2.	 Distribute separate roles and responsibilities for both the deploy-

ment stage and the releasing stage of your SDLC

•	 Assign DevOps engineers control over the technical de-

ployment stage and the first step of the releasing stage that

involves technical validation.

•	 Assign control over business validation to quality assurance

and product owner roles.

3.	 Move business-focused QA testing to the right, into Production

Rearrange your release train so that the business-oriented QA

engineering steps occur in Production, after the technical act of

deploying services.

4.	 Develop automated release policies

In conjunction with stakeholders, define straightforward policies

for releasing new software based on stakeholder objectives. Codi-

fy these objectives as Service Level Objectives or SLOs.

5.	 Automate Service Level Objectives and Indicators

Define the health and success factors for releases to enable early

detection and real-time mitigation of technical issues, such as

bugs and/or degraded customer experience.

Typically, introducing a Continuous Releasing stage will double key KPIs,

such as time-to-market, in a few months after implementation. If you are

interested in learning more, we offer an example business case builder.

Devada, Inc.

600 Park Offices Drive

Suite 150

Research Triangle Park, NC

888.678.0399 919.678.0300

Copyright © 2019 Devada, Inc. All rights reserved. No part of this publi-

cation may be reproduced, stored in a retrieval system, or transmitted,

in any form or by means electronic, mechanical, photocopying, or

otherwise, without prior written permission of the publisher.

DZone communities deliver over 6 million pages each month to

more than 3.3 million software developers, architects, and decision

makers. DZone offers something for everyone, including news, tu-

torials, cheat sheets, research guides, feature articles, source code,

and more. "DZone is a developer’s dream," says PC Magazine.

Written by Olaf Molenveld, CTO & co-founder of Vamp
Olaf has over 20 years of experience in IT architecture and management roles. While working as an enterprise architect, he
helped teams design, build and release innovative online and e-commerce focused platforms for digital enterprise. In his role
as CTO of Vamp.io, he channels that experience into his vision for a DevOps, microservices and container space where testing
in production and continous release allow for flawless software delivery.

Written by Joep Piscaer, Architect and Pathfinder
Joep is a seasoned IT professional, with 10+ years experience as a CTO, head of IaaS and infrastructure, enterprise architect.
In his most recent role, he worked as a technical pathfinder, straddling the roles of CTO and coach for scrum teams. For his
continued efforts to share, contribute and evangelize in the DevOps space, he received the Veeam Vanguard ‘15 - ‘17, Nutanix
Tech Champion ‘14 - ‘18, the EMC Elect ‘15, Atlantis Community Expert ‘16–’17 and the VMware vExpert ‘09, ‘11 - ‘17 (and
vExpert NSX in ‘16 - ‘17) awards.

https://vamp.io/dzone/?utm_source=dzone&utm_campaign=refcard&utm_content=roi#roi-calculator

