
REPORT

Microservices,  
Monoliths, and the Battle
Against $1.52 Trillion in
Technical Debt
How Software Architecture Choices Impact Application
Scalability, Resiliency, and Engineering Velocity

1© vFunction 2024

Table of Contents

02 Executive Summary

05 Conquering Technical Debt to Accelerate Growth and Innovation

07
The Architectural Impact on Engineering Velocity, Application
Scalability, and Resiliency

12
Bridging the Gap Between Software Architects’ Role and  
Technical Debt Remediation

15
Architectural Observability and GenAI are Paving the  
Way for Modernization

18 Conclusion

19 Survey Respondent Demographics

2© vFunction 2024

Executive Summary

Rapid software innovation required to support modern business needs has resulted in increasingly complex
software architectures, inefficient operational processes, and the rapid accumulation of technical debt. This debt
hampers engineering velocity, limits application scalability, and impacts resiliency. It manifests as cybersecurity
breaches and operational failures, resulting in a staggering on the U.S. economy annually.

A particularly damaging subset of tech debt is architectural technical debt, which increases systems’
complexity as companies strive to be competitive by adding new capabilities to their software without
sufficient architectural observability tooling.

$1.52 trillion drain

When ranked, architectural technical debt was identified as the most damaging type of
technical debt for applications.

Despite leveraging static code analysis, performance and security monitoring, and component mapping tools, teams
still rely heavily on manual efforts and fragmented knowledge to assess architectural risk and prioritize remediation.
The resulting opacity leads to application scalability and resiliency issues as well as engineering velocity challenges.

Over the last five years, software architects and engineers have grappled with:

44%
Increased complexity in monolithic

applications, lack of clear domain boundaries,
and decreasing modularity

42%
Software architecture complexity due to

disparate technology stacks

39%
Lack of visibility into architecture, which

makes it hard to know which microservices
talk to each other

In addressing these challenges, organizations are implementing enterprise-wide initiatives to combat technical
debt, allocating significant portions of their IT/engineering budgets to remediation efforts.

Remediating technical debt

51%
More than half dedicate more than a quarter
of their total annual IT/engineering budget to
remediating technical debt (i.e., refactoring
or re-architecting).

77% Nearly eight in ten organizations  
have enterprise-wide initiatives in place
to address technical debt.

https://www.it-cisq.org/the-cost-of-poor-quality-software-in-the-us-a-2022-report/

However, the distribution of responsibility for addressing technical debt across multiple roles and teams
highlights the complexity of the issue. A majority of organizations acknowledge multiple stakeholders
responsible for tackling technical debt.

Responsibility for addressing technical debt
When asked, “Who owns or is responsible for addressing technical debt in the organization? (Select all
that apply),” most organizations selected more than one role/team as being responsible:

48% Enterprise architect or
architecture team

47% Each engineering leader

47% Central or head of all
engineering teams

42% Application architect

40% Each application/product owner

5%
Don’t have anyone responsible
for technical debt in the
organization

3© vFunction 2024

Monolithic vs microservices
57% of organizations with monolithic architectures allocate
over a quarter of their IT budget to technical debt remediation,
compared to 49% for microservices architectures.

57%
monolithic  
architecture

vs
49%
microservices  
architecture

2x
Companies with monolithic architectures are 2.1 times more
likely to have issues with engineering velocity, scalability, and
resiliency compared to those with microservices architectures.

Furthermore, the impact of architectural choices
on technical debt is substantial, with organizations
grappling with the trade-offs between monolithic
and microservices architectures.

Those with monolithic architectures tend to incur
higher remediation costs and experience more
pronounced issues with engineering velocity,
scalability, and resiliency compared to those  
with microservices.

4© vFunction 2024

About this study

The research study, “Microservices, Monoliths, and the Battle Against $1.52 Trillion in Technical Debt,”
surveyed more than 1,000 U.S.-based architecture, development and engineering leaders, and
practitioners at large enterprises as well as smaller digital-first companies. It revealed the importance  
of addressing technical debt, especially architectural technical debt, in organizations, and was  
conducted to

 Explore the impact of software architecture on business outcomes, specifically engineering velocity,
application resiliency, and scalability, and identify the greatest pain point for enterprises delivering and
maintaining application

 Gather insights on how software development organizations conceptualize architectural debt and
manage i

 Provide insight into the role of architects and engineering leaders into reducing technical debt and
delivering faster innovation

Mitigation

40%
said shifting left by using architectural observability is the most
effective approach to ensuring application resiliency and
reducing outage risks.

41%
of respondents plan to leverage generative AI to improve
application performance and scalability as part of
modernization efforts.

To mitigate these challenges, organizations are
exploring innovative approaches such as leveraging
generative AI and shifting left by incorporating
architectural observability early in the development
lifecycle. These strategies aim to enhance application
resiliency, reduce outage risks, and optimize
performance, aligning with the evolving landscape  
of software development and architecture.

5© vFunction 2024

Effective technical debt management has emerged
as a critical imperative. The significant allocation of
engineering resources toward technical debt
remediation reflects this commitment. Half of
respondents (51%) indicated their organizations
dedicate more than a quarter of their total annual IT/
engineering budget to remediation, including
refactoring and re-architecting.

Architectural technical debt (ATD), was identified as
a key priority for organizations, with nearly eight in 10
organizations (77%) having enterprise-wide
initiatives in place to address technical debt head-
on. When asked to rank types of technical debt from
most damaging to least damaging for applications,
ATD ranks as the most detrimental. This finding
carries significant implications, as ATD encompasses
structural deficiencies, excessive dependencies,
violations of design principles, lack of modularity,
and architectural complexity. Failure to effectively
manage these factors could hinder organizations'
ability to build resilient and scalable software
capable of meeting evolving business needs.

As company size increases, ATD becomes a bigger
issue than code-level debt. This underscores the
importance of managing technical debt effectively
as a company scales.

Respondents ranked the types of technical debt
from most damaging (1) to least damaging (5)
impact on their applications

Architectural
technical debt

Code-level
technical debt

Testing debt

Aging
frameworks

Documentation
debt

1
2 3

5
4

#1 Architectural technical debt
Structural deficiencies, too many dependencies, violation
of principles, lack of modularity, architectural complexity

#2 Code-level technical debt
Poor coding practices, code smells

#3 Aging frameworks
Outdated frameworks, vulnerabilities that haven’t  
been addressed

#4 Testing debt
Lack of automated tests, insufficient test coverage

#5 Documentation debt
Outdated docs, lack of architectural documentation

Conquering Technical Debt to
Accelerate Growth and Innovation

6© vFunction 2024

Prioritizing technical debt remediation with architecture
The survey, with respondents split between organizations with entirely monolithic architectures, a mix of
monolithic and microservices, and with entirely or predominantly microservices, revealed a correlation between
an organization's software architecture and its approach to technical debt remediation. More specifically,
architecture types and company size impact an organization’s prioritization of technical debt in terms of
budget allocation and the types of debt considered most damaging.

Organizations that allocate over a quarter of their  
IT budget to technical debt remediation

57%
Organiztions with  

monolithic architecture

vs
49%

Organizations with  
microservices architecture

Organizations with monolithic architectures are more likely to allocate a substantial portion of their IT budget to
addressing technical debt, with 57% dedicating over a quarter of their total annual budget to these efforts. In
contrast, organizations with entirely or predominantly microservices architecture allocate a slightly lower
percentage (49%) of their budget to technical debt remediation.

Respondent survey demographic according  
to their organization’s architecture

33%
Organizations with entirely monolithic

architecture

31%
Organizations with a mix of monolithic

and microservices

37%
Organizations with entirely or
predominantly microservices

7© vFunction 2024

Architectural Impact on
Engineering Velocity, App
Scalability, and Resiliency

An organization's ability to rapidly deliver innovative
products and services is paramount to maintaining a
competitive edge. However, the research found that
architectural choices can profoundly impact key
aspects of software development and delivery,
including engineering velocity, application scalability,
and resiliency.

33%

A third of respondents
described their software
architecture as having
moderate or poor health,
with notable deficiencies
and technical debt
accumulation

This burden of technical debt manifests in multiple
structural flaws and a lack of consistency, degrading
modularity and necessitating extensive refactoring
efforts for even minor feature additions.

The consequences of these architectural challenges
are far-reaching, preventing organizations from
operating at their full business potential. Delayed
projects, productivity losses, missed market
opportunities, and increased costs are just a few of
the negative impacts cited by respondents.

Findings highlight a stark contrast between
organizations with microservices architecture and
monolithic architecture. Enterprises with a
microservices architecture report better engineering
velocity, application scalability, and resiliency than
those with a monolithic architecture. Companies
with entirely monolithic architecture are more than
two times (2.1) more likely to face issues with
velocity, scalability, and resiliency compared to
those with entirely or predominantly microservices
architecture.

That said, while enterprises embracing  
microservices report enhanced engineering velocity,
application scalability, and resiliency, these
organizations also suffer from challenges including
delayed platform upgrades, missed market and
revenue opportunities, and decreased productivity.
Both architectural paradigms have their challenges.
To meet business objectives, a balanced assessment
of architectural choices is crucial.

Compared to organizations with entirely or
predominantly microservices architecture,
companies with entirely monolithic architectures
experience more challenges

1.9x more likely to experience extremely slow or  
slow velocity

2.5x more likely to have extremely limited or  
poor scalability

2x more likely to have extremely poor or  
low resiliency

8© vFunction 2024

Respondents were asked to select the top three negative business impacts due to either slow engineering
velocity, inadequate application scalability, or application resiliency issues. Challenges vary based on architecture.

Key aspects of software development and delivery

Architecture  
type

Top negative business impacts
experienced due to slow
engineering velocity

Top negative business impacts
experienced due to inadequate
application scalability

Top negative business impacts
experienced due to application
resiliency issues

Entirely  
Monolithic

44%  

36%

34%

Missed market opportunities and
lost revenue due to slow product/
feature delivery

Customer churn and loss of market
share due to inability to keep up
with user demands

Increased costs and constrained
resources due to project delays

37% 

36% 

34% 

Delayed product launches or
feature releases due to concerns
about system capacity

Increased infrastructure and
operational costs to compensate
for scalability issues

Customer churn and loss of market
share due to poor performance
during peak loads

36% 

34% 

33% 

Customer churn and loss of market
share to competitors with more
reliable applications

Increased infrastructure spend to
over-provision resources as failsafe
against outages

Decreased productivity and
increased operational costs due to
time spent recovering from failures

Mix of  
Monolithic and
Microservices

48% 

38% 

36% 

Delayed major technology
migrations or platform upgrades
over concerns about productivity
impacts

Increased costs and constrained
resources due to project delays

Missed market opportunities and
lost revenue due to slow product/
feature delivery

40% 

38% 

37% 

Increased infrastructure and
operational costs to compensate
for scalability issues

Delayed product launches or
feature releases due to concerns
about system capacity

Productivity losses from
engineering teams constantly
firefighting scalability problems

44% 

33% 

30% 

Decreased productivity and
increased operational costs due to
time spent recovering from failures

Increased infrastructure spend to
over-provision resources as failsafe
against outages

Delayed product innovations or
feature releases due to resources
spent fixing resiliency problems

Entirely or
Predominantly
Microservices

53% 

45% 

39% 

Delayed major technology
migrations or platform upgrades
over concerns about productivity
impacts

Increased costs and constrained
resources due to project delays

Missed market opportunities and
lost revenue due to slow product/
feature delivery

39% 

39% 

38% 

38% 

Missed revenue opportunities due
to inability to handle increased
user demand

Customer churn and loss of market
share due to poor performance
during peak loads

Increased infrastructure and
operational costs to compensate
for scalability issues

Productivity losses from
engineering teams constantly
firefighting scalability problems

40% 

39% 

35% 

Decreased productivity and
increased operational costs due to
time spent recovering from failures

Delayed product innovations or
feature releases due to resources
spent fixing resiliency problems

Customer churn and loss of market
share to competitors with more
reliable applications

9© vFunction 2024

Engineering velocity: The pace of innovation
Rapidly delivering new features and capabilities is crucial for organizations to stay ahead of the competition.
However, nearly half (48%) of organizations reported extremely slow or moderate engineering velocity, leading
to delayed migrations, missed opportunities, and higher costs.

Top three negative business impacts organizations across all architectures have experienced
due to slow engineering velocity

39%

Increased costs and constrained
resources due to project delays

46%

Delayed major technology
migrations or platform upgrades
over concerns about productivity
impacts

40%

Missed market opportunities and
lost revenue due to slow product/
feature delivery

Organizations with entirely or predominantly microservices architecture report the best engineering velocity.  
In comparison, those with a monolithic architecture are more likely to report that they have extremely slow or
slow velocity.

Good/Excellent
Engineering Velocity

Architecture Type Slow/Extremely Slow
Engineering Velocity

Entirely Monolithic 48% 26%

Mix of Monolithic and Microservices 50% 18%

Entirely or Predominantly Microservices 59% 14%

While organizations with a monolithic architecture are nearly two times more likely to have slow or extremely
slow velocity compared to those with a microservices architecture, the latter can also suffer from complexity
challenges that slow its engineering velocity such as delayed platform upgrades, increased costs, and missed
market opportunities.

10© vFunction 2024

Monolithic architectures are nearly 2.5 times more
likely to have extremely limited or poor scalability
compared to microservices architectures, a challenge
that resonates with 95% of enterprises ($500M-$5B)
who report that their architecture impacts application
scalability.

95%
of enterprises with revenues
between $500 million and $5 billion
cite that their architecture impacts
application scalability

Application scalability: Adapting to growth
As businesses expand and customer demand surges, scaling applications seamlessly becomes a critical
differentiator. Despite this, 45% of organizations struggle with application scalability, reporting extremely
limited, poor, or moderate capabilities. This leads to increased infrastructure costs, delayed product launches,
and productivity losses, hindering their ability to effectively meet growing business demands. Furthermore, 40%
of respondents identified software architecture scalability limitations as their organization's most pressing pain
point, emphasizing its critical challenge and urgent need for resolution.

Which of the following pain points, if any, currently pose the
biggest challenge, are urgent to address, or have the greatest
negative impact for your organization?

40% Software architecture scalability limitations

29% Application resiliency

19% Slow engineering velocity/inability to deliver software/
features quickly

11% Their organization is not facing any significant challenges

Top three negative business impacts organizations have
experienced due to inadequate application scalability

#1 Increased infrastructure and operational costs to
compensate for scalability issues - 38%

#2 Delayed product launches or feature releases due to
concerns about system capacity - 36%

#3 Productivity losses from engineering teams
constantly firefighting scalability problems - 35%

Microservices organizations have a clear advantage compared to monolithic organizations which are more likely
to report extremely limited or poor scalability.

Good/Excellent
Scalability

Architecture Type Extremely Limited/Poor
Scalability

Entirely Monolithic 48% 27%

Mix of Monolithic and Microservices 51% 16%

Entirely or Predominantly Microservices 64% 11%

11© vFunction 2024

System resiliency:  
Withstanding failures
Application resiliency is essential for maintaining
uptime, ensuring customer satisfaction, and
minimizing the impact of failures. The fact that 42% of
organizations experienced extremely low or moderate
application resiliency is a cause for concern as it
leads to decreased productivity, customer churn, and
delayed innovation.

The data further highlights that organizations with a
monolithic architecture are nearly two times more
likely to have extremely poor or low resiliency
compared to those with microservices architecture.

Architectural choices — one size does not fit all
As businesses strive to remain competitive and meet ever-evolving customer demands, the significance of
architectural choices becomes increasingly evident yet nuanced. While businesses often face the imperative to
modernize and embrace scalable architectures like microservices, the decision is not a one-size-fits-all
solution. It hinges on the alignment with specific business goals and considerations.

Monolithic applications, for instance, remain viable options, especially in scenarios where lack of deployment
complexity is critical. However, regardless of the architectural approach chosen, addressing technical debt
proactively is essential. By carefully balancing architectural decisions and addressing the unique challenges of
each approach, organizations can unlock greater engineering velocity, seamless scalability, and resiliency –
paving the way for sustained innovation and growth.

The 42% who cited extremely poor, low or moderate
resiliency within their organization experienced the
top three negative business impacts due to
application resiliency issues

39% Decreased productivity and increased
operational costs due to time spent recovering
from failures

33% Customer churn and loss of market share to
competitors with more reliable applications

33% Delayed product innovations or feature
releases due to resources spent fixing
resiliency problems

Good/Excellent
Resiliency

Architecture Type Extremely Poor/Low
Resiliency

Entirely Monolithic 57% 19%

Mix of Monolithic and Microservices 55% 13%

Entirely or Predominantly Microservices 63% 9%

12© vFunction 2024

Bridging the Gap Between Software
Architects’ Role and Technical Debt
Remediation

Despite many enterprise-wide initiatives in place,
there is a lack of alignment in which role is
responsible for technical debt remediation.

When asked, “Who owns or is responsible for
addressing technical debt in the organization? (Select
all that apply),” most organizations selected more
than one role/team as being responsible

 Enterprise architect or architecture team (48%

 Each engineering leader (47%

 Central or head of all engineering teams (47%

 Application architect (42%

 Each application/product owner (40%

 5% said they don’t have anyone responsible for
technical debt in the organization

According to C-level executives and leadership roles,
the enterprise architect/architecture team is at the
top of the list as the primary owner responsible for
the organization’s technical debt. In contrast,
practitioners place engineering leaders at the top  
and architects closer to the bottom. A clear
delineation of responsibilities remains elusive.

Notably, despite their central role as custodians of
long-term code quality and architecture, the study
uncovered that software architects are
disconnected from the CI/CD process. Over a third
(37%) report architects are involved in upfront
design but have limited involvement in CI/CD.

The reasons behind this disconnect are multifaceted,
with a lack of processes, software engineering
bandwidth concerns, and fears of architects being a
bottleneck among the reasons preventing deeper
architect integration in CI/CD.

Who owns or is responsible for addressing
technical debt in the organization?

Responsibility

Responsibility

Architecture  
team

Practitioners

C-level executives  
& leaders

Engineering  
leaders

13© vFunction 2024

Of the 28% who said software architects don’t participate in CI/CD or have very little to no involvement in
CI/CD pipelines and release processes, the primary reasons included:

46%
There is a lack of processes/
mechanisms/tools to involve
architects in CI/CD

43% Architects provide guidance, but
engineering owns CI/CD

42%
Architects are only focused on upfront
design, not implementation or head of
all engineering teams

41% Architects don’t have enough software
engineering bandwidth

34% There are concerns about architects
being a bottleneck

Nevertheless, the data strongly suggests the critical role of software architects in ensuring  
architectural resilience.

Confidence in architecture resiliency based on software architecture involvement

44% When architects had limited involvement in CI/CD, only 44% of respondents
reported confidence in their architecture’s resiliency.

72%
In contrast, when architects were fully involved in the CI/CD process from planning
through deployment, a striking 72% expressed a high degree of confidence in their
architecture's resiliency.

This disparity indicates that having architects closely engaged throughout the entire software development
lifecycle, from initial design to final deployment, leads to more robust, fault-tolerant architectures – a critical
foundation for long-term success.

When asked “How does an insufficiency of visualizing architectural drift impact or affect your
engineering organization? (Select all that apply),” respondents said:

Rework caused by
unanticipated
change impacts
(53%)

Longer change
review and
approval cycles
(51%)

Difficulties in
prioritizing
changes based on
their potential
business value
(48%)

Increased risk of
damaging critical
business
capabilities (46%)

14© vFunction 2024

Architectural challenges software architects and engineers have faced over the last five years

Increased complexity in
monolithic applications, lack
of clear domain boundaries
and decreasing modularity
(44%)

Software architecture
complexity due to disparate
technology stacks (42%)

Lack of visibility into
architecture, which makes it
hard to know which
microservices talk to each
other (39%)

Insufficient tooling and capabilities exacerbate architectural visibility. When asked if the engineering team,
developers, or architects have the tools and capabilities needed to understand and visualize the current state
of their software architecture in production as the codebase evolves, more than half (53%) said their
architecture visualization tools are limited in scope or they don’t have sufficient tooling.

In addition, when asked if their team has an effective way to visualize and understand the potential business
impact of architectural changes to applications after implementing them, 49% said their ability to visualize
change impacts is limited and inconsistent, or they don’t or aren’t sure if they have an effective way to do so.
The consequences of this architectural opacity are far-reaching.

15© vFunction 2024

Architectural Observability and
GenAI are Paving the Way for
Modernization

As organizations grapple with the complexities of
modern software architectures and the perpetual
challenge of technical debt, the survey findings  
point to architectural observability as a promising
path forward.

What is architectural observability?
Architectural observability is the ability to analyze an
application statically and dynamically to understand
its architecture, observe drift, and find and fix
architectural technical debt. It enables the
understanding of software architecture, helping
teams to continuously observe and understand the
following each and every release

 Define domains with dynamic analysis and  
AI and understand their modularit

 See class and resource dependencies and  
cross-domain pollutio

 Find high-debt classe

 Improve modularit

 Identify dead code and dead flows based on
production dat

 Identify circular dependencies between  
services and librarie

 Understand and improve the cloud suitability  
of the application or domains within it

Architectural observability uncovers class complexity,
dead code, and long dependency chains across
resources, classes, database tables, and more.

After being provided with the definition of
architectural observability, 80% acknowledged that
having these capabilities within their engineering
organizations would be extremely or very valuable.
This resounding consensus among respondents
stresses the necessity of having tools and practices
to observe and understand the architecture of their
software in real-time.

When asked "Over the next year, which of the
following potential benefits of architectural
observability would be most valuable to you?
(Select all that apply)," respondents said:

52% Assessing architectural complexity and
identifying technical risk areas

49% Visualizing system architecture and domain/
resource dependencies in real-time

48% Analyzing change impact across architectural
components

47% Identifying the architectural root causes of issues
like outages

44% Detecting architectural drift and violations as the
system evolves from release to release

43% Guided remediation to manage and fix technical
debt

16© vFunction 2024

The potential impact of architectural observability extends beyond mere visibility; it offers a pathway to more
resilient and scalable architectures.

Shift Left When asked about the most effective approaches to ensuring application
resiliency, 40% of respondents advocated for "shifting left" – leveraging
architectural observability to proactively address resiliency concerns
earlier in the development lifecycle, thereby reducing the likelihood of
outages occurring.

Additional approaches to ensuring application resiliency include

 Relying primarily on application performance management and other observability tools to identify and
prevent outages when they occur (30%

 A combination of both approaches – using architectural observability to improve resiliency early on, and
APM/observability tools to identify and prevent outages (29%)

95%
Plan to leverage GenAI

in their applications

While a small percentage (5%) do not plan to leverage GenAI or are still
evaluating potential use cases for GenAI in their applications, the
overwhelming majority (95%) recognized the transformative potential of
this emerging technology.

Alongside architectural observability, organizations also see generative AI as playing a pivotal role in application
modernization efforts. Readiness to adopt generative AI increases with company size, with 44% of companies
with $10 billion or more in revenue who say their applications are fully ready, compared to 25% of companies
with $100-499 million in revenue.

17© vFunction 2024

When asked how organizations intend to use generative AI to modernize applications, 41% indicated they would
leverage GenAI to improve application performance and scalability, underscoring the potential synergies
between observability, AI, and architectural optimization.

Beyond performance and scalability, respondents highlighted a range of additional use cases for
GenAI in application modernization

40%

Generating
content and
data for
business
intelligence

39%

Enhancing user
experiences
through
intelligent
interfaces and
personalization

39%

Optimizing
resource
utilization and
cost efficiency

38%

Enhancing
security
through
advanced threat
detection and
mitigation

37%

Automating
complex tasks
and decision-
making
processes

37%

Facilitating code
generation and
automated
testing

34%

Enabling
conversational
interfaces and
chatbot support

As organizations navigate the complexities of modern software development, architectural observability and
generative AI emerge as powerful allies, offering a path to more resilient, scalable, and effective architectures.
By harnessing the insights gleaned from real-time architectural visibility and leveraging the capabilities of AI,
organizations can unlock new opportunities for innovation, optimization, and competitive advantage – paving
the way for a future where software is not only functional but truly adaptive, intelligent, and aligned with
evolving business needs.

18© vFunction 2024

Conclusion

The effective management of technical debt,
particularly architectural technical debt, has emerged
as a critical imperative for organizations striving to
stay competitive and meet constantly evolving
business demands. The impact of architecture types
and company size on challenges resulting from
technical debt highlights the need for organizations to
adapt their strategies as they scale. The research
confirms that software architecture can significantly
impact performance.

While there’s no universally perfect solution,
organizations embracing modern, scalable
architectures such as microservices demonstrate
advantages in engineering velocity, scalability, and
resiliency, enabling them to operate more efficiently
and respond to market demands more effectively.
Conversely, organizations with monolithic
architectures are more likely to face challenges in
these areas, resulting in delayed projects, productivity
losses, and missed market opportunities.

Architectural choice depends heavily on aligning with
specific business objectives and circumstances.
Monoliths, for instance, remain viable, particularly
when simplifying deployment. By carefully weighing
architectural decisions and addressing the unique
challenges each approach presents, organizations can
foster sustained innovation and growth.

The survey reveals a lack of alignment regarding the
roles responsible for technical debt remediation, with
software architects often disconnected from the crucial
CI/CD process. This disconnect not only hinders the
creation of resilient architectures but also underscores
the need for better integration of architects throughout
the software development lifecycle.

Findings shed light on promising solutions, such as
architectural observability and GenAI. Architectural

observability offers real-time visibility into software
architectures, enabling organizations to assess and
alleviate architectural complexity, visualize
dependencies and facilitate guided remediation of
technical debt. Meanwhile, GenAI is poised to play a
transformative role in application modernization, with
organizations recognizing its potential to improve
performance, scalability, security, and user
experiences, among other benefits.

As organizations navigate the complexities of modern
software development, embracing these technologies
and prioritizing the remediation of architectural
technical debt will be critical. In addition to
harnessing the power of architectural observability
and GenAI, integrating software architects throughout
the development lifecycle will be important for
organizations to unlock new opportunities for
innovation, optimization, and competitive advantage.

About vFunction
vFunction, the pioneer of AI-driven
architectural observability, delivers a platform
that increases application resiliency, scalability,
and engineering velocity by continuously
identifying and recommending ways to reduce
technical debt and complexity in applications.
Global system integrators and top cloud
providers partner with vFunction to assist
leading companies like Intesa Sanpaolo and
Trend Micro in discovering their architecture
and transforming applications to innovate
faster and change their business trajectory.
vFunction is headquartered in Menlo Park, CA,
with offices in Israel, London and Austin, TX. To
learn more, visit .www.vfunction.com

http://www.vfunction.com/

19© vFunction 2024

Survey Respondent Demographics
1,037 U.S.-based respondents were surveyed

Primary role

4.6% Chief Technology Officer

2.9% Chief Information Officer

0.9% Chief Software Architect

1.2% Chief System Engineer

0.4% Chief Development Officer

7.8% Head of Architecture

11.2% Head of Engineering / VP of Engineering

10.8% Head of Product

15.4% VP Application Development

14.7% Lead Software Architect / Software Architect

14.8% Developer Experience

15.4% Product Owner

Industry

3.6% Healthcare:

6.8% Financial Services

12.7% Manufacturing

4.4% Education

38.5% Computer Software/Hardware

2.0% Media & Entertainment

2.5% Marketing & Advertising

1.3% Hospitality

0.7% Public Administration/Government

1.9% Energy

8.1% Retail & CPG

3.9% Transportation

3.3% Insurance

7.0% Telecommunications

3.4% Other

Company size based on the total annual revenue for the
last fiscal year

5.9%

$100-$499
million

19.3%

$500-$999
million

35.5%

$1-$5 billion

21.5%

$5-$10 billion

17.8%

More than $10
billion

