virtusa

# **Success stories**

## Predicting the remaining useful life of Aircraft Engines based on sensor data



## **BUSINESS SITUATION**

- Normal maintenance cycles for aircrafts are often schedule based or based on the number of miles flown
- This can be inefficient as it does not take into account the condition of the aircraft between scheduled maintenance cycles
- With the high cost of labor and equipment involved, it is important to perform such maintenance operations at the right time when it would make the maximum impact

## SOLUTION

- A structured process is followed to fully understand the business problem before moving on to creating and evaluating machine learning models
- Exploratory Data Analysis Analyze the data and the relationships between the variables, Remove superfluous variables and split the dataset into training, test, and validation sets for model evaluation
- NASA dataset was used to demonstrate the feasibility and accuracy of this approach
- Model Selection & Evaluation: Clean the data and do feature engineering to frame the prediction problem
- Start with Generalized Linear Modeling to set a baseline ; Try ensemble methods and neural networks to improve the prediction accuracy and Evaluate the models on the test dataset and choose the highest performance model
- We have used 7 different machine learning algorithms for classification of the remaining useful life 0,1,2,3
- These models are used to assess whether an aircraft needs maintenance dynamically
- Model Deployment: Deploy the model on the cloud so that new, real-time data can be used to generate predictions
- Model Visualization: Different model summary along with the predicted values and model metrics are hosted on R shiny



## **BUSINESS BENEFITS**

- Accurate prediction help with better scheduling of maintenance cycles
- Dynamically optimized maintenance schedules increase the life of an aircraft and increase the efficiency of the maintenance cycles
- RUL predictions help evaluate the condition of a fleet effectively and help manage resources better
- Similar techniques can be used to model the degradation patterns of major components in an aircraft and increase maintenance efficiency

vírtusa

## Virtusa helps Medical Device and Care company to modernize/ enhance their therapy virtusa management for critical kidney care patients

## CHALLENGE

- As home dialyzing becomes more popular, there is additional emphasis required on coordinated care by clinical staff, providers and physicians.
- Fresenius is enhancing peritoneal home-dialysis patient experience through the Connected Health Platform.

## SOLUTION

- FMC engaged Virtusa to build Reciprocity and Unison components of the Connected Health platform.
- Reciprocity provides connectivity to the cycler to manage its treatment programming and facilitates seamless collection of pre- and post-dialysis vital signs.
- Unison enables remote monitoring of treatment and clinical data by clinical staff and technical support teams.

## **BENEFITS**

Virtusa was engaged for end-toend implementation of both these components leading them through requirements, development and support as governed by the FMC Quality process.

### **CLIENT PROFILE**

#### **Client Demographics**

- Industry: Medical device(Dialysis)
- Team size: 25-30
- Geography: Boston and India

#### **Timeline & Delivery Performance**

Phases: Blueprinting, research, design development, verification, validation. On-time project completion and executive sign-off of deliverables

#### **Capabilities & Skillsets**

- loT
- UX/UI

#### Technologies

- Thingworx. Azure Cloud
- .NET and ReactJS
- OSGI(Whiteboard), C/C++, Lua

Improved operational efficiency by implementing one of the largest geospatial asset data store for a leading railway infrastructure management company virtusa



### **OVERVIEW**

Solution provides the business with a trusted source of reliable asset data that is held in a single location, is easy to access ,is spatially aligned and extensible with additional data sources for future demands

### **SOLUTION**

- Integrated Track asset data in a centralized system that paves the way for advanced machine data analytics with machine learning at the heart of a large program
- Developed a Geospatial interface for user dashboards allowing an intuitive BI interface laying out the rail infrastructure on geographical maps providing the "Next-best-action" to be taken in a predictive and prescriptive manner

#### **BENEFITS**

- Increased real-time tracking for rides by 70%
- Allows better analysis on measures that support CRI, enabling safety benefits
- Reduced time spent collating data means more time for analysis in order to deliver greater insights

#### Sensitivity: Virtusa Confidential - Employees Only Virutusa's IOT implementation experience

## **Preventive Maintenance solutions & partner led solutions**



Elevator Monitoring System – Provides Live monitoring of operating conditions and Predictive Maintenance



Transformer Monitoring System(TMS) -Helps in reducing Power Outage, Decrease in operation cost, Extended Transformer life, safety, and helps progress towards unmanned sub stations



vírtusa

Advanced Metering System (AMS) -Reduce consumption by increasing transparency in power consumed and prevent power leakage



Wind Turbine Remote Maintenance assistance & Training through AR developed a detailed Wind Turbine Onboarding Simulator in Virtual Reality



RTMS – Remote Tower Monitoring System (Telco) aids in monitoring Tower equipment health status, service monitoring and cost optimization



F2MS - Fleet Management System helps in Operational cost & Budget Forecasting, Fleet backup recommendations, Fleet Maintenance & Fleet downtime forecasting

## Enhancing worker safety & productivity with a IoT & AI

virtusa





#### **DATA GATHERED**

The modjoul belt becomes a part of the employee's uniform. Employee works as they normally do, and the sensor data is transmitted either through Wi-Fi or cellular to the cloud.



#### METRICS PRESENTED

The encrypted data is received and then used in proprietary formulas and models to present metrics in unique dashboards for the employee, supervisor and risk manager.



#### **REPORTS ANALYZED**

The dashboard reports are viewed online via mobile device or web browser, where the data can be analyzed and actioned.

#### **CHALLENGES**

- A disconnected work environment.
- Injuries in workplace are occurring without any clear or practical resolutions.
- Work is not being tracked, analyzed, or used in a meaningful manner.
- Collecting and analyzing work metrics is a time consuming, error-prone task

#### **FEATURES**

- Provides insights into actual work being performed, increasing workplace performance and safety.
- Customizable sensors track work, injury occurrence, and provide the data needed to prevent similar occurrences in the future.
- Easy to use and seamlessly integrated into normal working atmosphere and conditions.

#### BENEFITS

- Productivity savings of 5% to 10% from reduction of idle time and work-rate improvements
- Better/more accurate workplace data metrics
- Employee injuries and accidents are reduced