
External Services

Postal Code Validation

External Storage

3rd Part Authentication

Payment Providers

Carriers

Sale Channels

Email Sender

Client UI

Admin UI

Core API

Storage

Business API

Frontend applications allow user access
through multi-platform, responsive and
multi-language interfaces.

System administration tools allow for an easy
administration, monitoring and user support.

Business cases, processes and automation are
solved by backend services.

SOA (Service Oriented Architecture). Core
system services might be consumed by
multiple business processes.

Storage services were designed to optimize
the use of resources. Depending on the
demand, different services are consumed.

13

14

Posgresql

SQL Server

Azure Storage

Pecuner12

Auth11

Logs10

8 Mgmt API

fácilhub API9

5 Mgmt

6 Orchestra

Command Center7

1 Client

2 Register

3 Payment Gateway

Win Terminal4

System Architecture

In overall terms, fácilhub enables receiving orders from multiple
sales channels, assists in fulfillment and then obtains a carrier
label.

To achieve this, the system has multiple services, at different
levels, designed to optimize the resources consumption, ensure
data integrity, and scale up and out; leveraged on Microsoft
Azure services.

The following is a brief description of the system's architecture.

Users can sign themselves up to fácilhub via the Register
application (2). When a new company is added, the app
automatically creates an account and assigns the requested
user the role of administrator. Then, he/she will be able to create
new profiles and assign them to the following users.

fácilhub clients operate on the Client application (1). This is a
100% responsive and multi-language progressive web
application (PWA) that has been developed with special
attention to UX to have a consistent interaction and ensure fast
user adoption.

Our application enables, among other functionalities:

• Visualize key information on a dashboard.

• Obtain orders from multiple sales channels.

• Fulfill orders

• Compare rates

• Print labels

• Track shipments

• Audit accounting

• Inventory management

• Generate reports

• Manage:

◦ Sales channels

◦ Payment methods

◦ Warehouses

◦ Users and Profiles

System Architecture

Win Terminal (4) is a native Windows application that enables
unrestricted access to local devices. This facilitates silent and
batch label printing, volumetric and weight data collection from
packages.

To register a payment method, Payment Gateway (3) is an
application that protects the user's data, preventing it from
being stored on any other system outside the payment provider.
Once the payment method has been validated, the account is
ready to operate.

All the business logic mentioned so far is supported by fácilhub
API (9), which also communicates with External Services (14)
such as: Postal Code Validation; e-mail Sender; External
Storage; among others. This service is tasked with linking the
data transfer between multiple sales channels and carriers.

Management (5) is a web application reachable via intranet that
allows managing customer accounts and their settings,
including:

• Account registration and cancellation

• Carrier assignation

• Rate set management

• Sales prices and surcharges

Command Center (7) is an application health status monitor.
From there, it is possible to visualize incidents, failures, and the
workload of each service, enabling early actions to be taken to
minimize infrastructure and other risks.

System Architecture

Orchestra (6) is another administration tool that enables the
management of low-level services.

• Monitoring processes

• Access system log

• Manage account credit in Pecuner (12)

The backend of the 3 previous applications is supported by
Management API (8). This is responsible for integrating the base
services with the business layer. It also takes part in the
communication with low level external services (3rd Part
Authentication; Carriers; Sale Channels).

Every data transaction must meet two fundamental conditions
that are supported by their respective services:

• Logging. Every transaction must be registered. Logs (10) is
responsible for storing: calling application, related traces,
critical exceptions, and errors.

• Authentication and Authorization. All applications, both
frontend and backend, are designed based on Service
Oriented Architecture (SOA) and work under the
authentication context determined by Auth (11).

Additionally, Auth supports the creation of unlimited profiles
with granular assignment of permissions to system functionality.
Therefore, the account administrator can define, in detail, which
permissions are assigned to each user. It also supports
multi-factor authentication and authentication by external
methods.

Pecuner (12) is the service responsible for accounting credits
and debits to the customer's account. It communicates mainly
with the payment platform (3). It records transactions for
traceability and provides data for reporting and cost auditing.

The lowest level of the system consists of storage services (13).
Depending on the required objective (structuring data, storing
large volumes, fast access, securing critical information, etc.),
different methods or technologies are used for data persistence.
This optimizes the use of resources, without affecting
performance. Elements in this layer can only be reached by
low-level services, generating protection barriers outside the
system.

System Architecture

