iIQEAssists Features and Usage Guide

Table of Contents

No. Topic Page
1 Introduction 2
2 iQEAssists Features 2
3 Website 3
4 Usage Guide for Testing Task 5
4.1 Type your Prompt 5
4.2 User Story Generation-BDD 6
4.3 Requirement Validation 6
4.4 Generate Function Testcases 7
4.5 Generate E2E Testcases 8
4.6 Generate API Tests 9
4.7 Generate Test Data 10
4.8 Generate Automation TC 11
49 Create BDD from TDD 12
4.10 Automation Code Review 13
411 Generate Bug Report 14
4.12 Test Coverage Analysis 16
4.13 Code Conversion/Review Agents 20

1. Introduction

GenAl based solution for common testing activities from finding requirement gap to bug
reporting in testing cycle using secure Azure native architecture. It’s secure Azure environment
ensures data privacy throughout compared to other Al solutions.

2. Features of iQEAssists:

Boost Shift left Testing with Requirement gap analysis and BDD scenario generation
from user stories.

Generates contextual test scenarios from diverse data sources for nuanced and
comprehensive responses.

Ensures security through Azure EntralD and storage, including Azure OpenAl model and
Cognitive search.

Based on user meta data will only show relevant data as per their privileges.
iQEAssists is powered by GPT-4 providing best in class accuracy and utilizes RAG

architecture to improve response relevance. Download all responses in csv/txt format.
Accuracy between 70-80%.

Supports all major document formats and code files which can be uploaded to
iQEAssists to get contextual responses: Accepts input documents in variety of data
formats like PDFs, CSVs, Text files, DOCX, EXCEL, PNG, HTML files. Code file formats
java, python, c#, typescript and java script, Json, xml, feature files. In all 20 formats
supported.

Data from Confluence and Gitlab can be imported.

Trained only on private documents and data stored securely in Vector DB Azure
Cognitive Search.

Inbuilt prompts for commonly available QA tasks ranging from testcase generation,

requirement analysis, automation code generation, test coverage analysis, code review
and documentation.

Downloadable test artifacts in csv/txt format from chat.

Convert code from one test automation framework to another automation framework
with relevant context, explanation and comments.

3. Website

iQEAssists website link: https://ige-assist-webapp.azurewebsites.net/

How to use iQEAssists:

1. After login this screen will be visible to you

£, iQEAssist _

Testing Tasks

Type Prompt v

IQEAssIst Features
Please upload your files here.

Upload your é

documents

@ Upload Documents J,

Create test cases for
document features.

Generates positive
and negative
testcases

Sign Out (=

2.Upload your requirement documents which are in format txt, pdf, csv, docx or other
supportedformats like FRD, U ser stories and Testcases.

https://iqe-assist-webapp.azurewebsites.net/

€ > v < |Qa... > shivam v O Search shivam »

n
4

Testing Tasks Orgenize + New folder o 0

Type Promp shivam Name Date madifie

Prasanna B iQEAssist Usage Guide

IQEAssist f 133 O capabilities_Xoriant- Briefing with review_updated_SK 024 14
e upload your files here.

3 @ OneDrive [37] QF capabilities_Xoriant- Briefing_25)une 1

« B ThispC 3] Tenerity-user-stories-Tenerity-user-stories 024 14

Upload & LocaiDisk(cy | L tetey 1

28-05-2024
5w Local Disk (D) B TestCases a1

docum
? > W Network B3] UserStory 28-05-2024 1}
v - pload Documents I,

Create test |
document |

Generates positive
and negative
testcases

Sign Out (>

File name: | Userstory w| AlFiles v

Open Cancel

3.After uploading a couple of documents, it will be available in main screen
UploadedDocuments list:

iQEAssist Bot
Uploaded Documents @ online

UserStory.xisx v

Testing Tasks:

I

Type Prompt

Upload Documents L

Delete Documents

Enter your query here

Sign Out [

4. Now we can select required Testing Task from Testing Tasks dropdown to generate
responses based on our documents

4.Usage Guide

4.1 Type Prompt

Here user can type in their own question or design prompt as per their requirements to
generate response:

Our uploaded document in screenshot has a FRD named Invoicing-High Level Design.pdf. Wewill
ask questions to it based on the document as Q&A.

Type in your prompt in textbox and click on the right arrow button to generate responses.

iQEAssist Bot
Uploaded Documents @ online

UserStory.xisx v

Testing Tasks

Type Prompt v

Upload Documents X,

Delete Documents W

Sign Out [As a user, | want to make a payment using my debit card so that | can complete my purche

S

& NewChrome available }

9, iQEAssist _
iQEAssist Bot
Uploaded Documents @ online

EVOICE-GEN.csv v What are the integration points of invoice generation sytem

Testing Tasks: 5 5 s S 5
d The integration points of the invoice generation system are: o

Type Prompt v
1. APG Scheduler: The invoice generation jobs will be scheduled and triggered by the APG Scheduler.

2. Admin Portal and client entitlement service: The Admin Portal Ul will be used for providing a user
interface for required metadata and client configurations. The Client Entitlement Service will store
the configuration for the invoice generation process.

3. Communication service: The Communication service will be responsible for sending the generated

invoices over email to the client and Stamford Address based on email preference and invoice type

configuration.
Upload Documents &,

4. Payment Vehicle: A file will be generated in a particular format and sent to the payment processor

if the payment method is ACH.

Sign Out > Enter your query here

4.2 User Story Generation-BDD
Prerequisite: Upload User stories in iQEAssists

Steps: Select User Story Generate-BDD scenarios from dropdown and enter the user story
name/requirement name in textbox and hit enter. We can also provide additional constraints
separated by dot.

Example: Handle Email Receipt failure.

iQEAssists Output: Generates Feature file filled with all relevant scenarios for given user story

9, iQEAssist _

iQEAssist Bot
Uploaded Documents @ online

UserStory. xisx

As a user, | want to make a payment using my debit card so that | can complete my purchase

I

Testing Tasks “gherkin

User Story Genera ¥ Feature: As a user, | want to make a payment using my debit card so that | can complete my

purchase

Background:
Given | am an existing user of the system
And | have items in my cart ready for purchase

Scenario: Successfully make a payment using a valid debit card
Given | choose to pay with my debit card
When | enter valid debit card details

Upload Documents &,

And | confirm the payment
Then the payment should be processed successfully

Delete Documents W

And | should receive a payment confirmation message

Sign Out [Enter only your module name. Eg: Generate credit note

4.3 Requirement Validation

This is the user story along with its description in document Tenerity.csv

BO v JX || AUTOMatea INvoice Leneration In PUF Tormat

A B C D
Then

Invoices should be generated on segment level for each client.
Automated invoices should be generated in PDF format.

All invoices should be combined in a single PDF file

PDF file should be named as <"Month" Invoice R100 "Year">
All invoices should have the below details

5 |Q2101C-6|Automated Invoice Generation in PDF format Section 1

Enter this test case in prompt and select requirement validation in Testingtasks and hit enter

9, iQEAssist

iQEAssist Bot
Uploaded Documents @ online

Tenerity-user-storie v

#HH# Gaps, Ambiguities, and Unclear Requirements

Testing Tasks:
1. **Schedule Details:**

- **Current State:** "A schedule is set for invoicing on a given day of the month.”
- **|mprovement:** Specify how the schedule is defined (e.g., through a user interface, cron job,
etc.), and how the system determines the "given day of the month."

Requirement Valid: v

2. **Eligible Clients:**

- **Current State:** "Client is eligible for sending invoices in PDF format."

- **|mprovement:** Provide criteria or rules for determining client eligibility. Clarify if there's a
mechanism to check eligibility automatically.

3. **PDF Naming Convention:**
- **Current State:** "PDF file should be named as <"Month" Invoice R100 "Year">."
- **mprovement:** Clarify the format for Month and Year (e.g., "January" vs. "01" for month, "2023"

Upload Documenis X,

Delete Documents i

Sign Out [Enter only your user story/requirement name. Eq: Generate credit note

2, iQEAssist

iQEAssist Bot
Uploaded Documents @ online

i) Ensure the combined file does not exceed [file size limit].”
Tenerity-user-storie v

5. **Detailed Field Format:**

- "Account No: Alphanumeric, max 15 characters.
Invoice date: YYYY-MM-DD format.

Client Address: String, max 255 characters.
Return To Address: String, max 255 characters.

Testing Tasks:

Requirement Validi v

6. **Error Handling Mechanism:**

- "If an error occurs during invoice generation (e.g., missing data), log the error with details and notify
the administrator via email. The system should retry the process up to three times before marking it
as failed.”

it BRI TEE £ 7. **Security and Access Control:**

- "Only users with the ‘Admin’ role can set the invoicing schedule. Generated PDF files should be
stored in an encrypted format, and access should be restricted to authorized personnel only."

Delete Documents |

Sign Out (3

Enter only your user story/requirement name. Eg: Generate credit note

4.4 Generate Function Testcase

This is the manual test case along with its description in document Terenity-user-story.csv

Enter this test case in prompt and select Generate Function Testcase in Testingtasks and hit
enter

B6 o b Jfx Automated Invoice Generation in PDF format

& B c =} E F

| should be able to generate invoices automatically in POF format on the recurring basis far the eligible clients.

S0 that | zan notify the respective clients for bill settlement

Acceptance Criteria

Given

All the client-zegment information eists in invoicing platform and client is eligible for sending invoices in POF format.
When

A schedule is get for invoicing on a given day of the month.

Then

Invoices should be generated on segment level for each client.

Automated invoices should be generated in POF format.

Allinwoices should be combined in a single POF file

POF file should be named as <"Manth” Invoice R100 "fear":

Allinvoices should have the below details

Section 1
& | E2101C- Automated Invoice Generation in POF format Invoice Header

iQEAssist Bot

@ online

Uploaded Documents

Tenerity-user-storie ~

Automated Invoice Generation in PDF format

Testing Tasks:

o

Generate Function ~ #3## Functional Test Cases for Feature: <<Automated Invoice Generation in PDF format>>

#3#t# Positive Functional Test Cases

*%TC-01**

- **Test Case Description:** Verify automatic generation of invoices in PDF format on a recurring
basis.

- **Tast Input/Data Used:** Schedule set for the 1st of every month.

- **Test Steps:**

1. Ensure client-segment information exists in the invoicing platform.

2. Schedule invoicing for the 1st day of the month.

3. Wait for the 1st of the month.

Upload Documenis L.

Delete Documents

- **Expected Results:=** Invoices are generated automatically in PDF format.

Enter only your user story/requirement name. Eg: Bank Login

4.5 Generate E2E Testcases

Prerequisite: Upload Diagrams in iQEAssists

Steps: Select your Generate E2E Testcase scenarios from dropdown and enter the user
requirement name in textbox and hit enter. We can also provide additional constraintsseparated
by dot.

Example: Handle Email Receipt failure.

iQEAssists Output: Generates end to end test case with all relevant scenarios for given diagram.

e\

Uploaded Documents

Electronic-paymen v

Testing Tasks:

Generate E2E Tesl v

Upload Documents I,

Delete Documents

Sign Out (>

iQEAssist Bot
@ online

Online customer

o

customer>>. ['ll outline the integration points, test case descriptions, inputs, steps, expected results,

Sure, here are some system integration End-to-End (E2E) test cases for the feature <<Qnline
testing techniques, and whether the test case is positive or negative.

#3#H# Integration Point 1: User Registration

Tast Case 1.1: Successful User Registration

- **Tast Case Description:** Verify that a new user can successfully register.
- **Test Input/Data Used:**

- Username: "testuser”

- Email: "testuser@example.com”

- Password: "Password123"

- **Test Steps:**

1. Navigate to the registration page.

Enter only your user story/requirement name. Eg: Bank Login

4.6 Generate API Tests

This is the manual test case along with its description in document TestCase.csv

Enter this test case in prompt and select Generate API Tests in Testingtasks and hit the enter

Test Case ID Requirement Description Precondition TestData TestStep Action Expected
5 Result
TC_R1_001 R1 User makes 1. Useris 1. ltem(s) to 1 Mavigate to The useris
_Positive a payment logged into purchase 2. the checkout directed to
using my the system. Valid credit page. the checkout
credit card to 2. User has card details page.

complete my items inthe (e.g. card
purchase cart ready number,
for expiry date,
purchase. 3. CWV)
User has a
valid credit
card linked
to their
account.

iQEAssist Bot
Uploaded Documents @ online

TestCases.xIsx

I

User makes a payment using my credit card to complete my purcha
Testing Tasks

Generate APl Tests v Here is a comprehensive set of test cases for the API that covers functionality, error handling,

security, data validation, and boundary testing for the feature "User makes a payment using my
credit card to complete my purchase™

##4# Functionality Testing

#HHH# Test Case 1: Valid Payment Input

- **Test Case ID**: TC_FT_001_Positive

- **Test Case Description**: Verify that the API returns the correct response for a valid payment
input.

- **Test Data**: *{ "creditCardNumber™ "4111111111111111", "expiryDate": "12/25", "cwv": "123",
"amount™; "100.00" }’

- **Test Steps**:

Upload Documents X

Delete Documenis

Sign Out (> Enter only your user story/requirement name. Eg: Bank Login

4.7 Generate Test Data

Prerequisite: Upload your detailed positive testcase so that iQEAssists generates accurate data
combinations

Steps: Select your Generate Test Data from dropdown and enter the manual test name in
textbox. Additional constraints can be added separated by a dot.

Example: Bank Login

iQEAssists Output: Generates detailed Positive and Negative data combinations.

N

c 2% ige-assist-webapp.azurewebsites.net (L 4 ﬂ a 2

& NewChrome availzble 3
9, iQEAssist \

. iQEAssist Bot

@ online

Uploaded Documents

Tenerity-user-storic v user story bank neft txn

o

= TE S Possible positive data for the requirement/test condition mentioned in the user story "Bank NEFT

Generate Test Dat: v Transaction™

- Valid username and password

- Existing contact list with valid contacts

- Valid account to be debited from (savings account)
- Valid payment type (NEFT)

- Valid contact person name

- Valid amount

- Today's date

Upload Documents X,

Possible negative data for the requirement/test condition mentioned in the user story "Bank NEFT
Transaction™

Delete Documents i

Sign Out (>

Enter your query here.

iQEAssist Bot
Uploaded Documents @ online

- Valid account to be debited from (savings account)
- Valid payment type (NEFT)

Testing Tasks: - Valid contact person name

- Valid amount

- Today’s date

Tenerity-user-storie v

Generate Test Dat: v

Possible negative data for the requirement/test condition mentioned in the user story "Bank NEFT
Transaction™

- Invalid username and password

- Empty contact list

- Invalid account to be debited fro

- Invalid payment type

- Non-existent contact person name

Upload Documents &
- Negative or zero amount

- Past or future date

Delete Documents

Enter your query here

Sign Out [

4.8 Generate Automation TC

Prerequisite: For this detailed manual testcase containing step by step instructions to be
performed on web/mobile browser/app needs to upload into iQEAssists.

Steps: Select Generate Automation TC from dropdown and in textbox write the manual testcase
name and then separated by a # write the desired language the script should be generated.

For example: User Story NEFT Transfer#selenium java.

EiiyEpkerte)| EiEicoasttEl| EiEEatiEd H bank neft ten bt E3 |H evaluation txt £3 | B iqeassist deploy bt 3| B 3923t £3 | B reference prompts.tet 3|

1 AlphaGo Bank website User story NEFT Transfex:

2
2
<t
&

Pre reguisite:An existing valid customer having koth savings and current account and existing contact list
Steps:

l.Navigates to bank url https://www.alphagobank.com

2Z.Enters wvalid usernames and password and click submit

2.In home page click Payments section.

4.Click on Initiate a new paymsnt button.

5.8elect account to be debited from as saving account from Account debited dropdown
S.8slect payment type as NEFT from the Paayment type radio button.

6.Select Payment to as from existing contact list from the Payment to dropdown

7.Type Contact person name from the contact name textbox

8.Type Amount in Amount textbox

9.Select today's date from Date picker

10.Click on submit transaction

ll.after submitting user should ke greeted with alert "Transaction initiated successfully"™
12.Click on home screen and balance amount should be updated with debited amount

Expected result:Customer account should be debited on home screen.

Uploaded Documents

Tenerity-user-storie v

Testing Tasks:

Generate Automati v

Upload Documents &

Delete Documents

iQEAssist Bot
@ online

passwordInput.sendKeys("your_password");
submitButton.click();

// Click on Payments section
WebElement paymentsSection = driver.findElement(By.linkText("Payments”));
paymentsSection.click();

// Click on Initiate a new payment button

WebElement newPaymentButton = driver.findElement(By.id("new-payment-button"));
newPaymentButton.click();

/1 Select account to be debited from as saving account

WebElement accountDebitedDropdown = driver.findElement(By.id("account-debited"));

accountDebitedDropdown.sendKeys("Saving Account”);

/1 Select payment type as NEFT
WebElement paymentTypeNEFT = driver.findElement(By.id("|

4.9 Create BDD from TDD

Prerequisite: Upload code file in iQEAssist

Steps: Select Create BDD from TDD from dropdown and in textbox write the file reveand then
separated by a # write the desired language the script should be generated.

For example: filename.java#Java#Selenium.

iQEAssist Bot
Uploaded Documents o online

TCHMS4900_Payr ~

Testing Tasks:

Create BDD from T v~

Upload Documents L.

Delete Documents W

Feature: Payment Distribution in Property AR Account

Background:
Given | am an authenticated user of the system
And | have created the necessary AR accounts for testing

Scenario: Navigate to Property AR Account
When | navigate to the Property AR Account page
Then | should see the Property AR Account page displayed

Scenario Outline: Post Payment to AR Account
Given | am on the Property AR Account page
When | select an active account with ID <AccountiD>

TCHMS4900_PaymentHasBeenDistributed.java#/ava#Selen

4.10 Automation Code Review

Prerequisite: Upload Automation Test case code in iQEAssists. Here in this example, | have
created a text file containing automation code and the first line is commented andcontains
testcase name.

Steps: Select your Automation Code Review from dropdown and enter the automation
testname in textbox and hit enter. Then enter the tech stack in which it should be reviewed
likeselenium java.

Example: Alphago Login Automation Test#selenium java.

iQEAssists Output: Generates suggestions and improvements on code like Tech Lead.

[=l alphafo aut test t«t E3

1 ffhlphago Login Automation Test

2 import org.opendga.selenium. By;

3 import org.opendga.selenium.WebDriver;

4 import org.opendga.selenium.WebElement:;

5 import org.opendga.selenium.chrome.ChromeDriver;

import org.testng.Assert;

import org.testng.annotations.Test:;

public class Loginfutomation {

ETe=t

10 public wvoid login() {

11 System. setProperty ("webdriver.chrome.driver™, "path of driwver™):
12 WebDriver driver=new ChromeDriver():

13 driver.manage () .window () .maximize() ;

14 driver.get ("https://www.browserstack. com/users/sign in");

[Tl =+]

15 WebElement username=driver.findElement (By.id("user email Login™)):
16 WebElement password=driver.findElement (By.id("user password")):
17 WebElement login=driver.findElement (By.name ("commit™)) !

18 usernames . sendEevs ("abcBgmail . com™) ;

15 password. sendKeys ("your_password") ;

20 login.click():

Z1 String actualUrl="https:/ live.browserstack.com/dashboard™;
22 String expectedlUrl= driver.getCurrentlUrl()

23 Azsgert.assertEquals (expectedlrl, actuallrl) ;

€« > C 23 ige-assist-webapp.azurewebsites.net

2 iQEAssist

iQEAssist Bot
Uploaded Documents ® online

alphafo aut test.ixt v

Alphago Login Automation Test#selenium java

llosting s Reviewing the provided "Alphago Login Automation Test" code snippet, here are my observations

Automation Code F v categorized into errors, optimization suggestions, and best practices in the context of Selenium

WebDriver with Java.

#HH# Errors:

1. **Incorrect Element ID for Username**: The code uses "By.id("user_email_Login")" to locate the

username field. Based on standard conventions, element IDs typically do not contain mixed cases
(camelCase or PascalCase). Verify the exact ID from the HTML source; it's possible it should be
‘user_email_login® or simply ‘user_email'.
Upload Documents &, 2. **Driver Path Not Specified**: The "System.setProperty("webdriver.chrome.driver”, "path of
driver");’ line has a placeholder “path of driver’. This should be replaced with the actual path to the

Delete Documents ChromeDriver executable on your system.
Sign Out [Enter automation test name#Enter framework Eg:NEFT Transfer#Selenium Java
€ 5 C % ige-assist-webapp.az ites.net x O = 4 0O 2

8, iQEAssist _
iQEAssist Bot
Uploaded Documents @ online

alphafo aut test.ixt v

solely on implicit waits can lead to unpredictable wait times. It's better to use explicit waits
(‘WebDriverWait) for elements that take time to appear.

Testing Tasks:
#HH# Best Practices:

Automation Code F v

1. **External Configuration**: The username, password, and URLs should not be hardcoded within
the test. Consider using an external configuration file or environment variables for such sensitive
and changeable data.

2. **Page Object Model (POM)**: Organize the code using the Page Object Model design pattern.
This involves creating separate classes for each page that will contain the methods to interact with

the page. It makes the code more maintainable and readable.

Upload Documents & 3. **Assertions**: The test ends with an assertion comparing the expected URL to the actual URL.
While this is valid, also consider asserting the presence of elements or messages that indicate a

successful login for a more robust test.

Delete Documents §

4.11 Generate Bug Report

Prerequisite: Upload Manual Test case in iQEAssists.

Steps: Select your Generate Bug Report from dropdown and enter the manual test name in
textbox and then separated by a # enter the test condition/step where it fails and hit enter.

Example: User story NEFT Transfer#Existing contact list not loaded on screen

iQEAssists Output: Generates detailed Bug report with defect id, descriptions, steps toreproduce,
expected result and actual result.

[= bank neft ten b B3

1l AlphaGo Bank website User story HEFT Transfer:
2 Pre requisite:An existing wvalid customer having both savings and current acc
3 Steps:
4 1.Navigates to bank url https://www.alphagobank.com
& 2.Enters wvalid username and password and click submitc
& 3.In home page click Payments section.
7 4.Click on Initiate a new payment button.
B 5.5elect account to be debited from as saving account from Account debited ¢
2 S.5elect payment type as NEFT from the Paayment type radio button.
10 6.5elect Payment to as from existing contact list from the Payment to dropdc
11 T.Type Contact person name from the contact name textbox
12 8.Type Amount in Amount textbox
13 S.5elect today's date from Date picker
14 10.Click on submit transaction
15 11l.After submitting user should be greeted with alert "Transaction initiatec
16 12.Click on home screen and balance amount should be updated with debited an
17 Expected result:Customer account should ke debited on home sScreen.
o
€ 5 C % igeassistwebappaz xk O % 402

9, iQEAssist \
iQEAssist Bot
Uploaded Documents @ online

bank neft txn.txt v

User story NEFT Transfer#Existing contact list not loaded on screen

Testing Tasks: Defect ID: QA0O1

Defect Title: Existing contact list not loaded on screen
2.1 Defect Priority: Medium
2.2 Defect Severity: High

Generate BugRep v

3. Defect Description:
When performing the NEFT transfer in the AlphaGo Bank website, the existing contact list is not

being loaded on the screen. This prevents the user from selecting a contact from the list, resulting in
the inability to complete the transaction.

4. Steps to Reproduce:

1. Navigate to the AlphaGo Bank website.

2. Enter valid username and password and click submit.
3. In the homepage, click on the Payments section.

Upload Documents X,

Delete Documents

Sign Out (>

Enter your manual testcase name#Enter the failure step/condition Eg: Testcase NEFT Trar

€ > C l2%g

bapp. net Cx O = & 0 &

8, iQEAssist _

Uploaded Documents

bank neft txn.txt v

Testing Tasks:

Generate BugRep v

Upload Documents &

Delete Documents

Sign Out (>

iQEAssist Bot
@ online

1. Navigate to the AlphaGo Bank website.

2. Enter valid username and password and click submit.
3. In the homepage, click on the Payments section.

4. Click on the "Initiate a new payment” button.

5. Select the account to be debited from as saving account from the Account debited dropdown.
6. Select payment type as NEFT from the Payment type radio button.
7. Select Payment to as "from existing contact list" from the Payment to dropdown.

8. Observe that the existing contact list is not loaded on the screen.

5. Actual Result:
The existing contact list is not loaded on the screen, preventing the user from selecting a contact for
the NEFT transfer.

6. Expected Result:
The existing contact list should be loaded on the screen, allowing the user to select a contact for the
NEFT transfer.

Enter your manual testcase name#Enter the failure step/condition Eg: Testcase NEFT Trar

4.12 Test Coverage Analysis

Prerequisite: Upload Manual Test cases with a common Test case Group name isuploaded in
iQEAssists. Also, the user story against which review is to be done.

Steps: Select your Test Coverage Analysis from dropdown and enter the manual test group
name and then separated by a # enter the user story. /requirement against which it should be

compared.

Example: Testcase Group InvoiceGen # Identify Clients for Invoice Generation

iQEAssists Output: Generates coverage report for given requirement like a Test Lead.

File Home Insert Pagelayout Formulas Data Review View Automate Help | &= comments | -
o A | = s] Hinsert ~ v A
B! @ EIs x| ==@e b |] B B ® iy O @
paste 1B B I U- = E- §-9% 9 g Condtional Formatas Cell &8 Delete. - ¥ Sot& Find& Add-ins Analyze
- 8 = & 2 ® % Formattingv Tablev Styles¥ [Format~ = & v Filter~ Select~ Data
Clipboard 15 Font 5] Alignment] Number 5] Styles Cells Editing Add-ins s
H1 v i fx »
A B C D E G H | -
TestcaseGroup Test Case Test Case Description Test Steps Expected Results Test Type (Positive qr Negativt_)
1. Set the payment mode for a client as "bank
account".
2. Check if the client is identified as eligible
EvoiceeGen 1 Clients with bank account payment mode for Evoice generation. The client should be identified as eligible for Evoice g Positive
1. Set the payment mode for multiple clients
as "bank account".
2. Check if all the clients are identified as
EvoiceeGen 2 Multiple clients with bank account paymet eligible for Evoice generation. All the clients with bank account payment mode shou Positive
1. Set the payment mode for a client as
“credit card" or any mode other than "bank
account".
2. Check if the client is identified as eligible
EvoiceeGen 3 Clients with payment mode other than bat for Evoice generation. The client should not be identified as eligible for Evoi Negative
1. Set the payment mode for all clients as
“credit card" or any mode other than "bank
account".
2. Check if any clients are identified as
< > EVOICE-GEN + S ¢ »
teadv T Accessibility: Unavailable H @ M -—a—+ 100%
<« > C 25 ige-assist-webapp.azurewebsites.net % = 4 0 & ¢

9, iQEASssist

Uploaded Documents

EVOICE-GEN.csv = v

Testing Tasks:

Test Coverage Ana v

Upload Documents X,

Delete Documents

Sign Out (>

iQEAssist Bot

® online

TestcaseGroup EvoiceeGeng#ldentify Clients for Evoice Generation

Test Case Reviews Against the Requirement "Identify Clients for Evoice Generation”

#iHH# Test Case ID: 1

- **Accuracy**: This test case directly aligns with the acceptance criteria mentioned in the story. It
tests the core functionality - if setting the payment mode to "bank account” makes a client eligible for
Evoice generation. **Score: 5/5**

i+ Test Case ID: 2

- **Accuracy**: This test case expands on Test Case 1 by applying the same logic to multiple clients,
ensuring the system can handle bulk operations as expected. It is accurate and relevant to the
requirement. **Score: 5/5**

#iHH# Test Case ID: 4

- **Accuracy**: This test case tests the negative scenario where no clients are set to the "bank

Enter test scenario name#Target user story Eg: Testscenario NEFT Transfer#NEFT Transfi

€ 3> C % g ist-webapp.azt net % in] = & 0 2

8, iQEAssist _

iQEAssist Bot
Uploaded Documents @ online

##H# Missing Coverage with Respect to Functional Testing Techniques

EVOICE-GEN.csv v

Testing Tasks: 1. **Error Guessing**

- Missing Test Cases for Error Guessing: Handling of incorrect input formats for bank account details,
Test Coverage Ana v

reaction to unsupported or deprecated bank account types, and processing errors during the bank
account verification process.

2. **Equivalence Partitioning**
- Missing Test Cases for Equivalence Partitioning: There's a lack of testing across different types of
bank accounts (checking, savings, etc.) to ensure they are all treated uniformly for Evoice eligibility.

3. **User Persona Testing**
- Missing Test Cases for User Persona Testing: Different user roles (admin, regular user, finance

team) and their permissions related to setting payment modes or generating Evoices are not tested.
Upload Documents I,

4. **Decision Table**
Delete Documents T

€« » C 2% ige-assist-webapp.azurewebsites.net % In) = 4 0O

2 iQEASssist
iQEAssist Bot
Uploaded Documents @ online

EVOICE-GEN.csv v

- Missing Test Cases for All Pairs Testing: The test cases do not cover all possible combinations of

payment modes and other variables (e.g., client type, invoice amount) that could affect Evoice
festing Tasks: generation.

Test Coverage Ana v

6. **State Transition**

- Missing Test Cases for State Transition: There's no testing for application flow, such as the
transition of a client from ineligible to eligible for Evoice generation upon updating payment mode to
a bank account.

##H# Ambiguity
There seems to be no ambiguity in the provided test cases. They are clear and directly related to the
requirements specified in the story.

Upload Documents I, ### Checking for Unexpected Negative Exploratory Paths
The provided test cases do not cover exploratory paths such as:

Delete Documents - Concurrency issues (e.g., multiple users updating payment modes simultaneously)

Sign Out (> Enter test scenario name#Target user story Eg: Testscenario NEFT Transfe##NEFT Transfi

4.13 Code Conversion/Review Agent

This task converts source framework and language code to target framework language and
code. You can upload files formats of major four languages (java, python, JavaScript, C#) and
dataformats properties, Json and xml. You can also connect your Gitlab data by providing
credentialsand it will be available in uploaded files.

Prerequisite: Your code file to be converted should be present in iQEAssists

20

Steps: Select your Code Conversion from dropdown and enter your code file name and then
separated by a # enter source framework and language followed by # and target framework and
language

Example:

iQEAssists Output: iQEAssists generates target framework code with comments and explanations

N

(6] 2 iq ist-webapp. ites.net % 3 =0 2

9, iQEAssist _
iQEAssist Bot
Uploaded Documents @ online

datepickerjava
datepicker.java#selenium java#playwright javascript

3
u
=4
Q
'
)
x~
)
<

Code Conversion1 v To convert the provided Selenium Java code for a date picker interaction to Playwright JavaScript,
we'll follow the outlined rules closely. The original Java code interacts with a web page's date and
Conversion Tasks: time picker input field, filling it with a specific date and time. We will achieve the same functionality

Dependencies using Playwright in JavaScript.

First, ensure you have Playwright installed in your project. If not, you can install it using npm:

“bash
npm install playwright

Upload Documents 2
As of my last update, Playwright's latest stable version is *1.20.0". Please check the official [Playwright

Delete Documents GitHub repository](https://github.com/microsoft/playwright) or npm package for the latest version.

Sign Out (> Enter file name#Source framework#Target framework Eg: Login Page#Test#selenium java
< C 25 iqe-assist-webapp.azurewebsites.net (A 4) g0 @
9, iQEAssist _
iQEAssist Bot
Uploaded Documents ® online

“javascript
1/ playwright_datepicker.js

I

datepicker java

Testing Tasks:
const { chromium } = require(‘playwright’); // Ensure you have the latest version of Playwright.

Code Conversion1 v

(async () =>{
// Launch the browser
const browser = await chromium.launch();

Conversion Tasks:

Dependencies

const page = await browser.newPage();

// Navigate to the target webpage
await page.goto('http://demo.guru99.com/test/’);

1/ Select the date-time picker field
const dateBoxSelector = ‘//form//input[@name="bdaytime"]’;
await page.click(dateBoxSelector);

Upload Documents 2

Delete Documents

Fnter fila name#Source framewnrk#Tarast framewnrk Fa- | nain Pane#Tactécaleniim iava ﬁ

Full output downloaded from

21

To convert the provided Selenium Java code for a date picker interaction to Playwright
JavaScript, we'll follow the outlined rules closely. The original Java code interacts with a web
page's date and time picker input field, filling it with a specific date and time. We will achieve
the same functionality using Playwright in JavaScript.

First, ensure you have Playwright installed in your project. If not, you can install it using npm:

““bash

npm install playwright

As of my last update, Playwright's latest stable version is *1.20.0°. Please check the official
[Playwright GitHub repository] (https://github.com/microsoft/playwright) or npm package
forthe latest version.

Here's how the conversion looks:

“javascript

// playwright_datepicker.js

const { chromium } = require('playwright'); // Ensure you have the latest version of Playwright.

(async () => {
// Launch the browser
const browser = await chromium.launch();

const page = await browser.newPage();

// Navigate to the target webpage

await page.goto('http://demo.guru99.com/test/');

22

http://demo.guru99.com/test/%27)%3B
http://demo.guru99.com/test/%27)%3B

// Select the date-time picker field
const dateBoxSelector ='//form//input[@name="bdaytime"]’;

await page.click(dateBoxSelector);

// Fill the date as mm/dd/yyyy - For example, 09/25/2013

// Then, press Tab to shift focus to the time field and fill the time as 02:45 PM

// Playwright allows us to send both date and time together if the field permits it
await page.fill(dateBoxSelector, '09252013');

await page.keyboard.press('Tab');

await page.keyboard.type('0245PM');

// Code assumes the existence of the date picker control on the page.

// Ensure the selectors used match those of your specific date picker control.

// Close the browser

await browser.close();

N0;

Explanation and Best Practices:

1. **Dependencies and Versioning:** We're using Playwright's ‘chromium™ browser instance.
Ensure you have the latest version of Playwright installed for new features and security updates.

2. **Functionality Equivalence:** The converted code accomplishes the same task as the
original Selenium Java code—interacting with a date-time picker on a webpage. However,
Playwright's approach simplifies the process by allowing more direct interactions with the

23

webpage, such as filling in text fields and simulating keyboard presses without needing to
manage drivers explicitly.

3. **QOptimization and Best Practices:** The code is optimized by using Playwright's promises
and async/await syntax for better readability and flow control. Playwright automatically waits
for elements to be ready before interacting with them, which reduces the need for explicit wait
statements.

4, **Exception Handling:** Playwright operations that fail (e.g., due to missing elements) will
throw errors. It's best practice to wrap Playwright operations in try/catch blocks if you need
custom error handling or logging.

5. **External References:** The code assumes that the date picker exists and that its input can
accept date and time as typed text. If the date picker implementation on the target page
requires different interactions (e.g., selecting dates from a calendar widget), additional steps
would be needed.

This JavaScript code using Playwright is a direct translation of the provided Selenium Java code,
adhering to the specified conversion rules and focusing on maintaining functional equivalence,
optimization, and adherence to Playwright best practices.

14

25

	1. Introduction
	2. Features of iQEAssists:
	3. Website
	How to use iQEAssists:
	2. Upload your requirement documents which are in format txt, pdf, csv, docx or other supported formats like FRD, U ser stories and Testcases.
	4.1 Type Prompt
	4.2 User Story Generation-BDD
	4.3 Requirement Validation
	4.4 Generate Function Testcase
	4.5 Generate E2E Testcases
	4.6 Generate API Tests
	4.7 Generate Test Data
	4.8 Generate Automation TC
	4.9 Create BDD from TDD
	4.10 Automation Code Review
	4.11 Generate Bug Report
	4.12 Test Coverage Analysis
	4.13 Code Conversion/Review Agent

